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Abstract

The genome of Epstein-Barr virus (EBV) encodes 86 proteins, but only a limited set is expressed in EBV-growth transformed
B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens
(EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth
promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but
can still initiate cell cycle entry and proliferation of primary human B cells in contrast to an EBNA-2 deficient mutant virus.
Surprisingly, and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but
give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels
of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 down-regulated and 167 up-regulated
genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor
suppressor gene p16/INK4A, or might contribute to essential steps of the viral life cycle in the infected host. In addition,
EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2. This study comprises the first
genome wide expression profiles of EBNA-3A target genes generated within the complex network of viral proteins of the
growth transformed B cell and permits a more detailed understanding of EBNA-3A’s function and contribution to viral
pathogenesis.
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reporter gene assays. Protein fragments of both viral proteins
exhibit repressive as well as activating functions [5,6,7]. Repres-
sion by EBNA-3A is dependent on the interaction with the co-
repressor C-terminal-binding protein (CtBP), which can recruit
HDAC activities and human Polycomb group proteins [8].

Introduction

Epstein-Barr virus (EBV) infection of resting primary B cells i
vitro causes cell cycle entry of the infected cells, which convert into
permanently proliferating lymphoblastoid cell lines (LCLs) by
establishing a latent viral infection. Growth transformation of
primary human B cells by EBV requires the concerted action of
Epstein-Barr virus nuclear antigens (EBNAs) and latent membrane
proteins (LMPs). The genes encoding the EBNA-3A, -3B and -3C
proteins are tandemly arranged in the viral genome and share some
regions of colinear homology. EBNA-3A belongs to the subgroup of

Importantly, EBNA-3A might be a competitive antagonist of
the viral transactivator Epstein-Barr virus nuclear antigen-2
(EBNA-2), which is invariably co-expressed with EBNA-3A in
LCLs. All EBNA-3 proteins bind to the cellular DNA-binding
factor CBF1. CBF1 (C-promoter binding factor 1) is also known as
RBP-Jk or RBPJ and is a member of the CSL group of

latent viral proteins, which have been reported to be absolutely
essential for the initial steps in the process of growth transformation
and its maintenance in latently infected cells [1]. LCLs, which
express a conditional EBNA-3A mutant, cease proliferation in the
absence of functional EBNA-3A [2]. While these results firmly
established that EBNA-3A significantly contributes to the mainte-
nance of proliferation of LCLs, EBNA-3A negative LCLs have been
described occasionally challenging the notion that viable EBNA-3A
negative LCLs can be established [3,4].

The EBNA-3A and -3C full length proteins
transcriptional repressors in heterologous GAL4 dependent

score as
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orthologues comprised of CBF1, Su(H) and Lag-1. CBF1 is a
sequence specific DNA-binding protein, which recruits co-
repressor complexes to regulatory elements of promoters.
EBNA-2 can bind to CBFI, displace the co-repressor complex
and activate transcription. EBNA-3 proteins can interfere with
CBF1 dependent activation of the viral C- and LMP2A promoters
by EBNA-2 in transient reporter gene assays [7,9,10,11,12,13].
Since all EBNA transcripts can be driven by the viral C-promoter,
the EBNA-3 proteins could be a component of an auto-regulatory
feedback loop controlling their own expression. Importantly,
EBNA-3A mutants deficient for binding to CBF1 or repression of
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Author Summary

Epstein-Barr virus (EBV) infects primary human B cells and
establishes a latent infection, which leads to permanently
growing B cell cultures. These growth transformed B cells
express a well defined set of latent viral genes, which are
also expressed in post-transplant lymphomas of immuno-
suppressed patients. In a concerted action these latent viral
proteins drive cellular proliferation and prevent apoptosis.
For this study, recombinant Epstein-Barr virus mutants that
lack the gene for the Epstein-Barr virus nuclear antigen-3A
(EBNA-3A) were generated. EBNA-3A is a transcriptional
modulator of gene expression. We show here that EBNA-3A
deficient growth transformed B cells can be established in
vitro. Our results suggest that EBNA-3A supports viability
but is not absolutely essential for proliferation of the
infected B cell. By virtue of the established EBNA-3A
deficient cell lines, we could for the first time identify a
broad array of cellular target genes controlled by EBNA-3A
in EBV infected B cells. These EBNA-3A target genes will
permit a more detailed understanding of EBNA-3A’s
function and contribution to viral pathogenesis.

C-promoter activation in reporter gene studies could not rescue
the proliferation of LCLs lacking functional EBNA-3A [14].

Transcriptional activation of EBNA-2 cellular target genes
including ¢-mye, CD21 and CD23 can also be affected by EBNA-
3A, if EBNA-3A is strongly expressed in LCLs. This finding
indicated that EBNA-2 and EBNA-3A might be antagonists
competing for access to cellular targets via CBF1 [15]. However,
conditional inactivation of EBNA-3A in LCLs does not affect ¢-myc
or CD23 expression indicating that expression levels are critical for
EBNA-3A functions [2].

Anti-apoptotic functions have been attributed to the expression
of EBNA-3 proteins in Burkitt’s lymphoma cell lines and most
recently it has been shown that EBNA-3A and -3C cooperate to
repress the expression of the pro-apoptotic tumor suppressor Bim
[16,17]. EBNA-3A can also induce the chaperones Hsp40 and
Hsp70 and co-chaperon Bag3 by a CtBP independent mechanism
[18]. By directly interacting with the aryl-hydrocarbon receptor
(AHR) EBNA-3A enhances the activity of this transcription factor
[19]. However, cellular target genes which are modulated by this
mechanism have not been described. In summary, several
molecular strategies might be employed by EBNA-3A to modulate
gene expression and cell survival but information on bona fide target
genes 1is rare, since most targets have been defined by reporter
gene assays or ectopic overexpression of EBNA-3A.

In order to re-assess the contribution of EBNA-3A to the growth
transformation process, we generated EBNA-3A negative recom-
binant virus and infected resting human B cells #n wiro.
Surprisingly, EBNA-3A deficient virus infected human primary
B cells entered the cell cycle. Compared to EBNA-3A positive
control cultures, they expand more slowly and exhibit elevated
steady state levels of apoptosis. Permanently growing EBNA-3A
negative LCLs could be established and were used to identify the
contribution of EBNA-3A to the transcription program of the
EBYV infected B cell.

Results

EBNA-3A negative viral mutants have impaired growth
transformation properties compared to wild-type controls
but give rise to permanently growing B cell cultures

In order to re-asses the contribution of EBNA-3A to the B cell
growth transformation process we generated EBNA-3A deficient
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recombinant B95.8 mutants, termed EBV-E3AmtA and EBV-
E3AmtB, based on the 2089 homologous recombination system in
E.coli, also called Maxi-EBV [20]. Recombinant B95.8 (2089) will
be designated EBVwt in the following. Previously published
EBNA-3A deficient viral mutants carried truncations of the open
reading frame at aminoacid position 302 or 304, respectively [1,4].
EBV-E3AmtA was an insertion mutant disrupting the open
reading frame of EBNA-3A at aminoacid position 126 of the
primary sequence. In addition, a second mutant, EBV-E3AmtB,
was generated in which the entire open reading frame of EBNA-
3A was deleted.

In order to analyze whether EBNA-3A negative viruses can
promote the activation and S-phase entry of human primary B cells,
CD19 positive B cells were purified from adenoids. These B cells
were infected with viral supernatants of EBV-E3AmtA and plated on
lethally irradiated human primary fibroblasts as feeder layers. For
comparison, EBVwt and non-transforming EBV mutants lacking
the EBNA-2 ORF (EBVAEZ2) were analyzed in parallel (Figure 1A).
In order to measure the earliest time point at which the cells entered
S-phase, 2x10°> CDI19 positive B cells were infected with 3000
Green Raji Units (GRUs) of viral supernatants and [*H]-thymidine
incorporation was measured immediately after virus infection on day
0 and on day 2, 4, 6, 8, and 14 post infection (p.i.). To define the
background levels of the biological system, thymidine measurements
of irradiated feeder layers and of uninfected B cells plated on feeder
layers were also tested in parallel cultures. Thymidine incorporation
of cultures infected with both EBVwt and EBV-E3AmtA initiated on
day 4 and was readily seen on day 6 p.i. and the following days of
culture. EBV-E3AmtA was less efficient than EBVwt infection to
drive proliferation during a two weeks time period. Infection with
EBVAE2 never gave rise to thymidine incorporating cultures.
Similar results were obtained in parallel studies, using the same
donor material but performed in the absence of fibroblast feeder
layers (Figure 1B). Since cell cultures set up at low cell densities might
be more feeder dependent, we performed thymidine incorporation
experiments using 1x10° or 0.5x10° cells per microculture (Figure
S1). Cell cycle entry of EBVwt infected B cells was unaffected by
fibroblast support. However, co-cultivated fibroblasts strongly
promoted cell cycle entry of EBV-E3AmtA infected B cells in low
density cell cultures which still scored below wt levels (Figure S1).
Hence, B cells were co-cultivated with irradiated fibroblast feeder
layers for the initial 28-35 days p.i. with EBVwt or mutant viruses in
all subsequent experiments since we wanted to exclude all potentially
limiting factors caused by unfavorable conditions during prolonged
cell culture.

Limiting dilutions of viral supernatants were used to measure
the relative efficiency of EBV-E3AmtA compared to EBVwt to
give rise to permanently growing cultures i wvitro (Figure 1C).
1x10° B cells isolated from adenoids of 4 donors were plated in
groups of 48 microcultures on lethally irradiated fibroblast feeder
layers. The microcultures were infected with serial dilutions of
normalized viral supernatants (2000, 1000, 200, 100, 50, 10, 1, 0.5
GRUs per well). 5 weeks p.i. proliferating cultures were counted.
On average, 7 EBVwt GRUs were required to establish one
proliferating B cell culture. The growth transformation efficiency
of EBV-E3AmtA was about 3.6 fold reduced and required 25
GRUs to initiate and maintain a proliferating culture for 5 weeks
(Figure 1C). Noteworthy, proliferation of EBNA-3A negative
cultures was not only restricted to this limited time period, since
long term B cell lines negative for EBNA-3A could be established
from these cultures for all 4 donors (designated as donor 4, 5, 6
and 7 in the following).

In order to generate further long term B cell cultures infected
with EBNA-3A negative virus, CD19 positive B cells were isolated
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Figure 1. EBNA-3A negative viral mutants drive cell cycle entry of primary human B cells but show reduced long-term growth
transformation capacity compared to EBVwt. (A) Cell cycle entry of primary human B cells after infection with EBVwt and EBV-E3AmtA was
analyzed by thymidine incorporation assays. 2x10° B cells were plated on lethally irradiated MRC5 feeder layer and infected with 3000 GRUs of
EBVwt, EBV-E3AmtA or EBVAE2 or left uninfected. At day 0, 2, 4, 6, 8 and 14 p.i. cells were pulsed with [3H]—thymidine and analyzed for thymidine
incorporation. Cultures with feeder only were set up in parallel and show the background levels of [*H]-thymidine measurements. Results are given as
means from 6 single values and represent one of three independent experiments. (B) 2x10° B cells derived from the same donor as analyzed in (A)
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were plated without feeder cells and infected with 3000 GRUs of EBVwt, EBV-E3AmtA or EBVAE?2 or left uninfected. At day 0, 2, 4, 8 and 14 p.i. cells
were pulsed with [*H]-thymidine and analyzed for thymidine incorporation. Results are given as means from 6 single values. (C) The growth
transformation efficiency of EBV-E3AmtA is weakly impaired but not abolished. To assess the growth transformation capacity of EBV-E3AmtA, the
number of GRUs required to sustain B cell proliferation in a single well of a 96-well cluster plate was determined for EBVwt and EBV-E3AmtA in
limiting dilution assays. Briefly, primary B cells derived from 4 individual donors were infected with serial dilutions of normalized viral supernatants
and plated on lethally irradiated MRC5 feeder layer in groups of 48 cultures per degree of dilution. The percentage of wells per group with
proliferating cells was determined 5 weeks p.i. with EBVwt and EBV-E3AmtA. The results are given as the mean percentage of proliferating cultures
per group and the standard deviations are shown as error bars. The horizontal line at 63% (30 out of 48 wells plated) indicates the zero term of the
Poisson equitation and identifies the average number of GRUs necessary to establish one proliferating B cell culture. Control infections with EBVAE2
were set up in parallel for each donor but never gave rise to proliferating cultures.

doi:10.1371/journal.ppat.1000506.g001

from 3 additional donors and infected with EBVwt, EBV-E3AmtA
and EBV-E3AmtB. From each donor infected with EBNA-3A
negative viruses permanently growing B cell cultures could be
established, which proved to be of B cell origin by FACS analysis
for CD19 expression (Figure S2). In contrast, EBVAEZ2 infected B
cell cultures never gave rise to transiently or permanently growing
B cell cultures.

By PCR analysis the genotype of established B cell lines from
donor 1, 2 and 3 infected with EBVwt, EBV-E3AmtA and EBV-
E3AmtB was verified (Figure 2A and B). The PCR products
generated from genomic DNA of HEK293 producer cell lines
were identical in size to those generated from B cell lines infected
with the corresponding viruses. The genotype of the infected B cell
lines was further confirmed by genomic southern blots (Figure S3).

In order to exclude that proliferation of EBNA-3A negative
cultures is driven by co-infection with EBV type 1I, EBNA-3A
protein expression was analyzed in western blots using an EBNA-
3A specific polyclonal sheep serum, which recognizes EBNA-3A of
the EBV strain type I, B95.8, as well as the EBNA-3A protein of
the EBV strain type 11, Jijjoye. Neither type I nor II derived EBNA-
3A protein was detected in B cell cultures infected with EBNA-3A
negative viruses (Figure 2C). For all 7 donors co-infection with
EBV type II was further excluded by PCR analysis using primers
specific for EBV type I and II genomic sequences, respectively
(Figure S4).

Since the EBV-E3AmtA virus carries a disrupted EBNA-3A
gene, which might encode for a truncated protein of 126
aminoacids, western blot experiments were carried out in order
to visualize this potential EBNA-3A fragment (Figure 2D). A rat
monoclonal antibody, which recognizes an epitope within the first
50 aminoacids of EBNA-3A (E3AN4A5), was used for immuno-
staining in western blots. This antibody readily detected full length
EBNA-3A in EBVwt infected B cells but no truncated EBNA-3A
fragment was detected in EBV-E3AmtA infected cultures. If a
potential EBNA-3A fragment is made in EBV-E3AmtA infected
cells it is expressed below detection levels.

EBNA-3A negative LCLs proliferate at reduced rates,
show elevated levels of apoptotic death rates but exhibit
viral gene expression patterns similar to EBVwt infected
cells

EBNA-3A negative LCLs could be established from all donors
tested so far and were expanded in the absence of feeder layers 4-5
weeks post infection. However, EBNA-3A negative cell lines were
difficult to expand and viability was impaired compared to wt
LCLs. In order to characterize their phenotype in more detail,
established EBNA-3A negative cultures, which had been cultivated
for at least 2.5 months but not longer than 4 months p.i. were
tested for their proliferation rates. Compared to wt control lines
isolated from 1identical donors EBV-E3AmtA infected cells
proliferated at reduced rates (Figure 3A). The relative distribution
of cells in the different phases of the cell cycle was analyzed after
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BrdU pulse labeling for two hours and 7-AAD counter staining
followed by FACS analysis (Figure 3B). In EBV-E3AmtA infected
B cell lines the relative proportion of S-phase cells was decreased,
the G1 population was slightly increased, while the apoptotic sub
G1 population was strongly increased. In order to further quantify
the dead and apoptotic cell fractions, cells were stained with
Annexin 'V and 7-AAD (Figure 3C). Both, early apoptotic
(Annexin V +/7-AAD —) as well as late stage apoptotic and dead
(Annexin V +/7-AAD +) cells were enriched in EBV-E3AmtA
infected cell cultures, indicating that the impaired proliferation
rates of the cultures are caused by a steady loss of cells by
apoptosis.

Since the EBNA-3A deficient phenotype might reflect a greater
dependence on autocrine/paracrine factors for growth and
survival, proliferation rates of EBNA-3A negative cultures were
further tested in the presence of cell culture supernatants derived
from wt LCLs or fibroblast feeder layers. However, no
improvement in proliferation rates could be detected within a
time period of 15 days (Figure S5A and B). In addition, EBNA-3A
negative LCLs were co-cultivated on fibroblast feeder layers for 3
days, but again the impaired growth of the cells could not be
restored (Figure S5C). Hence, fibroblast feeder cells might support
the growth of EBNA-3A negative cultures in the initial phase of
growth transformation, but cannot revert the EBNA-3A deficient
growth phenotype of established LCLs. If EBNA-3A negative
LCLs were cultivated for periods extending 4 months p.i., the
poorer growth and survival phenotype was gradually lost and
cultures adopted growth characteristics similar to wt LCLs.

To further characterize EBNA-3A negative LCLs, the expres-
sion of latent viral genes typically expressed in EBV growth
transformed B cells was investigated (Figure 4 and 5). All EBNAs,
which have been shown to be critical for the growth transforma-
tion process, EBNA-1, -2, and -3C, were consistently expressed at
wild-type levels (Figure 4).

The viral C-promoter (Cp) is considered to be a central
promoter element of all EBNAs in the latency III transcription
program. Real-time RT-PCR for C-promoter usage was per-
formed for EBNA-3A negative LCLs of all 7 donors aiming at
identifying potential changes in Cp usage compared to EBVwt
infected cells (Figure 5A). However, no consistent EBNA-3A
dependent alterations in Cp usage could be found. Similarly, no
consistent change of LMP1, LMP2A or LMP2B transcript
abundance could be seen in EBNA-3A negative LCLs
(Figure 5B, C, D).

Genome wide analysis of cellular genes differentially
expressed by EBNA-3A positive and negative LCLs reveals
a remarkable overlap of EBNA-3A and EBNA-2 target
genes

To identify potential differential cellular gene expression
patterns of EBNA-3A negative LCLs, total cellular RNA was
harvested and processed for hybridization to HG-UI133A 2.0
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Figure 2. EBNA-3A negative viral mutants give rise to permanently growing lymphoblastoid B cell lines. (A) Diagram of the EBNA-3A
gene locus in the EBVwt genome and the two distinct recombinant viral mutants. In order to generate EBV-E3AmtA a canamycin resistance gene
(can) cassette was inserted into the second exon of EBNA-3A, while the entire coding sequence of EBNA-3A was replaced by a canamycin cassette in
order to generate EBV-E3AmtB. The position of primers (p) used for analysis of the EBNA-3A locus in wt or modified EBV genomes and the expected
product sizes are depicted. (B) LCLs established from 3 individual donors (D1-D3) by infection of B cells with EBVwt, EBV-E3AmtA or EBV-E3AmtB virus
stocks and the corresponding HEK293 virus producing helper cell lines were tested for the correct state of the modified EBNA-3A gene locus by PCR.
(C) EBNA-3A negative LCLs are not co-infected with EBV type Il. Wt and EBNA-3A negative LCLs established from 7 individual donors (D1-D7) were
analyzed for EBNA-3A expression by immunoblotting using a polyclonal a-EBNA-3A antibody detecting both, EBV type | and Il encoded EBNA-3A. The
EBV type Il infected cell line Jijoye, the EBV type | infected cell line 721, and the EBV-negative cell line DG75 were included as controls. (D) The
disruption of the EBNA-3A ORF by the canamycin cassette does not lead to expression of a truncated EBNA-3A protein. LCLs established by infection
with EBV-E3AmtA were inspected for expression of a truncated EBNA-3A protein by immunoblotting using a monoclonal a-EBNA-3A antibody
detecting an epitope within the first 50 amino acids of EBNA-3A. The respective wt LCLs, the EBV-positive cell line 721 and the EBV-negative cell line
DG75 were included as controls. GAPDH immunodetection was used to control for equal loading of the lanes.

doi:10.1371/journal.ppat.1000506.g002

Affymetrix arrays. This array carries 22,277 independent probe
sets, which represent 18,400 transcripts and related variants,
including 14,500 well characterized human genes. The samples
were prepared from 5 EBVwt, 5 EBV-E3AmtA and 4 EBV-
E3AmtB infected LCLs derived from 3 individual donors, which
had been cultivated for 3 (D3), 4 (D2) and 6 (D1) months post
infection. At the time the RNA was harvested these LCLs had
been routinely expanded in the absence of feeder cells for at least 2
and up to 5 months but still exhibited the characteristics of wt and
EBNA-3A deficient growth phenotypes.

43.5% (+/—1.8%) of the probe sets scored present in EBVwt,
EBV-E3AmtA and EBV-E3AmtB infected cells indicating that no
massive over all change in transcription levels had occurred. Probe
sets for CD antigens typically expressed on LCLs (CD19, CD20,
CD21, CD23, CD40, CD86) scored present in both, EBNA-3A
positive and negative LCLs, but were not differentially expressed
(data not shown). Probe sets representing CD antigens expressed
on T cells like CD3 or on specific B cell subsets like CD5 scored
absent in all cell lines assayed. 380 probe sets, corresponding to
296 genes and 3 not yet annotated loci were differentially
expressed at least 2-fold (p=0.05) comparing wt and EBNA-3A
negative LCLs. Of these 296 genes, 129 genes were found to be
down-regulated in wt LCLs, while 167 genes were found to be up-
regulated (see Table S1). In order to visualize differential gene
expression patterns characteristic for EBNA-3A positive and
negative cells, unsupervised hierarchical clustering of expression
values was performed for 74 probe sets which exhibited =4-fold
differential expression (p=0.01) between the two groups (Figure 6).
The result grouped samples according to the presence (lane 1-5)
or absence of EBNA-3A (lane 6-14) expression and identified two
main clusters of 29 EBNA-3A repressed and 37 EBNA-3A induced
genes. EBV-E3AmtA and EBV-E3AmtB infected cells separate
into two distinct but closely related clusters. The unsupervised
hierarchical clustering for genes differentially expressed at least 2-
fold (p=0.05) is shown in Figure S6.

Based on the group of genes regulated by EBNA-3A at least 4-
fold (p=0.01), a subset of genes was selected for validation.
Transcript levels of the selected target genes were analyzed by
real-time RT-PCR in donor matched paired RNA samples of
EBNA-3A positive and EBNA-3A negative LCLs derived from 3
individual donors (Table 1 and 2). For these experiments novel
RNA preparations were used. LCLs from one donor (D3) were
identical to those, which had been examined by microarray
hybridization (designated as D3 wt 1 and D3 E3AmtB in Figure 6)
and represent long-term established cell lines. In contrast, LCLs
from donors 6 and 7 (D6, D7) were harvested 6 weeks p.i. with
EBVwt or EBV-E3AmtA and thus represent recently established
LCLs. All 12 genes, which had been identified as EBNA-3A
repressed genes according to the Affymetrix analysis, could be
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confirmed in all three RNA pairs. Numerically, x-fold repression
rates as measured by real-time RT-PCR in almost all cases
exceeded the values obtained by the Affymetrix technology.

12 genes, which had scored as at least 4-fold induced genes
according to the array analysis, could all be confirmed for the
donor 3 derived RNA samples of the long-term established LCLs.
However, with the exception of MMP7, induction rates were
significantly lower but still detectable, when recently established
LCLs were analyzed. Some of the EBNA-3A activated genes are
differentially expressed in long term lines but only marginally
modulated in lines 6 weeks p.i. (TMEM45A, LTA, LSTI,
FAM13AL1). Most likely, for these genes the differential expression
is triggered by indirect mechanisms including the selective pressure
mmposed by the lack of EBNA-3A in the cell culture. In order to
test if expression profiles of EBNA-3A deficient LCLs were robust,
the transcript levels of all 24 genes were re-assessed in a cell line,
which had been continuously propagated for more than 2 years
and now grew with wild-type characteristics. Of all genes tested,
the expression levels of Cadherin 1 (CDH1) only had dropped to
levels measured in the corresponding EBNA-3A proficient cell line
(data not shown). Further experiments will be required to clarify
whether the loss of CDH1 expression i vitro has provided a growth
advantage to the cells. Interestingly, 5 (CXCL10, FAM49A,
CDHI1, ALOX5, CCL3) of the selected 24 EBNA-3A targets have
already been shown to be regulated by EBNA-2 before. Since
EBNA-3A and EBNA-2 have been suggested to balance CBF1
signaling we analyzed whether further previously identified
EBNA-2 target genes were represented in the set of the 296
EBNA-3A regulated genes (see Table S1). EBNA-2 targets were
selected from a set of 505 genes, which were regulated at least 2-
fold (p=0.05) by EBNA-2 in EBV negative B cell lines and had
been identified by Affymetrix gene array analysis previously [21].
In addition, published EBNA-2 targets from different sources
[22,23] were included in the analysis. Apparently, counter- and
co-regulated genes were identified. On the one hand, 26 of 129
EBNA-3A repressed genes were induced by EBNA-2 and 22 of
167 EBNA-3A induced genes were repressed by EBNA-2. Hence
48 of the 296 EBNA-3A targets (16.2%) are counter-regulated by
EBNA-2. On the other hand, 9 of 129 EBNA-3A repressed genes
were also repressed by EBNA-2, while 18 of 167 induced target
genes were also induced by EBNA-2. Thus, 27 out of 296 EBNA-
3A targets (9.1%) are co-regulated by EBNA-2. Taken together, it
appears that EBNA-3A and EBNA-2 indeed regulate an
overlapping set of target genes, while the frequency of counter-
regulated genes appears to be slightly elevated compared to co-
regulated genes. In summary, a total of 25.3% of EBNA-3A target
genes are also affected by EBNA-2 strongly suggesting that both
viral proteins are functionally linked impinging on similar
regulatory elements.

July 2009 | Volume 5 | Issue 7 | e1000506



100
[ —{— D4 E3AmtA 2

107 —f— D5 E3AmtA 1
—O— D5 E3AmtA 2

1000000 -

S 100000

e

X

5 10000

.E —B— D4dwt2
5 10001 —&— D5wt1
= —e— D5wt2
(1]

b=

8

[+

@

£

[=]

o

1

E3AmtA 4
5] E3Amta 2

[ I esamas
[ ] esamtad

b we
[55] w2
fn] wes
o] wea
B esamtad
] Esamta2
S
o] we2
] we 3
[ wta
] eaamtat &

80%

[ [l esamas

percentage of cells

20%

0%
BOem 11 9 13 12 10 9 10 16 7 8 13 11 7 10 13 13
| s 28 30 39 45 4 13 4 4 30 32 41 37 15 16 10 8
0OG/G, 59 58 45 42 64 67 53 46 62 58 41 49 65 66 52 56
B <G, 2 2 4 2 22 11 33 34 1 2 4 2 13 8 25 23

c D4 D5 D4 D5
o~ Ll o™~
2 3 4
E E E
< L= b
L] Ll L]
100% - S B o
80%
0
3
o 60%
o
@
o
[}
£
g 40% -
5
a
20%
0% -
10 14 8 10 31 23 20 16 [D Ann.V+ 7-AAD+
9 9 4 6 21 15 26 14 [J Ann.V+/7-AAD-

80 77 88 B84 48 62 53 69

B Ann.V-/ 7-AAD-

Figure 3. EBNA-3A negative LCLs proliferate at reduced rates
and exhibit higher levels of apoptotic cells. (A) EBNA-3A negative
LCLs proliferate at reduced rates. Three independent wt and EBNA-3A
negative LCLs derived from two individual donors were seeded at an
initial density of 2x10° cells per ml and viable cell counts were
determined over a period of three weeks. Results are given as total
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numbers of viable cells corrected for the expansion of the cultures over
time. The data are shown as mean values of triplicates. (B) EBNA-3A
negative LCLs show reduced S-phase entry compared to wt LCLs. The
cell cycle status of wt and EBNA-3A negative LCLs derived from two
different donors was determined with the thymidine analogue BrdU,
which was added to the respective cultures for 2 hrs prior to FACS
analysis. The incorporated BrdU was stained with an APC-coupled anti-
BrdU antibody and total DNA was counterstained with 7-AAD. Cells
were inspected for Go/G;, S and Gy/M phases of the cell cycle and for
sub G1 DNA content by FACS analysis. (C) EBNA-3A negative LCLs
exhibit higher levels of apoptotic cells compared to wt LCLs. The
fraction of apoptotic cells in cultures of wt and EBNA-3A negative LCLs
was determined by FACS analysis after staining of cells with Cy5-
coupled Annexin V and 7-AAD. Cells that stain positive for Annexin V-
Cy5 but negative for 7-AAD are in early apoptosis, while cells that stain
positive for both are either in the end stage of apoptosis or dead.
doi:10.1371/journal.ppat.1000506.g003

EBNA-3A cellular target genes are enriched for genes
contributing to cell survival

Given the unaltered viral gene expression patterns in EBNA-3A
negative LCLs, we next asked if changes in cellular target gene
expression might reflect functions of EBNA-3A, which explain the
impaired viability of the EBNA-3A negative LCLs. A gene
ontology (GO) analysis was performed with the set of genes with at
least 2-fold (p=0.05) expression changes comparing wt and
EBNA-3A negative LCLs.

The online tool DAVID (Database for Annotation, Visualization
and Integrated Discovery) was used to map EBNA-3A target
genes to GO-terms in the “Biological Process” category and to
calculate the significance for enrichment of specific GO-terms
within this gene list with respect to the total number of genes
assayed and annotated. Statistical measures for specific enrich-
ment were assigned by means of an EASE score, a modified Fisher
Exact p-value. Genes involved in an “immune system process’
obtained the most significant scores (Table 3). However, this
finding might be considered as less meaningful, since transcrip-
tional profiling might simply reflect the B cell origin of the LCLs.
Not surprisingly, genes annotated to immune system processes
were also significantly enriched among EBNA-2 targets identified
in the B cell lines BJAB and BL41 in a previous Affymetrix gene
array analysis [21]. Noteworthy, genes annotated to be involved in
“apoptosis” were strongly over-represented among EBNA-3A
targets (35 members; EASE = 7.4E-5). Enrichment of the term
“apoptosis” was absent among randomly selected groups of 380
reference probe sets as well as among EBNA-2 targets identified in
BJAB cells conditional for EBNA-2 [21]. The group of EBNA-3A
regulated genes annotated to “apoptosis” contained both anti-
apoptotic genes as well as pro-apoptotic genes. For instance, wt
LCLs exhibit higher expression levels of NOL3 (synonym ARC,
apoptosis repressor with CARD domain; 2.0-fold induced,
p<<0.01) and BIRC3 (synonym cIAP2, inhibitor of apoptosis
protein 2 homologue C; 2.1-fold induced, p<0.01) compared to
EBNA-3A negative LCLs. Both proteins were repeatedly shown to
inhibit apoptosis [24,25, and references therein]. Concomitantly,
expression of the pro-apoptotic genes PERP (TP53 apoptosis
effector; 5.7-fold repressed, p=0.02) and STKI17B (synonym
DRAK?2, DAP kinase-related apoptosis-inducing protein kinase 2;
3.1-fold repressed, p=0.02) [26,27] appears to be repressed by
EBNA-3A in wt LCLs. Significant enrichment was also found for
genes annotated to be involved in the “regulation of cell cycle” (24
members; EASE = 1.3E-3). Prominent members within this group
are e.g. cyclin D2 (2.0-fold induced, p=0.02), which is up-
regulated in wt LCLs, and the CDKN2A locus (2.7-fold repressed,
p<0.01), which appears to be down-regulated in wt compared to
EBNA-3A negative LCLs (for details see Table SI1). The

July 2009 | Volume 5 | Issue 7 | e1000506



EBNA-3A Target Genes

D3 D1 D2
-— (3] - [y} - - ™~
g § ¢ ¢ g e 2
wn E E E E E E 5
5 O R 3 S 8
~ (=] E w w w w E w E w w
EBNA-A e - — —_—

EBNA-3C P

!
|

EBNA-z W — D — s —
GAPDH == o o oy o= oo oo e b O o O
D5 D4
- o™ o = - (3] Lar ] =t
g £ 35 4 g g g g
ﬁ a E E s w w w w ; E ; w w w 1]
EBNA-3A w - e " — —

EBNA-3C ™=

B oo GER ao S0 0 - . S o= - G -

EBNA-2 — B ———— ) S D S — o

EBNA-1 =

GAPDH
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CDKN2A locus encodes the two tumor suppressor proteins pl4/
ARY and pl16/INK4A. According to the Affymetrix data, further
cyclin-dependent kinase inhibitors were not differentially ex-
pressed (pl18, p21, and p57) or not expressed (pl5 and pl9).
Transcript levels of CDKNI1B, encoding p27, were significantly
(p=0.03) but only 1.5-fold reduced in wt compared to EBNA-3A
negative LCLs (data not shown).

Differential expression of pl6 was already demonstrated for
LCLs with a conditional EBNA-3C allele [28]. Since the probe
sets for the CDKN2A locus cannot distinguish between the
transcripts encoding for p14 and p16, wt and EBNA-3A negative
LCLs from all seven donors were investigated for pl4 and pl6
expression by western blot analysis (Figure 7). Indeed, as described
for EBNA-3C depleted LCLs, EBNA-3A negative LCLs exhibit
higher levels of pl6 expression. Expression of pl4 was near or
below detection levels. Hence, prevention of p16 expression in wt
LCLs seems to be a common feature of both viral proteins, EBNA-

3A as well as EBNA-3C.

Discussion

EBNA-3A deficient LCLs can be established with moderate
efficiencies but are less viable than EBNA-3A proficient LCLs

Since the growth transformation process is based on the
concerted action of viral proteins, the rate-limiting and distinct
contribution of each viral factor can only be fully recognized in the
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cellular background of EBV infected B cells. For this study,
recombinant EBV mutants deficient for EBNA-3A expression
were generated and shown to be able to promote proliferation and
viability.

Comparative limiting dilution analysis using mutant and wild-
type virus revealed that the growth transformation efficiency of
EBNA-3A deficient EBV was reduced 3 to 4-fold but permanently
growing B cell cultures could be expanded from every donor
sample that was infected.

Since we could establish long-term proliferating LCLs deficient
for EBNA-3A from seven unrelated donors, we can exclude that
genetic donor-specific features permitted the proliferation of the
cells in our experiments. Importantly, we excluded the contribu-
tion of a potentially co-infecting endogenous donor derived virus
of either type I or II providing EBNA-3A functions i trans by
western blot and PCR analysis. These EBNA-3A deficient
proliferating cultures are prototypic CD19 positive B cells, which
can be propagated indefinitely i vitro and exhibit all features,
which characterize an LCL. In addition, their gene expression
profiles do not reveal any specific features, which would
characterize them as specific B cell subsets.

Our findings appear to contradict previous studies, which
concluded that EBNA-3A is essential for B cell growth
transformation [1,2,4,14]. An inherent feature of two earlier
experimental approaches was the fact, that recombinant virus was
produced with low efficiencies in the presence of excess EBNA-3A
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doi:10.1371/journal.ppat.1000506.9005

proficient helper virus [1,4]. Infection with EBNA-3A deficient
virus never generated proliferating cultures, which were initially
EBNA-3A negative. For both previous studies either B cells
1solated from peripheral blood or cord blood lymphocytes were
infected. In the present study, we used purified B cell preparations
from adenoids, which might represent a B cell population that is
pre-activated and thus might growth transform more readily. Also,
in the study performed by Tomkinson and colleagues, infected B
cells were not co-cultivated with irradiated feeder layers as it has
been done in this study. Although we can show, that EBNA-3A
deficient established LCLs can be cultivated in the absence of
feeders our data strongly suggest that fibroblast feeder layers
stabilize the culture under suboptimal conditions and thus
supported the growth transformation process. Thus, the optimized
culture conditions as well as the B cell source might have well
attributed to our recent findings. In addition, Tomkinson and
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colleagues reported that the inactivation of the EBNA-3A gene by
insertional mutagenesis at aminoacid position 302 could have
resulted in a dominant negative mutant since wild-type virus
transformation, if performed in the presence of the co-infecting
EBNA-3A mutant, was drastically reduced [1]. Thus, expression
of a potentially toxic EBNA-3A fragment could have prevented
the outgrowth of EBNA-3A deficient LCLs. Our previous studies,
which worked on EBNA-3A mutants potentially encoding 304
aminoacids of EBNA-3A, revealed that LCLs, which were initially
co-infected with the EBNA-3A proficient PSHR1 plus the EBNA-
3A mutant could lose the P3HR1 genome over prolonged cell
culture time, indicating that EBNA-3A is not required for
maintenance of proliferation but a contribution to initiation could
not be excluded [4]. Remarkably, the group of Robertson reported
that they isolated a spontancously growing LCL, which carried an
EBV genome with a 16 kb deletion encompassing the EBNA-3A

July 2009 | Volume 5 | Issue 7 | e1000506



'
M
o
-
-y
m
(=]

D1wt

D2 wt1
D2wt2

D3 E3AmIB
D2 E3AmIB 3
D2 E3AmMIB 2
D2 E3AMIB 1
D3 E3AMLA 4
D3 E3AMA 3
D3 E3AmMLA 2
D3 E3AmMEA 1
D1 E3AmtA

D3wt1
D3wt2

209765_at
201131_s_at
210942 _s_at
208092_s_at
204866 _at
204105_s_at
209683 _at
202786 _at
206618 _at
209209 _s_at
209210_s_at
202052_s_at
205403 _at
206134 _at
205997 _at
203997 _at
211518_s_at
204491 _at
219696 _at
215100_at
217809 _at
204533 _at
213170_at
218805_at
64064 _at
219777 _at
219602_s_at
200872_at
219667 _s_at
212209 _at
202388 _at
212592 _at
210201_x_at
218543 _s_at
212573 _at
215028 _at
204446_s_at
214366_s_at
214439 x_at
204082 _at
219410_at
202252 _at
218986_s_at
206975_at
202551_s_at
214181_x_at
203520_s_at
203521_s_at
205114_s_at
204959 _at
204103_at
219584 _at
203153_at
204678_s_at
204679 _at
211338_at
208650_s_at
202411_at
204259_at
205542_at
203132_at
218856_at
220603_s_at
205890_s_at
203186_s_at
202973_x_at
220615_s_at
205674 _x_at
208636_at
209290_s_at
209289 _at
201850_at
204424 s_at
204759_at

ADAM19
CDH1
ST3GALE
FAM49A
PHF16
NRCAM
FAM49A
STK39
IL18R1
PLEKHCA1
PLEKHC1
RAI14
IL1R2
ADAMDEC1
ADAM28
PTPN3
BMP4
PDE4D
FLJ20054
C6orf105
BZW2
CXCL10
GPX7
GIMAPS
GIMAPS
GIMAPE
FAM38B
S100A10
BANK1
THRAP2
RGS2

1GJ

BIN1
PARP12
ENDCD1
SEMABA
ALOXS
ALOXS
BIN1
PBX3
TMEM45A
RAB13
FLJ20035
LTA

CRIM1

LST1

ZNF318
ZNF318
CCL3/CCL3L1/CCL3L3
MNDA

CCL4 / CCL4L1 /CCL4L2
PLA1A

IFIT1

KCNK1

KCNK1

IFNAZ

CD24

IFI27

MMPT7

STEAP1

RB1
TNFRSF21
MCTP2
GABBR1/UBD
S100A4
FAM13A1
MLSTD1
FXYD2

ACTN1

NFIB

NFIB

CAPG

LMO3

RCBTB2

EBNA-3A Target Genes

Figure 6. Expression profiles of wt and EBNA-3A negative LCLs. Shown are 74 probe sets displaying at least 4-fold changes in expression
levels with significance p=0.01 in EBNA-3A negative LCLs compared to wt LCLs. Vertical columns represent data obtained for each individual cell line
by hybridization to a single microarray, while horizontal rows represent data obtained for a particular probe set across all cell lines. After
normalization of expression values on a scale ranging from —2.0 to 2.0 for each probe set, an unsupervised hierarchical clustering analysis was
performed, using Pearson correlation as a measure for similarity between genes and complete linkage as a clustering allocation algorithm. High

expression values are represented by red, low expression values by green and medium values by black.

doi:10.1371/journal.ppat.1000506.9006
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Table 3. GO-term enrichment analysis of cellular genes
displaying at least 2-fold changes in expression levels
between wt and EBNA-3A negative LCLs (p=0.05).

GO-term® Count® EASE score®
immune system process 54 9.8E-13
response to virus 12 8.0E-6
chemotaxis 14 1.6E-5
apoptosis 35 7.4E-5

cell differentiation 61 9.8E-5
regulation of cell cycle 24 1.3E-3

signal transduction 87 1.6E-3

cell proliferation 29 1.0E-2

2GO-term in the “Biological Process” category. In order to highlight major
biological themes and to reduce redundancy, similar annotation terms (e.g.
“apoptosis” and “programmed cell death”) were grouped together and
representative terms were manually selected. Note that a given gene can be
annotated to multiple terms, since the gene ontology is structured as a
directed acyclic graph.

Pnumber of EBNA-3A target genes annotated to the term.

Sstatistical measure for enrichment of a given GO-term among differentially
regulated genes with respect to the total number of genes assayed and
annotated to the term. Functional groups enriched within EBNA-3A target
genes were considered as meaningful in case of EASE-scores=0.01.

doi:10.1371/journal.ppat.1000506.t003

open reading frame and was thus negative for EBNA-3A. Since
the deletion also included genes critical for the lytic life cycle, it
most likely occurred post infection [3]. The fact that we
reproducibly can establish EBNA-3A deficient LCLs is thus
completely novel. Since for this study EBNA-3A was interrupted at
aminoacid position 126 and a corresponding EBNA-3A fragment
could not be detected in western blots, we suggest that our knock-
down strategy could be one explanation for the apparently
contradicting results to earlier experimental approaches. Notably,
primary B cells could also be growth transformed using EBV-
E3AmtB, which lacks the entire open reading frame of EBNA-3A.
Since EBV-E3AmtB virus production was consistently lower than
EBV-E3AmtA virus production, all quantitative experiments were
performed using EBV-E3AmtA. On average, 25 “Green Raji
Units” of EBV-E3AmtA virus stocks were sufficient to initiate a
proliferating  LCL culture. We suspect that the synchronous
outgrowth of multiple clones within a single microculture well
favors the survival of EBNA-3A negative LCLs by mutual cross
feeding culture conditions. In summary, technical improvements

EBNA-3A Target Genes

during the last years, in particular the option that biological active
titres of the viral supernatants can be quantified and normalized,
might explain why previous attempts to raise these cultures were
unsuccessful.

A recent study using conditional EBNA-3A mutant cell lines,
which require functional EBNA-3A for proliferation, convincingly
showed that EBNA-3A is necessary for growth maintenance in a
conditional cellular system but contradicts the main result of our
study [2]. We suggest the two distinct experimental approaches
most likely account for this discrepancy.

Viral gene expression patterns were not altered in EBNA-3A
deficient LCLs. We cannot exclude that a selective pressure caused
by the EBNA-3A deficiency in our system forced the expression
patterns of some viral factors. However, the published conditional
system elegantly avoids this problem and confirms our results.
Hence, viral gene expression levels are unlikely to account for the
impaired viability of EBNA-3A deficient LCLs.

Even if EBNA-3A deficient LCLs can be propagated i vitro, their
impaired viability most likely prevents the expansion of EBNA-3A
deficient cells @ vivo. Several convincing lines of evidence point
towards an essential contribution of EBNA-3A to viral pathogenesis
in the infected host i vivo. Infectious EBNA-3A negative clinical
virus isolates have never been reported and so far only a single
spontaneous EBNA-3A negative LCL was described [3]. In
addition, under selective pressure imposed by adoptive immuno-
therapy targeting EBNA-3A, EBNA-3A loss of function mutants as
described for EBNA-3B have never been observed [29].

Gene expression profiles of EBNA-3A proficient and
deficient LCLs

The gene expression profiles described in this study are based
on the analysis of 5 EBNA-3A proficient LCLs compared to 9
EBNA-3A deficient LCLs. The RNA samples were isolated from
three unrelated donors and data were later confirmed by further
experiments using material from 2 additional unrelated donors.
Since EBNA-3A is a transcriptional repressor in GAL4 based
reporter gene assays, our target screen aimed primarily at
identifying cellular genes specifically repressed by EBNA-3A in
LCLs. However, according to the unsupervised clustering of the
array results, EBNA-3A proficient and deficient LCLs express
significantly distinct transcript profiles of 129 down-regulated but
also of 167 up-regulated genes (=2-fold, p=0.05). By real-time
RT-PCR we confirmed 24 either up- or down-regulated
transcripts using RNAs from long term or recently established
cell lines. Confirmation of the EBNA-3A repressed genes in
general reflected the amplitude of change seen in the array data

: 0: ! 1§ 31 %
MR ne
T = 0 %2 0 £ 80 0 8 0 8 0 % O
p16 == —_— — — — — e—
pi4 =
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Figure 7. EBNA-3A negative LCLs exhibit higher expression levels of p16. Total cellular protein extracts of EBNA-3A positive and negative
LCLs derived from 7 donors were analyzed for p14 and p16 protein expression by western blot analysis. HeLa cell extracts served as positive control
for both proteins. GAPDH immunodetection was used to control for equal loading of the lanes.

doi:10.1371/journal.ppat.1000506.g007
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for long as well as for short term established lines. EBNA-3A
induced genes could be confirmed in long term established cell
lines, but induction was less pronounced in recently established cell
lines. Thus, secondary effects of prolonged cell culture periods
might indirectly influence the expression of these genes.

HSPA6/7, BAG3, HSPA2, CDCPl, HSPAIA/1B/IL,
HSPCA, SPHKI1, DNAJAIl, ITPR3, and CCL2 had been
previously described to be regulated in response to adenovirus
EBNA-3A in fibroblasts [18]. In EBNA-3A deficient LCLs we
could not confirm regulation of these genes. Most likely, the
experimental set up accounts for the observed discrepancies. In
addition, the pro-apoptotic gene BCL2L11 (Bim) has been
described to be repressed by EBNA-3A and EBNA-3C expression
in the context of EBV negative Burkitt’s lymphoma cell lines [17].
In LCLs BCL2L11 expression was low and no significant
modulation was detected.

Recently, 3 EBNA-3B repressed (CXCR4, ENTH, TTF2), 3
EBNA-3C repressed (JAG1, NCALD, FLNA) and 2 EBNA-3C
activated (ITGA4 and TCLIA) target genes were described. These
studies were based on LCLs which either lacked EBNA-3B or
lacked EBNA-3B combined with low level EBNA-3C expression
[30]. We found 3 of the genes repressed either by EBNA-3B or
-3C also significantly repressed by EBNA-3A (NCALD, CXCR4,
and ENTH). None of the activated genes was also modulated by
EBNA-3A. In addition, suppression of pl6/INK4A expression in
the presence of functional EBNA-3C has recently been shown in
an EBNA-3C conditional system [28] and was now also shown for
EBNA-3A in our study. Thus, EBNA-3A and EBNA-3C indeed
might share a set of target genes for which each EBNA-3 protein is
rate limiting since loss of one EBNA-3 protein relieves repression.
Hence, non-redundant functions can be executed by individual
EBNA-3 proteins even in the context of single target genes. In
addition to these targets, specific target genes exist, which are
controlled by distinct EBNA-3 proteins.

Since EBNA-2 and all EBNA-3 proteins are co-expressed in
LCLs and interact with CBF1, the EBNA-3 proteins might not
only directly repress target gene expression but could also
indirectly affect EBNA-2 functions. Several scenarios have been
proposed. Since it is well established that EBNA-3 proteins
interfere with CBF1 dependent EBNA-2 activation in reporter
gene assays, the EBNA-3 proteins could directly compete for
binding of EBNA-2 to CBF1 complexed with DNA [31].
Alternatively the EBNA-3 proteins could prevent CBF1/DNA
complex formation and serve as buffers to bind CBF1 in solution
and render it biologically unavailable for EBNA-2 [7,32].
Intriguingly, the viral LMP1 promoter is co-activated by EBNA-
3C and EBNA-2, and both proteins have been shown to bind to
the endogenous LMP1 promoter indicating that on the promoter
level EBNA-2 and -3C binding is not mutually exclusive in specific
constellations [33,34,35]. However, the cooperation of EBNA-3C
and EBNA-2 is PU.1 dependent and not executed by EBNA-3A
[36]. While the LMPI promoter is a valuable model system to
study EBNA-3C/EBNA-2 interactions, no such model system is
available for EBNA-3A. Since no endogenous viral latent gene was
modulated by EBNA-3A, an important aspect of our study was to
compare the set of EBNA-3A targets to previously identified
EBNA-2 target genes in order to identify potential co- or counter-
regulated cellular genes. Like the study published by Maruo and
colleagues, our data neither confirmed antagonistic activities of
EBNA-2 and EBNA-3A for the viral LMP2A and C-promoter nor
for the ¢-myc, CD21 and CD23 gene reported previously
[2,9,11,15]. However, our analysis showed that a total of 16.2%
of the EBNA-3A targets were counter-regulated by EBNA-2, while
9.1% were co-regulated genes. FFor instance, the cyclin-dependent
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kinase 5, regulatory subunit 1 (CDK5R1) and the chemokine
ligand 3 (CCL3, MIP-1a) are activated by EBNA-2 via a CBF1
dependent mechanism [21] but are either down- (CDK5R1) or
up-regulated (CCL3) by EBNA-3A. At this point of our study, we
are confident that we have identified bona fide EBNA-3A regulated
genes in the presence of the co-expressed EBNA-2 protein. Future
studies will need to distinguish primary and secondary targets. We
hope that our cellular system will facilitate the understanding of
the molecular mechanism used by EBNA-2 and -3A to co-activate
or counter-regulate cellular target genes by delineating cis-
responsive regulatory elements of model target genes.

Functions of EBNA-3A target genes

According to the GO term analysis, the biological functions of
genes which are differentially expressed in EBNA-3A proficient
versus deficient cells cover a broad spectrum ranging from
immune system processes, chemotaxis, and apoptosis to cell cycle.
It is to be expected that these EBNA-3A functions control the
viability of the LCLs @ vitro but also contribute to the viral life
cycle and pathogenesis in the infected host.

The tumor suppressor gene pl6/INK4A is a cell cycle inhibitor
and senescence marker gene. A striking similarity of EBNA-3A
and EBNA-3C negative LCLs is the expression of elevated p16/
INK4A transcript and protein levels in both systems [28]. The 2-
fold decrease of cyclin D2 in parallel with elevated pl16/INK4A
levels in EBNA-3A deficient LCLs are likely to impair the cell
cycle progression. It would be interesting to know if the cell
division cycle of a single cell deficient for EBNA-3A is prolonged.
We are convinced that the constitutively elevated levels of
apoptosis will necessarily cause a slower growth of the respective
cultures but consider it most likely, that the modulation of cell
cycle relevant genes imposes an additional constrain to the
proliferating EBNA-3A deficient cell cultures. We thus do not
anticipate that a single EBNA-3A target gene or a single class of
genes but rather the combined action of EBNA-3A’s multiple
functions involved in cell cycle control and apoptosis frames the
phenotype of the EBNA-3A deficient LCLs.

It should be noted, that for some genes controlled by EBNA-3A
a plausible function cannot be suggested. In particular, elevated
levels of the tumor suppressor and CDK substrate pRB in EBNA-
3A proficient LCLs are unexpected and cannot be explained
casily.

Other target genes are likely to exert their function i vivo.
Cadherin 1 (CDHI1) is a suppressor of tumor invasion and
metastasis, cellular adhesion, antagonist of B-catenin/Wnt signal-
ing and interferes with growth factor signaling [37]. The
chemokine CXCLI10 is a chemoattractant for NK and cytotoxic
T cells, which is critical for the control of Herpes simplex virus 1
and 2 replication @ viwo [38,39]. Matrilysin, MMP7, a matrix
metalloprotease which degrades extracellular and non extracellu-
lar substrates is found at elevated levels in colon carcinoma and
correlates with malignant progression. In addition, MMP7
overexpression has also been reported for a variety of cancers,
including those of the oesophagus, stomach, pancreas, lung,
colon/rectum and breast cancer, while SI00A4 is a mediator of
metastasis [40, and references therein,41]. Thus, genes regulated
by EBNA-3A are likely to control the viral life cycle or contribute
to the malignancy of the infected B cell i viwo in addition to
promoting the growth transformation process i vitro. Unfortu-
nately, in the absence of a small animal model for EBV infection it
1s not feasible to evaluate the contribution of these target genes to
the pathogenesis of EBV associated diseases.

We consider our study to be a significant contribution to the
identification of cellular EBNA-3A target genes, which might
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include potential therapeutic targets and at the same time provide
important tools to study the molecular mechanism of target gene
regulation by EBNA-3A.

Materials and Methods

Construction of the EBNA-3A negative EBV mutants (EBV-

E3AmtA and EBV-E3Am1B)

The targeting vector (bch202) which was used to generate the
recombinant B95.8 mutant EBV-E3AmtB was generated by
inserting the Smal-HindIII fragment of pCPl5 [42] into a
genomic fragment of EBV corresponding to nucleotide position
74948-86110 according to NCBI: AJ 507799.2. The insertion
replaced viral sequences corresponding to position 79950-83064,
thus deleting the entire ORF of EBNA-3A. The targeting
construct (Be694) which was used to generate the recombinant
B95.8 mutant EBV-E3AmtA was generated by inserting the Smal-
HindIII derived pCP15 fragment into the BamHI site at position
80418 of the EBV genome. This insertion causes disruption of the
EBNA-3A ORF at aminoacid position 126. Both targeting
constructs were linearized and introduced into the strain
BJ5183, which was pretransformed with p2089, the EBVwt
[20,43]. A map of the genomic sequences is provided in Figure
S3A.

Cell lines

The EBV-negative DG75 Burkitt’s lymphoma cell line [44], the
EBV-positive Burkitt’s lymphoma cell line Raji [45], the EBV-
positive cell lines 721 [46], Jijoye and ER/EB2-5 [47,48], HeLa
cells, MRC5 primary human fibroblasts (ATCC) and HEK293
cells [49] were cultivated in RPMI 1640 supplemented with 10%
fetal calf serum, 100 U/ml penicillin, 100 ug/ml of streptomycin,
and 4 mM glutamine at 37°C in a 6% CO, atmosphere. The
growth medium for ER/EB2-5 was supplemented with 1 uM B-
estradiol. In order to maintain standardized cell culture conditions
EBVwt, EBV-E3AmtA and EBV-E3AmtB infected B cells were
split every third day and re-seeded at a density of 2x10° cells per
ml in growth medium containing 20% fetal calf serum. HEK293
cells stably transfected with EBVwt (p2089) or EBVAE2 (p2491)
have been described previously [16,20]. EBV-E3AmtA or EBV-
E3AmtB producing HEK293 cells were generated by lipofection
with the respective Maxi-EBV DNA and selected for plasmid
maintenance by supplementing the cell culture medium with
100 ug/ml of Hygromycin B.

Production and quantification of viral supernatants

HEK293 transfectants carrying the recombinant virus plasmid
were induced for virus production by cotransfection of 0.5 ug of
the plasmids p509 encoding BZLF1 and p2670 encoding BALF4
per one 6-well in 3 ml cell cultures [50]. The supernatants of the
transfectants were harvested 3 days p.i. and passed through a
0.8 um filter. For quantification of viral titers $x10° Raji cells
were infected with serial dilutions of viral supernatants in 1 ml
cultures and the percentage of GFP positive cells was determined
by FACS analysis 4 days p.i.. The concentration of viral stocks was
expressed as the number of green Raji units (GRU). In order to
produce high titer virus stocks, virus particles were pelleted by
centrifugation at 25,000 rpm in a Beckmann SW28 rotor for
4 hours and then resuspended in 1/7 of the initial volume using
cell culture medium.

Growth transformation of human primary B cells

Human primary B cells were isolated from adenoids, depleted of
T cells by rosetting with sheep erytrocytes, and purified by Ficoll-
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Hypaque density-gradient centrifugation. Successful purification
was controlled by FACS analysis. For comparative limiting
dilution analysis of growth transformation efficiencies of different
viral mutants 1 x10° CD19 positive B cells/well were seeded in 96-
well cluster plates on lethally irradiated MRC5 feeder layer and
infected, using serially diluted normalized virus stocks, with
EBVwt, EBV-E3AmtA or EBVAE2 in a total volume of 200 pl.
For each virus dilution groups of 48 wells were plated. Once per
week 100 pl of the culture medium was replaced with fresh
medium. 5 weeks p.i. the number of wells with proliferating B cells
was determined for each virus and degree of dilution and was
calculated as the “percentage of positive wells” with respect to the
48 wells/group plated. The average percentage of positive wells
per virus dilution was calculated from experiments performed with
four different donors and was plotted against the GRUs/well,
which had been used for infection. According to the zero term of
the Poisson equitation the perpendicular dropped at 63% of
positive wells identifies the average number of GRUs necessary to
establish one proliferating B cell culture. For the establishment of
long-term B cell lines 1-2 x10” CD19 positive B cells were infected
with 1000 GRUs of EBVwt or different viral mutants and plated
on lethally irradiated MRC5 feeder layer in a total volume of
200 pl/well in a 96-well cluster plate. Once per week 100 pl of the
culture medium was replaced with fresh medium. 28-35 days p.i.
proliferating B cell cultures were removed from feeder layers and
expanded indefinitely in suspension cultures.

Thymidine incorporation assay

CD19 positive B cells were plated at 2, 1 or 0.5x10° cells/well
in 96-well cluster plates either on irradiated MRC) feeder layer or
without feeder cells and were infected with 3000 or 4500 GRUs of
EBVwt or mutant virus stocks (as individually described in the
figure legends) in a total volume of 200 pl. Control cultures were
set up with uninfected B cells or feeder cells only. At each
investigated point in time 3-6 microcultures were pulsed with
0.5 uCi [*H]-thymidine for 16 hours. Subsequently cells were
harvested with a Packard FilterMate Harvester on UniFilter-96,
GF/C plates and the amount of [*H]-thymidine incorporated into
DNA was measured in a TopCount Microplate Scintillation
Counter.

LCL Growth curves

LCLs were seeded at an initial density of 2x10° cells/ml in
10 ml cultures. Viable cell counts were determined by trypan blue
exclusion (GIBCO) at the indicated points in time, using a
hemocytometer and averaging a total of three cell counts per cell
line for a given time point. Cultures were subsequently re-seeded
at 2x10° cells/ml. Total cell numbers were calculated based on
the expansion of the cultures over time.

Conditioned medium was harvested from LCL cultures infected
with EBVwt grown to 4-5x10° cells/ml or from feeder cultures at
70% confluency and were passed through a 0.45 um filter. Since
supernatants derived from wt LCL cultures might contain EBVwt
virus particles due to the occurrence of spontaneous lytic cells, the
respective supernatants were proven to be virtually EBVwt virus
free by incubation with Raji cells and subsequent FACS analysis
for GIP positive cells.

Experiments using conditioned medium were performed by
cultivating 2x10° cells/ml in fresh medium or medium supple-
mented with 50% conditioned medium derived from either wt
LCLs or fibroblast feeder cells. Viable cells were counted and re-
seeded at 2x10° cells/ml every third day. Supernatants were
prepared freshly each time. For co-cultivation experiments with
feeder cells LCLs were seeded at an initial density of 2x10° cells in
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10 ml cultures either on 5x10° lethally irradiated MRC5 feeder
cells (70% confluent) or without feeder cells. After three days
viable cell numbers were determined by trypan blue exclusion and
corrected for the fraction of feeder cells.

Flow-cytometric analysis

Purification of B cells from adenoids was controlled using PE-
coupled a-CD19 and FITC-coupled a-CD3 antibodies (Diatec). B
cell origin of established LCLs was analyzed using an APC-coupled
a-CD19 antibody or an APC-coupled isotype control (BD
Biosciences). BrdU-assays (APC BrdU Flow kit; BD Biosciences)
and Annexin V-apoptosis assays (Annexin V-Cy5 and 7-AAD; BD
Biosciences) were performed according to the manufacturer’s
protocol. Fluorescence of cells was detected and analyzed using a
FACSCalibur system and CellQuest Pro software (BD Biosciences).

Southern blot and PCR analysis of genomic DNA

Southern blot and PCR analysis was performed as described
[51]. Primers used for generation of southern probes were Pr-fw
CGC TGA AAT TCG AGT CTT GAG C and Pr-rev GTC
AGT ACA CCA TCC AGA GC. Alternatively, genomic DNA
was analyzed for the correct state of the EBNA-3A gene locus by
PCR using Primers pl TTG TGC AGG AAC AGG TAT CG, p2
TCC TCC CAG ATT TTC GTG AG, p3 GTC TGT TGT
GCC CAG TCA T and p4 GCG GTG TTG GTG AGT CAC
AC. Co-infection of LCLs with EBV strain type II was excluded
by PCR analysis using Primers EBV-I-fw TTG TGC AGG AAC
AGG TAT CG and EBV-I-rev CTA TGG CTC GTG TGT
CGA TG spectfic for EBV strain type I genomic sequences and
primers EBV-II-fw GTT CAG CTC CAG CAC AAC AC and
EBV-II-rev GGG TGG TCA TTC TCC ATT TG specific for
EBV strain type II genomic sequences. Primers GAPDH-fw CGA
GAT CCC TCC AAA ATC AA and GAPDH-rev TTC AGC
TCA GGG ATG ACC TT were used as a control.

Western blot analysis

Western blot analysis was performed as described [51] and the
following antibodies were used: anti-EBNA-1 (EBNA1-1H4), anti-
EBNA-2 (R3-1-3) and anti-EBNA-3A (E3AN4A5) (produced in
collaboration with E. Kremmer). The pl6 antibody JC8 was a
kind gift from Ed Harlow. The antibodies for pl4 (Sigma),
GAPDH (Chemicon) and polyclonal antibodies against EBNA-3A
and EBNA-3C (Ex-alpha Biologicals, Inc) are commercially
available.

Microarray analysis and relative quantification of viral and
cellular transcripts by real-time RT-PCR

Microarray analysis starting from 1 pg of total cellular RNA
was performed using the HG-UI33A 2.0 Affymetrix array
according to the manufacturer’s protocol. Affymetrix CEL files
were processed as described previously [21] and significantly
regulated genes were identified by applying the Limma (linear
models for microarray analysis) t-test between the 5 wt LCLs and
the 9 EBNA-3A negative LCLs [52]. P-values were corrected for
multiple testing using the algorithm proposed by Benjamini and
Hochberg [53]. Additional filtering based on the fold change
between the two conditions was applied with different stringency,
individually described in the legend of the tables and figures.
Unsupervised hierarchical clustering was performed using Genesis,
available at http://genome.tugraz.at [54]. Real-time RT-PCR
analysis was performed as described previously [21]. Primers used
for real-time RT-PCR are summarized in Table S2. Cycling
conditions were 1 cycle of 95°C for 10 min and 40 cycles of
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denaturation (95°C for 1 s), annealing (see Table S2, for 10 s), and
extension (72°C for 25s). PCR products were examined by
melting curve analysis and the expected fragment size was verified
by agarose gel electrophoresis. To account for differences in
reaction efficiencies, a standard curve was generated for each
individual primer pair by using serial dilutions of PCR products as
templates for amplification and by plotting the crossing points
versus the known dilutions. All data were normalized for the
relative abundance of the 18S rRNA transcript. The abundance of
each target transcript could thus be compared across different
RNA samples tested.

Gene ontology analysis

The DAVID Functional Annotation Tool, available at http://david.
abce.nciferf.gov  (version 2008) was used to calculate over-
representation of GO-terms among genes differentially regulated
at least 2-fold between wt and EBNA-3A negative LCLs (p=0.05)
[55]. Statistical measures for specific enrichment were assigned by
means of an EASE score, which indicates the probability that a
given GO-term is more highly enriched among the target set than
it would be expected by random chance based on the total number
of genes represented on the Affymetrix array HG-U133A 2.0.
Functional groups enriched within EBNA-3A target genes were
considered as meaningful in case of EASE-scores=0.01.

Accession numbers for genes and proteins

Cellular genes or proteins [official gene symbol]

ADAMDEC: 27299; ALOX5: 240; AHR: 196; BAG3: 9531;
Bim [BCLILI1]: 10018; BIN1: 274; BIRC3: 330; BMP4: 652;
BZW2: 28969; CBF1/RBPJ/CSL: 3516; CCL2: 6347; CCLS3:
6348; CD3D: 915; CD3E: 916; CD3G: 917; CD3W: 918; CD3Z
[CD247]: 919; CD5: 921; CD19: 930; CD20 [MS4Al]: 931;
CD21 [CR2]: 1380; CD23 [FCER2]: 2208; CD40: 958; CD86:
942; CDCP1: 64866; CDH1: 999; CDK5R1: 8851; ¢-myc [MYC]:
4609; C'TBPI1: 1487; C'TBP2: 1488; cyclin D2 [CCND2]: 894;
CXCLI10: 3627; CXCR4: 7852; F1,J20054 [DENND1B]: 163486;
DNAJAL: 3301; ENTH [CLINT]: 9685; FAMI3Al: 10144;
FAM49A: 81553; MLSTD1 [FAR2]: 55711; FLNA: 2316;
GAPDH: 2597; GIMAP5: 55340; HSPA1A: 3303; HSPA1B:
3304; HSPAIL: 3305; HSPA2: 3306; HSPAG6: 3310; HSPA7:
3311; HSPCA [HSP90AAT]: 3320; HSPCA [HSP90AAZ2]: 3324;
ITGA4: 3676; ITPR3: 3710; JAG1: 182; LST1: 7940; LTA: 4049;
MMP7: 4316; NCALD: 83988; NOL: 8996; pl4/ARF
[CDKN2A]:  1029; pl6/INK4A [CDKN2AJ: 1029; pld
[CDKN2B]: 1030; p18 [CDKN2C]: 1031; pl9 [CDKN2D]:
1032; p21 [CDKNIA]: 1026; p27 [CDKNIB]: 1027; p57
[CDKNIC]: 1028; PBX3: 5090; PDE4D: 5144; PERP: 64065;
PLEKHC1 [FERMT2]: 10979; PU.1 [SPI1]: 6688; RB1: 5925;
S100A4: 6275; SI00A10: 6281; SPHK1: 8877, STK17B; 9262;
STK39: 27347; TCL1A: 8115; TMEM45A: 55076; TTF2: 8458

Viral genes or proteins

BALF4: Q777B0; BZLF1: Q777E5; EBNA-1: Q777E1; EBNA-
2: P12978; EBNA-3A: Q8AZ]8; EBNA-3B: Q777E8; EBNA-3C:
Q777E7; LMP1: Q777A4; LMP2A: Q777H4; LMP2B: 3783760

Supporting Information

Figure S1 Irradiated fibroblast feeder layers support cell cycle
entry of primary human B cells infected with EBNA-3A deficient
viruses under suboptimal culture conditions. Cell cycle entry of
primary human B cells after infection with EBVwt, EBV-E3AmtA
and EBVAE2 was analyzed in the absence or presence of
fibroblast feeder layer by thymidine incorporation assays. Briefly,
B cells were plated on lethally irradiated MRC)5 feeder layer or
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kept without feeder cells at 2, 1 or 0.5x10° B cells per single well
of a 96-well plate and were infected with 4500 GRUs of EBVwt,
EBV-E3AmtA or EBVAE2. At day 0, 2, 4 and 7 p.i. cells were
pulsed with [*H]-thymidine and analyzed for thymidine incorpo-
ration. Results are given as mean values®*standard deviation
derived from triplicates for each indicated point in time and
experimental condition.

Found at: doi:10.1371/journal.ppat.1000506.s001 (1.25 MB TIF)

Figure S2 Verification of the B cell origin of EBNA-3A negative
LCLs. (A) Example for a typical B cell purification from human
adenoids by T cell rosetting. Prior to infection with EBV wt or
mutant viral stocks, primary human B cells were routinely purified
from adenoids of small children (aged below 4 years) by rosetting
of T cells with sheep erythrocytes. Successful purification was
monitored by FACS analysis after staining of cells with PE-
coupled a-CD19 and FITC-coupled a-CD3 antibodies. Typically,
the whole cell population prior to purification contained 22-25%
T cells and 72-75% B cells. By T cell rosetting, the T cell fraction
was in general reduced to 0.2-1.5% while the B cell fraction was
enriched to 96-97%. (B) LCLs established by infection of purified
B cells with EBVwt or either EBV-E3AmtB (D2, D3) or EBV-
E3AmtA (D1, D4-D7) viral stocks were proven for B cell origin by
FACS analysis after staining of cells with APC-coupled a-CD19
antibody. Cells stained with an APC-coupled isotype control were
used as negative control.

Found at: doi:10.1371/journal.ppat.1000506.s002 (2.70 MB TTF)

Figure 83 Southern blot analysis of the recombinant Maxi-EBV
mutants. (A) Section of the restriction map of the EBVwt genome
and the two distinct recombinant viral mutants generated for this
study. Restriction sites for Sphl digestion and expected fragment
sizes, hybridizing to the indicated genomic probe, are depicted. (B)
HEK293 cells stably transfected with EBVwt, EBV-E3AmtA or
EBV-E3AmtB were analyzed for the correct state of the modified
EBNA-3A gene locus by southern blot analysis prior to production
of viral supernatants. For EBV-E3AmtA several clones (cl.) of
HEK293 transfectants were tested. (C) Southern blot hybridiza-
tion proved the correct state of the EBNA-3A gene locus in
established wt and EBNA-3A negative LCLs derived from three
different donors (D1-D3). The corresponding HEK293 virus
producing helper cell lines were included as a control.

Found at: doi:10.1371/journal.ppat.1000506.s003 (1.56 MB TTF)

Figure 84 EBNA-3A negative LCLs are not co-infected with
EBV strain type II. Wt and EBNA-3A negative LCLs derived from
7 individual donors (D1-D7) were analyzed for co-infection with
EBV type II by PCR analysis of total cellular DNA. The position
of primers for both EBV strains is located within exon 1 and exon
2 of the EBNA-3A gene locus (A). Primers specific for EBV strain
type I yielded a PCR product of 379 bp. No PCR product is
generated with DNA originating from EBV-E3AmtB LCLs with
the whole EBNA-3A gene locus deleted (B). Primers specific for
EBV strain type Il produced a 364 bp product. The EBV type 11
infected cell line ER/EB2-5 was used as a control (C). To control
for successful DNA preparation PCR analysis was carried out
using primers for the GAPDH gene locus (D).

Found at: doi:10.1371/journal.ppat.1000506.s004 (2.17 MB TTF)

Figure 85 The reduced proliferation rates of EBNA-3A negative
LCLs can neither be corrected by cell culture supernatants derived
from wt LCLs or fibroblast feeder cells, nor by direct cultivation
on irradiated fibroblast feeder layers. (A) EBNA-3A negative LCLs
derived from two individual donors by infection of B cells with
EBV-E3AmtA (D8, right panel) or EBV-E3AmtB (D3, left panel)
were resuspended at an initial density of 2x10° cells per ml in
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either fresh medium or medium supplemented with 50% of cell
culture supernatant (SN) derived from the respective wt LCL or
from MRC) fibroblast feeder cells. Since supernatants derived
from wt LCL cultures might contain EBVwt virus particles due to
the occurrence of spontaneous lytic cells, the respective superna-
tants were proven to be virtually EBVwt virus free as shown in (B).
Viable cell counts were determined every third day and cells were
re-seeded at 2x10° cells per ml, again using either fresh medium
or medium supplemented with 50% of the respective cell culture
supernatant. For comparison, the corresponding wt LCLs grown
in fresh medium were included for each donor. Results are given
as total numbers of viable cells corrected for the expansion of the
cultures over time. The data are shown as mean values of
triplicates. (B) Cell culture supernatants obtained from wt LCLs
were tested for EBVwt virus load by FACS analysis. Briefly, 3x10°
Raji cells were incubated with 0.5 ml of wt LCL derived cell
culture supernatant in a 1 ml culture for 4 days and were analyzed
for GFP-positive cells by FACS analysis (left panel). As a positive
control Raji cells were incubated with 0.5 ml of supernatants
derived from the EBVwt HEK293 producer cell line after
induction of EBV’s lytic cyle (middle panel). Untreated Raji cells
were used as negative control (right panel). The results are given as
percentage of GIFP positive cells in the lower right quadrant. (C)
Wt and EBNA-3A negative LCLs analyzed in (A) were seeded at
an initial density of 2x10° cells per ml either on irradiated MRC5
feeder layers or without (w/o) feeder cells. Viable cell numbers
were determined after three days. Results are given as mean
values*standard deviation derived from triplicates.

Found at: doi:10.1371/journal.ppat.1000506.s005 (0.94 MB TTF)

Figure 86 Expression profiles of wt and EBNA-3A negative
LCLs. Shown are 380 probe sets displaying at least 2-fold changes
in expression levels with significance p=0.05 in EBNA-3A
negative LCLs compared to wt LCLs. Vertical columns represent
data obtained for each individual cell line by hybridization to a
single microarray, while horizontal rows represent data obtained
for a particular probe set across all cell lines. After normalization
of expression values on a scale ranging from —2.0 to 2.0 for each
probe set, an unsupervised hierarchical clustering analysis was
performed, using Pearson correlation as a measure for similarity
between genes and complete linkage as a clustering allocation
algorithm. High expression values are represented by red, low
expression values by green and medium values by black.

Found at: doi:10.1371/journal.ppat.1000506.s006 (1.63 MB PDF)

Table S1 Compilation of EBNA-3A regulated cellular genes
combined with a list of selected EBNA-2 target genes, which are
either co- or counter-regulated. Expression levels of 380 out of
22,277 probe sets were found to be at least 2-fold different (p=0.05)
between wt and EBNA-3A-negative LCLs, corresponding to 296
genes and 3 not yet annotated loci. Of these 296 genes, 129 genes
were found to be down-regulated in wt LCLs, while 167 genes were
found to be up-regulated. For each gene the table contains fold-
changes and p-values for the probe set, which showed the strongest
regulation (designated in bold). For genes that were identified more
than once, the additional probe sets are also listed. To assess the
overlap with EBNA-2 cellular target genes, probe sets were mapped
to gene symbols (including aliases) and compared to EBNA-2 targets
identified by us and others. EBNA-3A target genes that were
already described as a target of EBNA-2 by Zhao and colleagues or
by Spender and colleagues are indicated. For overlapping EBNA-2
target genes identified by us, fold-changes and p-values are
displayed, originating from our former expression profiles. The
analysis highlighted an overlap of 75 genes, corresponding to 25.3%
of EBNA-3A target genes also to be regulated by EBNA-2.
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Found at: doi:10.1371/journal.ppat.1000506.s007 (3.28 MB XLS)

Table 82 Primers used for real-time RT-PCR and annealing
temperatures.

Found at:

doi:10.1371/journal.ppat.1000506.s008 (0.09 MB

DOC)
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