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Burst fi ring is a neural code in an insect auditory system
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Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst fi ring. 
To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus 
types. The experimental data show that both burst probability and burst characteristics are strongly infl uenced by temporal modulations 
of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intrinsic processes, but also by their interaction with 
the stimulus time course. We study this interaction quantitatively and observe that bursts containing a certain number of spikes occur 
shortly after stimulus defl ections of specifi c intensity and duration. Our fi ndings suggest a sparse neural code where information about 
the stimulus is represented by the number of spikes per burst, irrespective of the detailed interspike-interval structure within a burst. This 
compact representation cannot be interpreted as a fi ring-rate code. An information-theoretical analysis reveals that the number of spikes 
per burst reliably conveys information about the amplitude and duration of sound transients, whereas their time of occurrence is refl ected 
by the burst onset time. The investigated neurons encode almost half of the total transmitted information in burst activity.
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INTRODUCTION
Tonic and burst fi ring encode different aspects of the sensory 
world. Specifi cally, in thalamic relay cells, burst fi ring has been 
reported as more effi cient in signal detection than tonic fi ring 
(Grubb and Thompson, 2005; Lesica et al., 2006; Sherman 2001) 
and more reliable to repeated presentations of the same stimulus 
(Alitto et al., 2005; Denning and Reinagel, 2005). Tonic fi ring, 
in turn, seems to be well suited for encoding the detailed evolu-
tion of time-varying stimuli. Similar results have been obtained 
in electric fi sh (Chacron et al., 2004; Metzner et al., 1998; Oswald 
et al., 2004).

Various studies have compared the stimuli that trigger iso-
lated spikes with those that induce burst fi ring (Alitto et al., 2005; 
Denning and Reinagel, 2005; Eggermont and Smith, 1996; Grubb 
and Thompson, 2005; Metzner et al., 1998; Oswald et al., 2004; 
Reinagel et al., 1999). In these comparisons bursts were taken as 
a single type of event, without further discrimination between 

 different burst variants. However, bursts may also encode stimuli 
in a graded manner (Kepecs et al., 2001; Oswald et al., 2007; Kepecs 
et al., unpublished). Bursts with different numbers of spikes can 
thus act as compact code-words. Indeed, in neurons from various 
sensory systems the number n of spikes within a burst correlates 
with particular properties of the external stimulus, such as the 
orientation of a drifting sine-wave grating (DeBusk et al., 1997) 
and the slope or the amplitude of visual contrast changes (Kepecs 
et al., 2001; Kepecs et al., unpublished).

Here, we examine the role of bursts in grasshopper audi-
tory receptor cells. When stimulated with time-dependent 
acoustic signals, these neurons fi re high-frequency bursts that 
are triggered by stimulus defl ections of specifi c intensity and 
duration. We quantify the amount of information encoded 
by a burst code and characterize the stimulus features repre-
sented by bursts of different duration. Receptor cells, however, 
do not generate bursts in response to constant or step stimuli 
(Gollisch and Herz, 2004; Gollisch et al., 2002), indicating that 
bursts can result from a non-trivial interplay between external 
stimuli and intrinsic dynamics. Our analysis leads to the fol-
lowing conclusions: (a) burst-fi ring constitutes a prominent 
feature in the neural code of the investigated auditory neurons, 
(b) representing neural responses by intra-burst spike counts 
n allows one to estimate the amount and type of transmitted 
information in a straightforward manner, (c) the correspond-
ence between code-words and the stimulus features that they 
represent may be readily explored with burst-triggered aver-
ages. Most importantly, (d) burst coding is a key element in the 
transmission of time-varying stimuli even for cells that are not 
intrinsic bursters.
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MATERIALS AND METHODS
ELECTROPHYSIOLOGY AND STIMULUS DESIGN
All experiments were conducted on adult Locusta migratoria. 
The animal’s metathoracic ganglion and nerve were exposed. 
Spikes were recorded intracellularly from the axons of auditory 
receptors located in the tympanal nerve, see Rokem et al. (2006) 
for details. The auditory stimulus was played from a loudspeaker 
located ipsilateral to the recorded neurons, at 30 cm from the 
animal. Thirty-seven receptor cells were recorded, from 23 ani-
mals. Each cell was tested with two or more stimuli, resulting 
in 132 data sets in total (one data set, or session, corresponds to 
one cell in one stimulus condition). The experimental protocol 
complied with German law governing animal care.

Each experiment began with a measurement of the “best” 
or “preferred” sound frequency of the receptor, that is, the fre-
quency of a sinusoidal acoustic wave for which the threshold of 
the cell is lowest. To that end, the animal was exposed to a pure 
tone between 3 and 20 kHz. The frequency that induced spik-
ing with minimal stimulus amplitude was selected as the best 

frequency of the cell, and the minimal intensity inducing spik-
ing constituted the threshold s

TH
. The mean threshold across the 

population was 58 dB (SD 14 dB). Mimicking behaviorally rel-
evant stimuli, the sound signals used for further analysis con-
sisted of amplitude modulated (AM) carrier sine waves whose 
frequency matched the cell’s best frequency. The AM signal 
was white up to a certain cutoff frequency and had a Gaussian 
amplitude distribution with a given standard deviation (see 
Figure 1, for an example). A detailed explanation of the stimulus 
construction may be found in Machens et al. (2001). Increasing 
the standard deviation results in more pronounced variations 
of the amplitude  modulations. By varying the cutoff frequency, 
instead, the  temporal scale of the stimulus excursions is altered, 
with higher cutoff frequencies corresponding to more rapid 
amplitude defl ections.

Different receptors vary in their cellular properties, resulting 
in different response characteristics. To identify the effect of the 
stimulus on the response (in spite of the cell-to-cell variability) 
each cell was presented with two stimuli. One stimulus was the 

Figure 1 | Example of an acoustic stimulus and neural response from a single recording session. (A) Wavy line: random amplitude modulation (AM signal) 
of a carrier sine wave. The standard deviation of the AM signal is 12 dB, its cutoff frequency is 200 Hz. Vertical lines: elicited spikes. The cell generates either 
isolated spikes, or stereotyped patterns consisting of 2–3 spikes separated by a short interval. (B) Raster plot corresponding to the recording shown in (A), for 
165 repetitions. Both the timing of individual spikes and the number of spikes in each pattern appear as reliable features, fairly well preserved throughout the 
different trials.
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same for all cells: a Gaussian amplitude distribution with 6 dB 
standard deviation and 200 Hz cutoff frequency. The other sig-
nal could be one of six different stimulation protocols. In four 
of them, the standard deviation of the amplitude modulation 
was fi xed at 6 dB, and the cutoff frequency was either 25, 100, 
400 or 800 Hz. In the other two protocols, the cutoff frequency 
was fi xed at 200 Hz, whereas the standard deviation was set to 
either 3 or 12 dB.

Given that the mean fi ring rate has a strong effect on the trans-
mitted information (Borst and Haag, 2001), the mean stimulus 
was adjusted to obtain an average fi ring rate of about 100 Hz. 
The resulting fi ring rates had a mean of 113 Hz (SD = 16 Hz), 
and they did not show any signifi cant variation in the different 
stimulus conditions, as assessed by a one-way ANOVA (p = 0.58). 
In addition, given that information measures require stationary 
recordings, we only kept those sessions where the trial-to-trial 
SD of the fi ring rate was <35 Hz (the population average of this 
SD is 6 Hz). There were 86 out of 132 data sets that fulfi lled these 
two conditions.

Once the carrier frequency and mean stimulus amplitudes 
were determined, N repetitions of each stimulus were presented, 
with N ranging between 98 and 503 (average 172), depending on 
how long the recording could be sustained. Each stimulus lasted 
for 1 s, though in all results presented here, the fi rst 200 msec of 
each trial were discarded, to avoid the initial transient response, 
where fast adaptation processes take place. Different trials were 
separated by pauses of 700 msec to prevent slow adaptation 
effects (Benda and Herz, 2003).

BURST IDENTIFICATION
Neural responses were preprocessed to decide which cells had a 
natural tendency to generate bursts, and in these cases, to iden-
tify the bursts. With such a procedure, all spikes should either 
be classifi ed as isolated spikes (a 1-spike burst), or be grouped 
into bursts of two or more discharges (an n-spikes burst). We 
therefore searched for a reliable criterion to establish a limit 
value of the inter-spike interval (ISI) separating pairs of con-
secutive spikes, such that all those pairs whose intervals lie 
below the limit be considered as part of the same burst, and 
all those that fall above the limit be classifi ed as belonging to 
different bursts. Previous approaches (see, for example, Kepecs 
and Lisman, 2003; Metzner et al., 1998; Oswald et al., 2007; 
Reich et al., 2000; Reinagel et al., 1999) have determined the 
value of the limiting ISI from the shape of the ISI distribution. 
In this work, we have taken an alternative approach, based on 
the shape of the correlation function.

If a cell shows a tendency to generate bursts, not all intervals 
between pairs of spikes are equally probable. We evaluated the 
correlation function (also called autocorrelation) of each cell dis-
cretizing the time axis in N

b
 bins, each of duration δt = 0.1 msec. 

The spike train ρ(t) is represented as a binary string such that, 
for any given t, ρ(t) is either equal to 1/δt or to 0, depending 
on whether or not a spike is fi red inside [t, t + δt]. The post-
stimulus-time histogram r

s
(t) = 〈ρ(t)〉 is the trial average of ρ(t). 

The mean fi ring rate r r t Ns t s= ∑ /( ) b is defi ned as the temporal 
average of r

s
(t). The correlation function of the spike train is

C t r t rs s s( ) ( ) ( )τ τ= −[ ] + −[ ],ρ ρ  (1)

where the horizontal bar represents both trial average and tem-
poral averages over t. A large, positive value of C

s
(τ) indicates 

that there is a high probability of fi nding two spikes separated 

by a time lag τ, irrespective of whether there are other spikes in 
between or not. If C

s
 is near 0, this probability is roughly the one 

to be expected from the mean fi ring rate of the cell. If C
s
(τ) is 

large and negative, the probability that two spikes be separated 
by an interval τ is low.

Figure 2 shows typical responses from four cells. The left col-
umn depicts the response to 15 identical stimulus presentations 
to each cell. The correlation functions C

s
(τ) are presented in the 

middle column, and for comparison, the ISI distributions cor-
responding to the same spike trains are given in the right col-
umn. In cell Figure 2A, both the correlation function and the ISI 
distribution exhibit a prominent peak. This peak constitutes a 
clear signature of the tendency of the cell to fi re action potentials 
about every 3 msec, as can be seen in the raster plot. The width 
of this peak can be easily estimated from either the correlation 
function or the ISI distribution, since in both cases the peak is 
limited on its right-hand side by a minimum whose location can 
be clearly identifi ed (marked by the arrow). In such cases, the 
limiting value of the ISI defi ning burst fi ring may be set as that ISI 
where the minimum is located. However, there are more compli-
cated cases, too. The following examples (Figures 2B,C) depict 
two cells that also tend to burst, as shown by the raster plots. 

Figure 2 | Examples of neural responses (left), and the corresponding 
spike train correlation functions (middle) and ISI distributions (right). 
The four rows of panels depict different cells. In the middle and right panels, 
the horizontal line represents the zero level of the respective quantity. The 
arrows indicate the limiting ISI defi ning burst generation. The upper three 
cells (A, B, C) show a tendency to fi re action potentials separated by a fairly 
constant ISI, as seen from the raster plots. The correlation functions allow 
a clear estimation of the limiting ISI needed to defi ne bursts, even in cases 
where this is not possible using ISI distributions (B and C). The last cell (D) 
lacks well defi ned time scales for intra-burst and inter-bursts ISIs.
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In Figure 2B, there are frequent doublets or triplets of spikes, 
whereas in Figure 2C, each burst typically  contains between 6 
and 10 spikes. The width of the fi rst peak of the  correlation func-
tion can be determined quite easily. However, the temporal span 
of the corresponding peak in the ISI distribution is much more 
diffi cult to determine, since the right tail of the peak decreases 
essentially monotonically. Moreover, the ISI distribution of cell 
Figure 2C completely misses the structure of peaks in the cor-
responding correlation function.

ISI distributions refl ect only the interval between two con-
secutive spikes, whereas correlation functions include intervals 
between any two spikes. Hence, ISI distributions often show an 
almost exponential decay, that conceals some of the structure 
exhibited by the correlation functions. For this reason, we shall 
base our choice of the limiting ISI defi ning bursts on the behav-
ior of the correlation function, and not on the ISI distribution. 
We have verifi ed that the two methods give different results only 
when applied to cells that have a tendency to generate long bursts 
(including more than fi ve spikes). In these cases, if our method is 
applied to the ISI distributions, it fails to detect the minimum ISI 
separating inter-bursts and intra-bursts intervals. The correlation 
function, instead, shows a clear multi-peak structure. The exam-
ple cell Figure 2D is once again simple. It has no tendency to gen-
erate bursts, and consequently, both the correlation function and 
the ISI distribution reveal rather broad, unspecifi c structures.

We stipulated that a cell be classifi ed as bursting if its 
 correlation function contained a fi rst peak that was limited on 
the right side by a minimum that could be considered signifi -
cantly different from the maximum. Below, an ad-hoc method to 
determine the separability of the maximum is provided. In addi-
tion, the maximum was required to lie below τ = 5 msec, and 
the minimum to the right of the maximum should be located 
below 1.25 times the inverse cutoff frequency of the AM signal. 
These criteria reject fl uctuations in the correlation function aris-
ing from limited sampling, as could be any of the many small 
troughs observed in Figure 2B, and avoid a misclassifi cation 
where two consecutive spikes are generated by two consecutive 
fl uctuations in the stimulus.

To assess whether the correlation function contained a sepa-
rable fi rst peak (in the above sense), an ad-hoc statistical analysis 
was performed. To that end, the expected error of the correla-
tion function was estimated, for all times τ. Notice that C

s
(τ) 

can be interpreted as an average (see Eq. 1). The error bar Δ of 
an average estimated from N samples reads Δ σ= / N , where 
σ is the standard deviation of the data to be averaged (Barlow, 
1999). The population mean of the temporal average of this esti-
mated error was 3.4% (SD 1.5%) of the total span of C

s
(τ) (that 

is, the difference between the maximum and the minimum). 
Two values of C

s
(τ) and C

s
(τ′) were classifi ed as signifi cantly dif-

ferent if they differed in more than the sum of their estimated 
error bars. This is an ad-hoc procedure, since it is based on the 
assumption that the estimation errors of C

s
(τ) are independent 

for different times τ, which may not be the case. However, we 
have checked that in all cases, the limiting ISI identifi ed with our 
method could be easily detected visually.

Not all cells, and not all stimuli, gave rise to correlation 
functions that contained a separable fi rst peak (for example, 
Figure 2D shows a non-bursting cell). Whenever the peak could 
be separated, the domain of the peak was defi ned as the interval 
between 0 and the position of the fi rst minimum after the peak. 
In the remaining cases, the domain of the peak was defi ned as 0. 
All spikes in a neural response were assigned to sequences con-

taining 1, 2, or more action potentials, hereafter called bursts of 
intra-burst spike count n or, more compactly, n-bursts. An n-burst 
was defi ned as the set of consecutive spikes whose ISIs fell within 
the domain of the fi rst peak of the correlation function. In those 
sessions where this peak was not separable, all spikes were classi-
fi ed as 1-bursts, or, as we shall also call them, as isolated spikes.

The present method of identifying bursts differs from other 
criteria employed previously (Gourévitch and Eggermont, 2007; 
Kepecs and Lisman, 2003; Metzner et al., 1998; Oswald et al., 
2007; Reich et al., 2000) in two aspects. First, we use ad-hoc sta-
tistical techniques to prevent small fl uctuations, caused by lim-
ited sampling, from hampering burst identifi cation. Second, our 
approach is based on the correlation function, and not the ISI 
distribution. Both quantities are closely related under various 
conditions. In fact, for stationary renewal processes, the cor-
relation function can be derived through convolution from the 
ISI distribution (Perkel et al., 1967). A clear minimum of the 
correlation function can therefore be expected if the standard 
deviation of the ISI distribution is suffi ciently smaller than the 
mean ISI. On the other hand, it is more convenient to identify 
bursting neurons by analyzing their correlation function. If the 
minimum in the correlation function is signifi cant, its location 
provides the value of the limiting ISI that is needed to segment a 
given spike train into sequences of bursts.

MODEL NEURONS
To assess whether complex neural dynamics are needed to 
obtain burst-like responses to time-dependent stimuli, we mod-
eled the fi ring probability density r

s
(t) of a measured cell as a 

simple, threshold-linear function of the stimulus, with added 
refractoriness, namely

r t h s t s d t t ts

T

( ) ( ) ( ) ( )= − −{ } − − ,∫ ⎡
⎣⎢

⎤
⎦⎥0 0τ τ τ Θ* * last ref

 
(2)

where s*(t) is defi ned as

s t
s t s t s

s s t s
*( )

( ) ( )

( )
=

≥
< ,

⎧
⎨
⎩

if

if
TH

TH TH

s(t) is the AM signal extending throughout the interval [0, T], 
s s t dt TT

0 0* *= ∫ /( )  is the temporal mean value of s*(t), h(τ) stands 
for the fi lter of the cell, t

last
 is the time at which the previous spike 

was fi red, t
ref

 is the refractory period, s
TH

 is the threshold of the 
cell, and Θ is Heaviside step function [Θ(t) = 0, if t < 0, and 
Θ(t) = 1, if t ≥ 0). Note that the stimulus is thresholded before it 
is fi ltered. Gollisch and Herz (2005) disclosed the detailed proc-
esses involved in sound transduction. They showed that the input 
current entering the auditory receptor after acoustic stimulation 
is a non-linear (quadratic) function of the sound intensity. Thus, 
low stimulus amplitudes are ineffective in generating ionic cur-
rents, whereas large intensities have an amplifi ed effect. In Eq. 2, 
for simplicity, we have assumed that the non-linearity involved 
in sound transduction is a thresholding operation, represent-
ing ionic channels that only open when the AM signal surpasses 
a certain characteristic value that we can actually measure. This 
model, although simplifi ed, correctly reproduces the threshold-
linear dependence of fi ring frequency vs. stimulus amplitude that 
we have observed experimentally for the stimulus intensities in 
this study. In Eq. 2, the current is further fi ltered to represent the 
capacitive properties of the cell membrane (Gollisch and Herz, 
2005). For each modeled cell, the linear fi lter h(τ) was obtained 
from a cross-correlation analysis of the spike train and s*(t) (Koch 
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and Segev, 1998), whereas the refractory period t
ref

 was defi ned as 
the minimal ISI of the cell, and s

TH
 was measured experimentally 

(see Electrophysiology and Stimulus Design). Finally, spike gen-
eration was modeled as a Poisson process with time-dependent 
rate r

s
(t). Note that the model contains no free fi t parameters.

INFORMATION THEORETICAL ANALYSIS
Brenner et al. (2000) have calculated the mean amount of infor-
mation IE

( )1  transmitted by an event E, where E is a pre-defi ned 
combination of spikes and silent intervals. Such an event is either 
present or absent, in one given trial, at one particular time. When 
the event E is a single spike

I
r t

r

r t

r
tE

T
s

s

s

s

( ) ( )
log

( )1

0 2=
⎡

⎣
⎢

⎤

⎦
⎥ ,∫ d

 
(3)

where the event rate r
s
(t) is the probability density of a spike 

at time t (Brenner et al., 2000; Rieke et al., 1997), and r
s
 is the 

temporal average of r
s
(t). In Eq. 3, the upper index (1) denotes 

the mean information transmitted by each event. Notice that IE
( )1  

is proportional to the dissimilarity between the spiking prob-
ability density r

s
(t) and a uniform density r

s
, as measured by the 

Kullback–Leibler divergence (Cover and Thomas, 1991).
We now extend this analysis to encompass events that are 

not just binary (present or absent), but appear in one of several 
possible alternatives. In our case, a burst may contain 0, 1, .. or 
n spikes. For each stimulus stretch s extending during the time 
interval [t − t

0
, t], the cell generates a response in the time bin 

[t, t + δt] that may either be “no spike” (n = 0), or the initiation 
of an n-burst (n > 0). The length of the interval t

0
 is assumed to 

be suffi ciently large as to contain all structures in the stimulus 
that are causally related to the response of the neuron at time t. 
The mutual information Iδt between stimuli and n-bursts within 
[t, t + δt] is (Cover and Thomas, 1991)

I P s P n s
P n s

P n
t

s n

δ = |
|⎡

⎣⎢
⎤
⎦⎥
,∑ ∑

=

+

( ) ( )log
( )

( )0
2

∞

 
(4)

where P(s) is the prior probability of the stimulus segment s, 
P(n|s) is the probability of response n whose fi rst spike falls in 
the interval [t, t + δt] conditional to the stimulus s, and

P n P n s P s
s

( ) ( ) ( )= |∑
 

(5)

is the prior probability of response n. In Eqs 4 and 5 the sums 
in s include all possible stimulus stretches spanning the interval 
[t − t

0
, t], each one of them with its probability P(s).

If δt is suffi ciently small, then for all n > 0 the probability 
P(n|s) may be approximated by r

n
(s)δt, where r

n
(s) is the n-burst 

rate conditional on the stimulus s, and is proportional to the 
fraction of trials where an n-burst was initiated in [t, t + δt], 
in response to stimulus s. Similarly, P s t r sn n( ) ( )0 1 1| ≈ − ∑ =

+δ ∞ . 
Replacing these expressions in Eq. 4 results in

I t P s r s
r s

r
t

s n
n

n

n

δ
∞

δ≈
⎡

⎣
⎢

⎤

⎦
⎥ ,∑ ∑

=

+

( ) ( )log
( )

0

where

r P s r sn
s

n= .∑ ( ) ( )
 

(6)

If the stimulus is stationary, all possible stimulus stretches s will 
eventually be found as time goes by, each one of them with a fre-
quency that is proportional to P(s). Therefore, for long enough 

stimuli, averaging over s with the probability distribution P(s) 
may be replaced by time averaging. That is,

I
t

T
r t

r t

r
tt

n

T

n
n

n

δ
∞δ≈

⎡

⎣
⎢

⎤

⎦
⎥ ,

=

+

∑ ∫
0

0
( )log

( )
d

 
(7)

where now the n-burst rate r
n
(t) is expressed as a function of 

time, and

r
T

r t tn

T

n= .∫1
0

( )d

Equation 7 provides a fi rst estimate of the mutual informa-
tion between stimuli and responses in a short interval [t, t + δt]. 
The aim is now to extend this result to the whole response 
 interval [0, T], which can be thought of a concatenation of small 
intervals [0, δt], [δt, 2δt], … [(k − 1)δt, kδt], where k = T/δt. 
This extension, however, can only be done if the response in 
one time interval does not depend on the response in another 
time interval. Consider the response vector 

�
n t n t n t t( ) ( ( ) ( )= , + ,δ

n t t n t k t( ) [ ( ) ])+ , ..., + −2 1δ δ , where n(τ) represents the number 
of spikes contained in the burst whose fi rst spike fell in [τ, τ + δt] 
(n = 0 means that the cell remained silent). If different time bins 
are independent, then

P n t P n t i ti[ ( )] [ ( )]
� = + .Π δ  (8)

This means that that responses in different time bins are inde-
pendent from one another, given a fi xed stimulus history. Full 
independence of time bins, however, implies that the factoriza-
tion of Eq. 8 should not only hold for each stimulus history, but 
also for the marginal probabilities

P n
T

P n t t P n i t
T

P n t i t t
T T

( ) [ ( )] [ ( )] [ ( )]
� �= , = + .∫ ∫

1 1
0 0

d and dδ δ

These quantities represent the probability of the word 
�
n  and 

the i-th bit n inside the word at any temporal location within 
the spike train. Then, if different time bins are independent, in 
addition to Eq. 8, we must also have

P n P n i ti( ) [ ( )]
� = ,Π δ  (9)

implying that independence also holds for arbitrary stimulus 
histories. When these two conditions are fulfi lled, and given the 
additive properties of information (Cover and Thomas, 1991), 
the mutual information I between stimuli and responses in 
[0, T] is the sum of the mutual information between stimuli and 
responses in each sub-interval [(j − 1)δt, jδt]. Hence,

I k I r t
r t

r
t r It

n

T

n
n

n n
n n

n

= × = ⎡
⎣⎢

⎤
⎦⎥

≡ ≡
=

+∞

=

+∞

=
∑ ∫ ∑δ

0
0 2

0

1( )log
( ) ( )d

00

+∞

∑ ,In

 
(10)

where the last two equivalences serve as defi nitions of the average 
information In

( )1  transmitted by each single n-burst, and the infor-
mation I

n
 transmitted by all the bursts of a given n, respectively. 

Finally, the information per unit time I′ (also called information 
rate), and the rates I′

n
 are obtained by dividing the corresponding 

expressions in Eq. 10 by the total time interval T.
We emphasize that Eq. 10 is only valid under the independ-

ence assumption, that is, if Eqs 8 and 9 hold. In this work, 
we assume that all correlations in the spike train of third or 
higher order can be neglected. Under this approximation, 
 different time bins are independent, if they are uncorrelated. 
This means that the probability distribution of a binary string �
n n nk

T= , ...,( )1  is well approximated by a Gaussian function 
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P n n n n nT k( ) exp[ ( ) ( ) ] ( ) det
� � � � �= − − − / /−〈 〉 〈 〉Σ Σ1 2 2π , where ∑

ij
 = 

〈(n
i
 − 〈n

i
〉)(n

j
 − 〈n

j
〉)〉. This approximation should hold both for 

strings 
�
n starting at a fi xed time t, and also for any time. The 

Pearson correlation coeffi cient between time bins

c t
n t n t

n t n t
b( )

( ) ( )

( ) ( )
, =

+

[ ] +[ ]
/ /τ

τ

τ

* *

* *
1 22 1 22

 

(11)

quantifi es the correlations between n(t) and n(t + τ) for a fi xed 
stimulus history, and hence may be used to test whether Eq. 8 
is valid. In Eq. 11, n*(t) = n(t) − 〈n(t)〉, and the angular brack-
ets represent trial averages. In order to make Eq. 11 well defi ned 
even at times when the response of the neuron has no variability 
(that is, 〈[n*(t)]2〉 = 0 or 〈[n*(t + τ)]2〉 = 0), we set c

b
(t, τ) ≡ 0 if 

both the numerator and the denominator vanish.
In the absence of higher-order correlations, whenever 

c
b
(t, τ) ≈ 0 for all t and τ, one can assert that Eq. 8 holds. To 

assess whether burst identifi cation succeeded in decreasing the 
correlations in the spike train, c

b
(t, τ) should be compared with 

a similar correlation coeffi cient c
s
(t, τ) calculated from a binary 

representation of the spike train including the whole collection 
of spikes. c

s
(t, τ) is defi ned by a formula analogous to Eq. 11, but 

with the integer variable n replaced by a binary variable indicat-
ing the presence or absence of a spike in each time bin. To quan-
tify the total amount of correlations in a given domain t ∈[t

1
, t

2
] 

and t ∈[τ, τ′], we use the mean square value of the Pearson cor-
relation coeffi cient [c

b
(t, τ) or c

s
(t, τ)] in the selected domain.

The Pearson correlation coeffi cient between n(t) and n(t + τ) 
for any stimulus history is

c
n t n t

n t n t
b( )

( ) ( )

( ) ( )
τ

τ

τ
= [ ] +[ ]

[ ] +[ ]{ }
,/

* *

* *
2 2

1 2

 

(12)

where the bar represents both a trial and a temporal (t) average. 
In the absence of higher-order correlations, whenever c

b
(τ) ≈ 0 

for all τ, one can assert that Eq. 9 holds. To compare the correla-
tions between bursts with the correlations between spikes, Eq. 12 
should be compared with c

s
(t), defi ned by a formula analogous 

to Eq. 12, but with the integer variable n replaced by a binary 
variable representing individual spikes.

ESTIMATION OF BURST-TRIGGERED AVERAGES
The spike-triggered average (STA) was calculated as the mean 
stimulus preceding a spike, namely,

STA( ) ( )τ τ= + ,∑1

0
0

0
N

s t
t

where s(t) is the time-dependent stimulus, N
0
 is the total number 

of spikes, and the sum ranges over all spike times t
0
. In every 

investigated cell, STA(τ) showed a pronounced peak. The time 
between the maximum of the peak and τ = 0 (spike genera-
tion) is the average latency between upward stimulus defl ections 
and spike occurrences. As an extension, the n-burst triggered 
averages (nBTAs) were introduced to represent the mean stimu-
lus preceding an n-burst (Kepecs and Lisman, 2003; Lesica et al., 
2006; Oswald et al., 2007), that is,

n
N

s t
n t

n

n

BTA( ) ( )τ τ= + ,∑1

 

(13)

where now, the sum ranges over all times t
n
 at which an n-burst 

begins (that is, the time of the fi rst spike), and N
n
 is the total 

number of n-bursts. The time τ
n
 between the maximum of nBTA 

and τ = 0 (burst generation) is the average latency of the n-burst.
The nBTA at a particular τ is the arithmetical average of a 

collection of values, whose standard deviation reads

σ τ τ τn
n t

nN
s t n

n

( ) ( ) ( )=
−

+ −[ ] .∑1

1

2
BTA

 

(14)

To determine whether the nBTAs corresponding to different n-
values differed signifi cantly, an ANOVA was conducted. The 
test was performed in the frequency domain, to avoid temporal 
correlations. The nBTA in the time interval ranging from −25 
to +15 msec from burst generation was Fourier transformed 
and a two-way ANOVA was separately conducted on the real 
and imaginary parts of the frequency representation of the sig-
nal (since these constitute two comparisons, Bonferroni’s cor-
rection for multiple hypothesis testing was incorporated), with 
frequency band and the order of the burst as factors in the 
analysis. The null hypothesis was 1BTA = 2BTA = 3BTA = 4BTA. 
The corrected signifi cance level was set at 0.01. Cells showing a 
signifi cant difference (either as a main effect, or an interaction) 
were further tested in the time domain, to determine the intervals 
where the difference was observed. This was done using independ-
ent t-tests, for each point in time. In this case, the null hypothesis 
was that at time t, nBTA(t) differed from at least one of the other 
n′BTA(t), for any n′ ≠ n. In this analysis, n and n′ ranged between 
1 and 4. Hence, to reject the null hypothesis for a given n and t, 
three comparisons with different n′-values are needed.

For n ≥ 2, we also compared the nBTAs with a combination 
of n 1BTAs interleaved with the same ISIs found in the real data. 
For every n-burst in the experimental data, we calculated the 
function

f t t tn
i

n

i( ) ( )= − ,
=
∑

1

1BTA
 

(15)

where the times t
i
 indicate the location of each spike within the 

burst. Each n-burst, hence, produces a function f
n
(t). By averag-

ing the f
n
(t) obtained for all bursts with the same spike count n, 

we calculated the averaged convolved 1BTA. We estimated the 
variability of the convolved 1BTA as the standard deviation of 
the averaged data. To test whether the real nBTA was signifi -
cantly different from the reconstructed f

n
, we fi rst carried out a 

two-way ANOVA. The null hypothesis was nBTA = f
n
 in a time 

interval extending between the two minima at each side of the 
central maximum of the nBTA. To avoid temporal correlations, 
the comparisons were performed in Fourier space, testing real 
and imaginary parts separately. A Bonferroni correction for mul-
tiple comparisons was incorporated. The corrected signifi cance 
level was set at 0.01. Cells showing a signifi cant difference (either 
as a main effect or an interaction) where further tested in the 
time domain, to determine whether the difference was observed 
in an extended fraction of the time interval. This was done with 
an independent t-test, for each point in time. In this case, the 
null hypothesis was that at time t, nBTA(t) = f

n
(t). We reported 

the number of cells for which the null hypothesis was rejected 
in 70% of the times t within an interval extending between the 
two minima at each side of the central maximum of the nBTA. 
As a check, the whole procedure was also carried out replacing 
the 1BTA(t) in Eq. 15 with STA(t). Recall that the 1BTA is the 
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average stimulus preceding 1-bursts, or isolated spikes. The STA, 
in turn, is the average stimulus preceding all action potentials in 
the spike train.

For completeness, we mention that the amount of jitter 
(Rokem et al., 2006) is defi ned as the trial-to-trial standard 
deviation of the time of the fi rst spike in a burst, and the average 
estimated error bar in jitter estimation is 0.2 msec.

RELATING BURST PROBABILITIES TO THE HEIGHT OF 
STIMULUS EXCURSIONS
To calculate the probability P(n|h) of obtaining a burst with n 
spikes after a stimulus defl ection of maximal height h, we went 
through all local maxima of the stimulus, one at a time, and for 
each one we searched whether there was a burst in the response 
that could be associated with the maximum. This was done in 
the following way. Each n-burst in the response was fi rst shifted 
backwards τ

n
 milliseconds. Next, for a given stimulus maxi-

mum located at time t
0
, we searched for (shifted) n-bursts inside 

a window [t
0
 − T, t

0
 + T], where T was the width of the most 

prominent peak of the STA of the whole collection of spikes 
(prior to burst identifi cation). In other words, T was the interval 
where a given response can be expected to be correlated with 
a maximum in the stimulus. If within that interval no bursts 
were found, then the maximum located at t

0
 was said not to be 

associated with any response. If the fi rst spike of an n-burst fell 
within the window, then the maximum in the stimulus was asso-
ciated with that n-burst. If there was more than one burst inside 
the window, then a single burst was selected, by choosing that 
one whose fi rst spike lay closest to t

0
. Next, if a given burst was 

associated to more than a single maximum, the closest maxi-
mum was assigned to the burst (and not the others).

This algorithm allows one to associate each maximum in 
the stimulus with either no response, or with an n-burst. Note, 
however, that so far we have no reason to claim that there is a 
causal connection between the maximum and the associated 
burst. In principle, given that we do not actually know what fea-
ture in the stimulus induces burst generation (it could be the 
height of the stimulus amplitude, the size of its derivative, the 
width of an upward excursion, and so forth) this association 
between stimuli and responses could represent no more than a 
completely arbitrary connection. Only if we can show that the 
association contains non-trivial features that would be unlikely 
between randomly connected events can we suspect that it could 
indeed contain some predictive value.

To reveal those features, we estimated P(n|h ∈ [h
0
 − Δh, 

h
0
 + Δh]), i.e., the probability of obtaining a burst of n spikes, given 

that the height of the stimulus maximum h fell in [h
0
 − Δh, 

h
0
 + Δh]. The width Δh was chosen as 5% of the span of values 

of h. P(n|h) is depicted in Figure 10 for an example cell. The par-
tial segregation between the different curves shows that the height 
of the maximum h can tell something about the stimulus. Even 
though one still cannot guarantee a causal relationship between 
each maximum and its associated n-burst, this result ensures that 
the intra-burst spike count n provides information about the 
height of the stimulus defl ection preceding it – not excluding that 
it may also provide information about other stimulus features.

RESULTS
STIMULUS CHARACTERISTICS MODULATE BURST PROBABILITY
Depending on the characteristics of the ionic channels that com-
pose the cellular membrane and temporal properties of their 

activation and inactivation variables, different neurons respond 
to the same stimulus with different fi ring patterns. In particu-
lar, some neurons have a tendency to alternate between periods 
of high-frequency discharges and silent intervals. This is called 
burst fi ring. The mathematics of burst fi ring has been studied 
extensively in the computational neuroscience literature (see, for 
example, Izhikevich, 2000; Izhikevich and Hoppensteadt, 2004; 
Wang and Rinzel, 1995). Irrespective of the particular mecha-
nisms underlying the generation of bursts, here we explore their 
role in the transmission of sensory information. To that end, we 
quantify the reliability with which bursts correspond to specifi c 
stimulus features.

In principle, the possibility to generate bursts would allow a 
neuron to construct a non-trivial temporal code, in which both 
the time at which the burst initiates and the number of spikes 
within a burst carry specifi c information. In order to assess 
whether this is the case in a classic insect model system (Gollisch 
and Herz, 2005; Hill, 1983; Machens et al., 2001, 2005; Römer, 
1976; Ronacher and Römer, 1985; Sippel and Breckow, 1983; von 
Helversen and von Helversen, 1994), the activity of grasshopper 
auditory receptor neurons was recorded in vivo during acoustic 
stimulation. Figure 1A depicts an example stimulus (wavy line), 
together with the elicited spikes (vertical lines). This cell some-
times generates isolated action potentials, whereas at other times 
it fi res spike doublets or triplets. In this particular recording, 
responses typically appear after stimulus upstrokes with an delay 
of 3.4 msec, including both acoustic and axonal time lags. The 
data suggest that whereas fairly shallow stimulus excursions are 
followed by, at most, a single action potential, defl ections that 
are more pronounced (either in height or in width) are often 
accompanied by short sequences of multiple spikes. Figure 1B 
depicts the response of the same neuron to 165 identical repeti-
tions of the stimulus. Clearly, the bursting pattern of this cell is 
highly reproducible across trials.

These observations suggest that short sequences of high-
frequency fi ring appear with higher probability in response to 
particular types of stimulus defl ections. This raises the ques-
tion whether the probability of generating bursts depends on 
the statistical properties of the sound wave. We therefore cal-
culated the correlation function C

s
(τ) of the neural response 

(see Materials and Methods). The upper subpanels of Figure 3 
show C

s
 for a sample cell that was tested with the whole set of 

stimuli (the middle and lower subpanels correspond to simu-
lated data discussed later on). Increasing the standard deviation 
of the amplitude distribution (from Figure 3A to D to G) results 
in correlation functions that exhibit progressively sharper 
peaks. This is the signature of a high probability of generating 
sequences of two or more spikes separated by a fairly constant 
ISI. Moreover, a somewhat rippled pattern can be observed in 
the right tail of the distribution in Figure 3G. Decreasing the 
typical time scale of the stimulus fl uctuations (going right from 
Figure 3B to F) leads from multi-modal (Figure 3B) to single-
peaked (Figures 3C,D) to increasingly shallower and broader 
correlation functions (Figures 3E,F).

Some correlation functions exhibit a pronounced fi rst 
peak, easily distinguishable from the rest of the function (as in 
Figures 3B–D,G), and spanning a fi nite and fairly clear tempo-
ral domain. In these cases, spikes are either closely packed with 
ISIs falling in the domain covered by the fi rst peak, or they are 
loosely spread apart. The presence of a minimum between the 
fi rst peak and the rest of the correlation function allows one to 
establish a natural upper limit to the range of preferred ISIs. 
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Sometimes, this minimum is also present in the ISI distribu-
tion. In these cases, the cell has a tendency to fi re with a typical 
“short” ISI that is clearly separated from other long ISIs. If the 
minimum only appears in the correlation function, but not in 
the ISI distribution, then the separation between these two time-
scales cannot be achieved directly using the ISI distribution (see 
Materials and Methods). However, the tendency of the cell to fi re 
sequences of three or more spikes with one typical ISI can still 
be clearly revealed by the correlation function. Finally, there are 
yet other cases where the correlation function is of an essentially 
unimodal nature, exhibiting no more than one broad, unspecifi c 
structure (Figures 3A,E,F). In these cases, singling out a range 
of ISIs as “typical” would be questionable.

We defi ne a burst as a sequence of spikes whose ISIs fall 
within the domain of the fi rst peak of the correlation function, 
whenever such peak can be isolated (see Materials and Methods, 
for the statistical techniques used to assess the separability of 
this peak). This sequence of n spikes will be called a burst of 
intra-burst spike count n or, more compactly, an n-burst. In what 
follows, the temporal location of a burst is assigned to the time 
when its fi rst spike occurs. Cells showing unimodal correla-
tion functions are classifi ed as non-bursting, and in the analysis 
below, all their spikes are considered as 1-bursts.

To underscore the differences between the n-burst code 
investigated in this study and the more conventional fi ring-rate 
codes, Figure 4 illustrates alternative representations of a sam-
ple spike train. Here, rate code is used whenever the stimulus 

is encoded by the fi ring rate, which is evaluated either instan-
taneously (as in Figure 4C), or in extended time windows 
(Figures 4D,E). In Figure 4A, each vertical line represents an 
action potential of a cell that tends to generate high-frequency 
bursts with intra-burst ISIs of 2–3 msec. Figure 4B depicts the 
n-burst representation of this spike train. Here, each time t is 
associated with an integer n that denotes the number of spikes 
contained in the burst starting at time t. The height of the ver-
tical lines in Figure 4B represents the value of n, and the grey 
arrows link each burst in Figure 4A with the corresponding 
n-value in Figure 4B. For comparison, three fi ring-rate codes 
are shown in Figures 4C–E. Figure 4C illustrates the time-
dependent instantaneous fi ring rate which is obtained from 
the sequence of inverse ISIs. Figures 4D,E depict two alternative 
smoothed fi ring-rate representation. In Figure 4D, each spike 
from Figure 4A was convolved with a narrow bell-shaped kernel 
(Gaussian, 5 msec SD); in Figure 4E, the SD is 20 msec.

For invertible kernels, the fi ring-rate representations of 
Figures 4C–E contain all information needed to reconstruct the 
full spike train in Figure 4A. This is clearly not the case for the 
n-burst representation in Figure 4B. Here, small variations of 
the intra-burst ISIs in Figure 4A are no longer present. On the 
other hand, the number of spikes within a burst provided by the 
n-burst code is not locally available from the fi ring rate-codes in 
Figures 4C–E. For these two reasons, the n-burst code is qualita-
tively different from a fi ring-rate code. The reduced information 
capacity of the n-burst code could severely limit its potential 

Figure 3 | Spike-train correlations for a sample cell, and different stimulus conditions. Each sound stimulus consisted of a carrier wave with random 
Gaussian amplitude modulations that had a specifi c standard deviation and cutoff frequency. Upper subpanel: Experimental data. Middle subpanel: Threshold-
linear model, with refractory period. Lower subpanels: Linear model. Neither model contains free fi t parameters. Comparisons between the experimental data 
and the two models demonstrate that the combination of threshold and refractoriness captures the qualitative shape of the measured correlation functions. 
(A,D,G) Cutoff frequency = 200 Hz, and standard deviation 3 dB (A), 6 dB (D) and 12 dB (G). (B–F) Standard deviation = 6 dB, and cutoff frequency 25 Hz (B), 
100 Hz (C), 200 Hz (D), 400 Hz (E), and 800 Hz (F).
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role for neural systems. It may, however, also provide a highly 
compact and thus most useful neural code. The present study 
aims at elucidating these alternatives.

Table 1 lists all stimulation protocols, together with a sum-
mary of the bursting properties of the investigated cell popula-
tion. The fraction of bursting sessions, the percentage of isolated 
spikes (1-bursts), and the maximum n-value depend strongly 
on the standard deviation and cutoff frequency of the stimulus. 
Notice, however, that in all cases, isolated spikes are more fre-
quent than any other burst of n > 1.

Different cells have different fi ring thresholds, and may there-
fore respond to the same stimulus with different mean fi ring 
rates. Both the burst statistics and the transmitted information 
depend on the fi ring rate. In order to be able to compare the 
results obtained for different cells, in all experiments reported 
here the mean stimulus amplitude was adjusted so as to obtain 
a mean fi ring rate near 100 Hz (see Materials and Methods). We 
also checked that the fi ring rate practically has no effect on the 
value of the limiting ISI defi ning bursts. More specifi cally, a 50 Hz 
increase in fi ring rate shifts the limiting ISI by <0.4 msec, which 
is comparable to its estimated error bar. The average intra-burst 
spike count n, in turn, shows an increase of <25%.

Stimulus statistics strongly infl uence the probability of gen-
erating specifi c bursts, as shown in Figure 5. Here, the prob-
ability of an n-burst is depicted as a function of the cutoff 
frequency of the AM signal (Figure 5A) and its standard devia-
tion (Figure 5B). The probability of generating isolated spikes is 
minimal for large amplitude fl uctuations and cutoff frequencies 
around 100 Hz. For the sake of clarity, only data corresponding 
to n = 1, 2, and 3 are depicted.

In the present approach, a spike sequence is classifi ed as an 
n-burst by analyzing the statistical properties of the response. 
There are no dynamical explanations in terms of specifi c ionic 
currents. Actually, though we lack a detailed characterization of 
the ionic currents involved in action potential generation, pre-
vious studies suggest that grasshopper receptors do not burst 
intrinsically; cells fi re tonically for time-independent stimuli 
(Gollisch et al., 2002) and do not show burst activity at the onset 
of step-like stimuli (Gollisch and Herz, 2004). In addition, adap-
tation effects as well as spike-time variability can be explained 
on a quantitative level with models that do not contain intrinsic 
burst mechanisms (Benda et al., 2001; Gollisch and Herz, 2004; 
Schaette et al., 2005). These results underscore that in the pres-
ence of time-dependent stimuli, even cells that do not burst by 
themselves may generate responses whose statistical properties 

Figure 4 | Graphical representation of different coding schemes. (A) Sample 
spike train. For this example, all consecutive spikes separated by <3 msec 
are considered as part of the same burst. (B) n-burst representation of the 
spike train. Each point in time t is associated with an integer n representing 
the number of spikes in a burst (if any) initiated at t. The height of the verti-
cal lines represents n, and the arrows indicate the association between each 
burst in (A) and the corresponding n-value in (B). (C) Instantaneous fi ring rates, 
defi ned as inverse ISIs. (D) Smoothed-fi ring-rate representation, defi ned as the 
 convolution of the spike train with a Gaussian function of 5 msec SD. (E) same 
as (D), but using a Gaussian function of 20 msec SD. Unlike traditional fi ring-
rate codes (C–E), the n-burst code provides a reduced representation of the 
spike train – all ISIs shorter than the ISI cutoff used for burst defi nition are 
treated equally. In addition, the number of spikes in a burst can be directly read 
off from the n-burst representation whereas it is not locally available within 
fi ring-rate codes.

} }}}

A

B

10 msec 

C

D

E

Table 1 | Summary of the recorded data. Each column represents a different stimulation protocol. Stimulus f
c
: cutoff frequency of the AM signal. Stimulus SD: 

standard deviation of the AM signal. Recorded sessions: number of data sets with that particular protocol. Sessions with n > 1: number of sessions with bursts 
with n > 1. Percentage of isolated spikes: ratio of the number of 1-bursts to the total number of bursts, in all bursting sessions. Highest n: highest value of n. 
Average n: All bursting sessions are pooled together, and for each n, the ratio of the number of n-bursts to the total burst number is calculated. This ratio serves 
as an estimation of the probability of fi nding a given n-value. With this probability, the average n-value is estimated, and presented together with its standard 
deviation. Most probable n: the n-value with highest probability.

Stimulus protocol 1 2 3 4 5 6 7

Stimulus f
c
 (Hz) 200 200 200 25 100 400 800

Stimulus SD (dB) 6 3 12 6 6 6 6
Recorded sessions 43 6 7 7 8 7 8
Sessions with n > 1 40 0 7 6 7 3 0
% Isolated spikes 74 100 62 60 55 96 100
Highest n 9 1 8 15 9 3 1
Average n 1.3 ± 1.3 1 ± 0 1.5 ± 1.6 2.10 ± 3.67 1.7 ± 1.8 1.04 ± 0.42 1 ± 0
Most probable n 1 1 1 1 1 1 1
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are highly reminiscent of intrinsically bursting cells. Agüera y 
Arcas et al. (2003) and Keat et al. (2001) present similar exam-
ples in simulated data. In these cases, burst-like responses arise 
as a consequence of the interplay between the dynamical prop-
erties of the neuron and particular temporal structures in the 
stimulus. To assess whether even cells with very simple dynamics 
can exhibit burst activity when driven by the proper stimulus, we 
modeled the time evolution of a threshold-linear Poisson neu-
ron with added refractoriness (see Materials and Methods). The 
middle subpanels of Figure 3 depict the correlation functions 
for a model cell with the same fi lter characteristics, threshold 
and refractory period as the data shown in the upper subpanels 
(see Materials and Methods). These correlation functions exhibit 
similar qualitative features as those of the real cell. Recall that the 
modeled cells contain no free fi t parameters. In both real (upper 
subpanels) and simulated (middle subpanels) data, the sessions 
that are classifi ed as bursting (or non-bursting) coincide. When 
the analysis is extended to the whole population of cells, this 
agreement is observed in 86% of all sessions. Moreover, in those 
sessions where both real and simulated data are classifi ed as 
bursting, the limiting ISI calculated with real and simulated data 
differ by <1 msec in 81% of the cases. However, the multiple 
peaks typically caused by slow stimuli (see, e.g., Figure 3B) are 

only partially reproduced, indicating that the high temporal pre-
cision of subsequent spikes in multiple bursts is not captured by 
the simulations. Notice that refractoriness needs to be included 
in the model, otherwise the fi rst peak in the correlation function 
shifts to τ = 0. Moreover, if the stimulus is not thresholded, the 
statistics of the modeled cell differs markedly from the real one. 
This is shown in the lower subpanels of Figure 3, where the cor-
relation function of a purely linear model with the same fi lter 
characteristics as the real cell is depicted. This model completely 
fails to capture the basic statistics of the experimental data, as 
can be judged from the absence of both the refractory period 
and the sharp peak in the correlation function.

QUANTITATIVE DESCRIPTION OF THE INFORMATION 
TRANSMITTED BY BURSTS
Since the stimulus characteristics have a strong effect on the 
probability of burst generation, the number of spikes in a burst 
may encode specifi c stimulus aspects. If this hypothesis is indeed 
true, even a reduced burst representation of the spike train 
should carry information about the stimulating sound wave. 
The purpose of the present section is to translate this general 
idea into a quantitative information-theoretical analysis.

We represent the spike train as a sequence of non-negative 
integer numbers n, each number indicating the intra-burst spike 
count of the burst whose fi rst spike falls in a small time window 
[t, t + δt] (see Figure 4B, for an example). This representation 
should be compared to the more typical binary representation 
(Figure 4A), where each digit in the sequence indicates the pres-
ence or absence of a spike in the relevant time bin. As shown 
in some of the examples of Figure 2, the binary representation 
often contains strong temporal correlations. The very defi ni-
tion of an n-burst aims at bundling highly correlated spikes into 
a single burst event. Hence, the representation in terms of bursts 
necessarily reduces the statistical dependence between different 
time bins, as seen in Figure 6. In Figure 6A we show the Pearson 
correlation coeffi cient c

s
(t, τ) between spikes at times t and 

t + τ (see Materials and Methods), in an example cell. For com-
parison, Figure 6B exhibits the correlation coeffi cient c

b
(t, τ) 

between bursts at times t and t + τ (see Materials and Methods), 
of the same spike train. For small τ-values, the plot in Figure 6A 
shows a number of peaks, that are absent in Figure 6B. For the 
cell shown in Figure 6, the mean value of c ts

2( ),τ  averaged over 
all t ∈ [200, 990 msec] and τ ∈ [0, 10 msec] is 2.94 times larger 
than the corresponding mean of c tb

2( ),τ . The population average 
of this ratio on all bursting sessions is 2.89 (SD 1.49).

Figure 6C depicts the Pearson correlation coeffi cient c
s
(τ), 

averaged both over all trials and all times t (see Materials and 
Methods). For comparison, the Pearson correlation coeffi cient 
c

b
(τ) obtained with an n-burst representation of the spike train 

is shown in Figure 6D. The most prominent peak of c
s
 appears 

markedly diminished in c
b
. This reduction demonstrates that 

bursts are more independent from each other than individual 
spikes.

Given the additive properties of information (Cover and 
Thomas, 1991), if in one particular case, a collection of events 
can be shown to contain independent elements only, then the 
information transmitted by the collection is the sum of the 
information transmitted by the individual events. Figure 6 
shows that the correlations between bursts are not strictly 0. 
Yet, if they can be assumed to be negligible, and if there are no 
higher order correlations, then the mutual information trans-
mitted by the train of bursts can be easily calculated from the 

Figure 5 | Population average of the probability of generating n-bursts, 
as a function of the stimulus cutoff frequency, for all SD = 6 dB stimuli 
(A) and as a function of standard deviation, for all stimuli with a cutoff 
frequency of 200 Hz (B). Error bars represent the standard deviation in the 
population. High-n-bursts appear most frequently for stimuli with large ampli-
tude modulations and cutoff frequencies around 100 Hz. Stimulus properties 
thus have a noticeable infl uence on the probability of generating bursts.
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information in small time bins (see Materials and Methods, and 
Brenner et al., 2000).

In Figure 7, the information transmitted by burst fi ring is 
depicted for a sample cell, the left half of the fi gure correspond-
ing to the experimental data, the right half to the threshold-linear 
model with refractoriness. Figure 7A depicts the average infor-
mation In

( )1  provided by each n-burst. The higher the intra-burst 
spike count n, the more informative the event is. To evaluate the 
signifi cance of this trend, we fi tted the data with a straight line, 
and evaluated the sign of the resulting slope, taking the esti-
mated error bar of the fi t into account. In the upper right corner 
of Figure 7A, the value of the slope and its estimated error bar 
is indicated. Since n is dimensionless, slopes are also measured 
in bits. To assess how often In

1 was increasing at the population 
level, the analysis was repeated for all recorded bursting cells. All 
sessions had signifi cantly positive slopes. Figure 7B shows the 
distribution of slopes throughout the population. The average 
slope across the 59 bursting cells was 1.5 bits (SD 0.7 bits).

The information per burst In
( )1  is proportional to the dissimi-

larity between the time-dependent probability density r
n
(t) of 

an n-burst (see Materials and Methods) and a time-independent 
distribution of the same mean rate r

n
. As such, it is large when-

ever r
n
(t) is a highly uneven function of time, almost always 

equal to 0, and only seldom exhibiting a sharp peak at a single, 
or at most a few, particular values of t. A burst is therefore a 
good candidate to transmit a large amount of information per 
event if it happens rarely (in each single trial), reliably (in a 
large fraction of the  trials), and with high temporal accuracy. 
Figures 7C,E depict the frequency of occurrence r

n
/∑

n
r

n
 and the 

amount of jitter of different n-bursts, respectively. Figure 7C 

shows that high-n bursts occur seldom. This result was also 
observed in all other recorded cells: the frequency of occur-
rence always decreased signifi cantly with n. The population data 
in Figure 7D had an average slope of −2.6, with SD of 0.7. In 
Figure 7E, the amount of jitter in the fi rst spike of the burst is 
shown to be fairly constant with n. At the population level, in 
80% of the bursting sessions the amount of jitter was roughly 
independent from n (the best linear fi t had a slope that was not 
signifi cantly different from 0). The remaining 20% showed a 
mild dependence, but with no uniform trend, as shown by the 
population data in Figure 7F. The mean slope was −0.03 msec 
(SD 0.2 msec). The combined effect of an event probability that 
diminishes strongly with n (Figure 7C) and a jitter that is fairly 
constant with n (Figure 7E) results in an information per event 
In

( )1  that increases with n (Figure 7A).
The mutual information rate I′

n
 of all n-bursts is proportional 

to the product of the rate of n-bursts r
n
 and the mean informa-

tion transmitted by each n-burst In
1 (see Materials and Methods). 

I′
n
 strongly decreases with n (Figure 7G). Similar results were 

obtained in all other recorded sessions (Figure 7H), with an 
average slope of −11 bits/s (SD 16 bits/s). The total information 
rate I′ transmitted by the cell in Figure 7 is, under the independ-
ence assumption, the sum of all the columns in Figure 7G, i.e., 
220 bits/s. Although isolated spikes are the events transmitting 
information at the highest rate, the collection of all n > 1 bursts, 
taken together, provide no <69% of the total information. The 
population average of this fraction among all bursting cells 
was 47%. Bursts, therefore, constitute an important part of the 
 neural code employed by grasshopper auditory receptors.

The right half of Figure 7 shows the results obtained for 
threshold linear model neurons with added refractoriness. 
For each recorded cell a simulation was carried out, with the 
same threshold, refractory period, and fi lter characteristics as 
the real neuron. A comparison between the left and right pan-
els of Figure 7 reveals that the model reproduces the general 
trends observed in the experimental data, both at the single-
cell and population level. Note that the model has no free fi t 
parameters.

The procedure introduced here allows one to calculate mutual 
information rates between time-dependent stimuli and burst 
responses in a straightforward fashion. However, apart from 
assuming independence, the method contains one additional 
assumption. We have grouped all bursts with n spikes into one 
single type of event, even if among those n-bursts there might be 
subtle differences in the size of the ISIs. The fi rst peak in the cor-
relation function has a certain width, so not all the spike doublets 
classifi ed as a 2-burst are separated by exactly the same interval 
(see Figure 4 for an example), and the same holds for all n > 1. 
If those differences were systematic, they could transmit addi-
tional information about the stimulus. This type of information 
would be lost through our procedure. We have, however, verifi ed 
that subsequent spikes inside a burst have larger amounts of jit-
ter than the fi rst spike (data not shown). This suggests that the 
fi ne temporal resolution in the spiking times of the subsequent 
spikes is not crucial to information transmission.

In order to assess whether this is actually the case, we have 
compared the information rates obtained with our procedure 
with those resulting from the so-called direct method (Strong 
et al., 1998). In this method, the spike train is segmented into 
binary strings where the presence of a spike in a given time bin 
is indicated by a 1, and silence is denoted by 0. A word is then 
defi ned as a fi nite sequence of binary digits. The direct method 

Figure 6 | Pearson correlation coeffi cient for a sample cell. (A) Coeffi cient 
c

s
(t, τ) between spikes generated at times t and t + τ. The scale [also valid for 

(B)] is given in the upper-right corner. (B) Coeffi cient c
b
(t, τ) between bursts 

generated at times t and t + τ. (C,D) Coeffi cients c
s
(τ) and c

b
(τ) between 

spikes and bursts, respectively. In (A) and (C), a pronounced peak is seen for 
c

s
 at around τ = 3 msec. In (C), there is also an initial negative plateau. These 

structures are markedly reduced in c
b
 (B) and (D), underscoring that generic 

spikes are more correlated than classifi ed bursts.
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estimates the mutual information between stimuli and responses 
from the probability distributions of all words of the spike train, 
in the limit of large word lengths. This method has the  advantage 
of making no a priori assumptions about the neural code. The 
drawback is that the size of the response space grows exponen-
tially with the length of the coding words. Due to sampling 
problems, in our case it was therefore not possible to extend 
the maximal word length beyond 3.2 msec (this includes no 
more than 2-bursts), with a temporal precision equal to 0.4 msec. 
The sampling bias was corrected using the NSB approach 
(Nemenman et al., 2004). The information measures obtained 
by our method and by the direct method were highly correlated 
(R = 0.95, using all sessions). The population average obtained 
with the direct method is 222 ± 69 bits/s. With our method, 

instead, this average was 191 ± 72 bits/s. In all cases but one, the 
information obtained with the direct method was higher than 
the one obtained with our method, the average difference being 
31 ± 16 bits/s. It is still not clear whether the remaining discrep-
ancies are due to the cogency of the assumptions raised by our 
method, or due to the limited word length used in the direct 
method. If the direct method can be taken as a reliable estima-
tion, then by ignoring (a) the internal temporal structure inside 
bursts and (b) the temporal correlations between bursts, we are 
losing 14% of the information. We emphasize, however, that in 
contrast to the direct method, our procedure to calculate infor-
mation rates allows one to discriminate which n-bursts are the 
most informative ones, and thereby, to gain a better insight into 
the neural code.

Figure 7 | Information transmitted in burst fi ring. Left half of the fi gure: Experimental data. Right half of the fi gure: Threshold linear model with refractori-
ness. Left column: Data from the example cell of Figure 3, with best linear fi ts. Their slopes are given in the upper-right corner, with their errors. Right column: 
Population data showing the distribution of slopes of the linear fi ts for the quantities of the left column. (A) Average information transmitted by each n-burst. The 
information transmitted per burst increases monotonously with n. (B) For all cells in the population, the information per burst increases with n. (C) Number of 
occurrences of each n-burst. The larger the intra-burst spike count n, the more rarely it appears. (D) For all cells in the population, low-n bursts appear more 
frequently than high-n bursts. (E) Mean amount of jitter of the fi rst spike of each n-burst. (F) The population data demonstrate that for some cells, the amount 
of jitter is a slowly increasing function of n, whereas for other cells, it is decreasing. (G) Rate of transmitted information for all n-bursts. Although isolated spikes 
(n = 1) are the most frequent events [see (B)] a large fraction of the transmitted information is carried by bursts. (H) For all cells in the population, the informa-
tion rate decreases with n. As shown by these data, the model captures the coding trends of the investigated neurons.
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QUALITATIVE DESCRIPTION OF THE INFORMATION 
TRANSMITTED BY BURSTS
The previous section shows that when the stimulus statistics is 
varied, the probability of generating bursts of n spikes varies con-
currently. To quantify the relevance of n-bursts for neural coding, 
the mutual information rate associated with burst spiking was 
calculated. Since bursts transmit information about the stimulus, 
it should be possible to associate different stimuli with different 
n-values. We now analyze this correspondence in detail.

There are two quantities of interest (Rieke et al., 1997). The 
fi rst one is the probability P[n|s(τ)] of fi nding an n-burst in 
response to the stimulus s(τ). This quantity constitutes a natural 
target in experimental studies that systematically explore a given 
stimulus space. The second quantity is the probability P[s(τ)|n] 
that a stimulus s(τ) was presented, given that the cell generated 
an n-burst. This quantity is relevant for reading out a neural 
code based on intra-burst spike numbers.

We begin by characterizing P[s(τ)|n]. As an example, 
Figure 8A depicts 300 msec of an acoustic stimulus (upper 
panel) and the corresponding neural (middle) and simulated 
(lower panel) responses. The simulated threshold-linear neu-
rons are clearly less precise than the real receptor cells (see also 
Figure 7E). We then collected all stimulus segments inducing 
burst generation, and aligned them such that burst initiation was 
at t = 0. The nBTA is defi ned as the mean value of the aligned 
segments. In Figures 8B,C, nBTAs(t) are depicted for the experi-
mental and simulated data, respectively. The grey areas represent 
the SD of the average. Height and width of the n-BTA increase 
with n. To determine whether this trend is signifi cant, the collec-
tions of stimulus segments corresponding to different n-values 
were compared with a two-way ANOVA test (see Materials and 
Methods). All recorded and simulated bursting cells exhibited 
signifi cantly different n-BTAs, for n ranging between 1 and 4. 
We therefore determined the time intervals in which the dif-
ferent nBTAs differed signifi cantly from one another. For each 
point in time a t-test was performed, assessing whether a given 
nBTA(t) was different from the n′BTA(t) corresponding to other 
n′ ≠ n. The result is shown in Figure 8D. For those times t where 
signifi cant differences are found, the nBTA is represented with 
a thick line. Most of the central peak in each nBTA is signifi -
cantly different from the other three curves. Notice that both 
the height and the width of the most pronounced peak in the 
nBTA increase systematically with n. Moreover, the mean delay 
between stimulus upstroke and burst generation decreases sys-
tematically with n. This implies that stimulus defl ections that 
are either high or wide tend to produce prompt responses, with 
high-n bursts. In what follows, the delay τ

n
 between the maxi-

mum in each nBTA and the generation of an n-burst is called 
burst latency.

The standard deviation σ
n
(τ) of all stimuli generating 

n-bursts provides a measure of the dissimilarity between the 
stimulus segments. If there is a particular τ for which σ

n
(τ) 

becomes markedly small, then, for that time τ, the stimuli 
preceding an n-burst are noticeably similar to each other. In 
Figure 8E, σ

n
(τ) is depicted. There is a clear minimum ∼7 msec 

before burst  generation, coinciding with the sharp upstroke in 
the nBTA. This delay includes sound propagation (≈1 msec) 
and axonal delays (≈2 msec). Notice that the position of this 
minimum remains roughly unchanged, as n is varied. Its stand-
ard deviation for different n-values is 0.33 msec, for this cell. 
The constancy of the location of the minima also holds at the 
population level. The mean standard deviation of the position 

of the minima of σ
n
(τ) was roughly 0.05 times the inverse cut-

off frequency. Its average among all bursting cells is 0.4 msec 
(SD 0.7 msec) considering 1 ≤ n ≤ 4.

For 98% of the bursting cells and for all n-values, σ
n
(τ) was 

smaller than the standard deviation σ(τ) of the stimuli preced-
ing all spikes (prior to any classifi cation). The population aver-
age of the ratio of the minimum value of σ(τ) to the n-average 
of the minimum values of σ(τ) was 1.62 (SD 0.56). The set of 
stimuli preceding all spikes thus constitutes a more heterogene-
ous collection than the set of stimuli preceding an n-burst. This 
is not surprising. If, say, a burst of three spikes is systematically 

Figure 8 | Defi nition and characteristics of the nBTA. (A) Acoustic stimulus 
(top) and the fi rst 30 (out of 100) trials of the recorded (middle) and simulated 
(bottom) neural responses. The AM signal had a standard deviation of 6 dB 
and a cutoff frequency of 100 Hz. (B,C) All stimulus segments generating 
bursts of a given n were collected together and aligned with respect to the 
time of burst initiation to obtain the nBTAs, shown for real (B) and simulated 
(C) data. Grey areas represent the SD. (D) nBTAs as a function of time, for 
four different values of n. Thick lines mark the segments where each nBTA is 
signifi cantly different from the other three, as assessed with a Student’s t-test 
(p < 0.01). (E) The standard deviation of each nBTA as a function of time (see 
Eq. 14). Approximately 7 msec before the fi rst spike of a burst is recorded, 
the standard deviation shows a minimum, implying that at this moment the 
different stimuli preceding an n-burst are most similar. This time lag was 
similar for all n.
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generated after one particular stimulus feature, the STA includes 
three time-shifted copies of the relevant feature. This threefold 
collection of stimuli has a larger standard deviation than the 
set of stimuli preceding a 3-burst. In a related study (Gollisch, 
2006), spike-time jitter was shown to broaden the STA. Our data 
demonstrate that burst fi ring, although not necessarily accom-
panied by jitter, gives rise to a similar effect. Therefore, whenever 
the tendency to fi re bursts is high, the collection of stimuli pre-
ceding spike generation may show a large variance, rendering the 
interpretation of the STA of little use. In these cases, the burst-
triggered average may provide additional insight.

Not all bursting cells display nBTAs as those shown in 
Figure 8D. In some cases, for example, the central peak of the 
4BTA is slightly lower than that of the 3BTA, though markedly 
wider. These differences refl ect individual properties of different 
neurons. However, out of the 58 sessions where bursting cells 
were found, 50 exhibit nBTAs whose central peaks were signifi -
cantly different from one another – except, of course, at those 
points where the curves cross. The remaining eight sessions cor-
responded to cases where bursts appeared only seldom, thereby 
contributing with a number of samples that was too small to 
assess signifi cant differences.

A burst is a sequence of shortly interleaved spikes. Could 
the nBTAs obtained for high n-values shown in Figure 8D have 
been obtained by combining a sequence of n interspaced 1BTAs, 
or even STAs? To answer this question, in Figure 9A we compare 
the same 4BTA depicted in Figure 8D with a curve obtained by 
combining four 1BTAs interspaced with the ISIs found in the 
real data. The shaded areas represent the SD of the averaged data. 
We see that the two curves are clearly different from each other, 
the real 4BTA being markedly higher and wider than the com-
bined 1BTAs. This implies that the stimulus defl ections trigger-
ing bursts of n = 4 are signifi cantly higher than those required to 
generate four spikes of n = 1.

To test other cells in the population for the same effect, for 
each n we determined the fraction of sessions for which the 
nBTA differed signifi cantly from the combined 1BTAs (or STAs) 
in an interval extending between the two minima at each side of 
the central maximum of the nBTA. This comparison was done 
by means of a two-way ANOVA (see Materials and Methods). 
Black bars depict the fraction of cells where a signifi cant dif-
ference was found. Among the cells that exhibited signifi cant 
differences, we tested whether the difference could be observed 
in a substantial fraction of the tested interval. To that end, we 
carried out a Student’s t-test for each time point within the 
time interval between the two minima at each side of the maxi-
mum of the nBTA (see Materials and Methods). We counted 
the cells showing signifi cant differences in more than the 70% 
of the tested interval. The results are depicted in grey bars in 
Figure 9B. A large fraction of the cells show a signifi cant differ-
ence, for both real and simulated data. Hence, also at the popu-
lation level, the nBTAs differ signifi cantly from the convolved 
1BTAs. As n increases, the number of sessions with signifi cant 
differences diminishes. This is a consequence of the fact that for 
larger n, there are fewer n-bursts, and therefore, the error bar of 
the estimation of the nBTA increases. As an additional check, we 
repeated the analysis by convolving n shifted copies of the STA, 
instead of the 1BTA, obtaining similar results.

Finally, we checked that for the same stimulus, the nBTAs of 
different cells showed a similar trend, as n varied. The population 
average was taken after subtracting the mean stimulus to each 
nBTA because different receptors were recorded with different 

mean stimuli (see Materials and Methods). In addition, since 
 different cells showed different latencies τ

n
, all stimulus segments 

were shifted by τ
n
 before averaging, and then shifted back after-

wards. Figure 9C demonstrates that also at the population level, 
high-n bursts are associated with either higher or wider stimu-
lus defl ections (or both). The large error bars indicate that there 
is no absolute value of a stimulus fl uctuation that uniquely trig-
gers bursts of a given n-value, throughout the population. The 
qualitative behavior is also reproduced by the threshold- linear 
model with refractory Period (Figure 9D). We conclude that 
both in real and modeled data, high-n bursts are associated with 
high or wide stimulus defl ections.

Let us turn to the analysis of P[n|s(τ)] and describe how this 
quantity varies with the height of the defl ections in s(τ). The 
shape of the nBTAs (Figure 8D) demonstrates that the aver-
age stimulus preceding an n-burst always contained a promi-
nent up-and-down excursion, whose maximum was located 
some τ

n
 milliseconds before burst initiation. This indicates that 

there is an association between upward stimulus excursions and 
burst generation. Can we assert that the probability of generat-
ing a burst of n spikes at a given time depends on the size of 

Figure 9 | Analysis of the nBTAs. (A) Comparison between the 4BTA obtained 
for the cell depicted in Figure 8D and the function that results from convolving 
four 1BTAs interspaced by the ISIs found in the real data. Thick lines denote 
segments that differ signifi cantly between the two cases. Shaded areas rep-
resent the standard deviation of the averaged data. The estimated error of 
the 4BTA and the convolved 1BTA is ∼10 times smaller than the SD of the 
averaged data. (B) Black bars: Percentage of cells for which the real nBTA 
differs from the convolved 1BTA anywhere inside the time interval between 
the two minima at each side of the maximum in the nBTA, as assessed by a 
two-way ANOVA test. Grey bars: percentage of cells where a signifi cant dif-
ference was found in at least 70% of the tested time interval, as assessed by 
a point-by-point Student’s t-test. (C) Population average of the 1BTA, 2BTA, 
and 3BTA for the seven cells driven with an AM signal with 100 Hz cutoff 
frequency and 6 dB standard deviation. Shaded areas represent the SD of 
the average. Black: SD of the 1BTA. Grey: SD of the 2BTA. Light grey: SD of 
the 3BTA. (D) Same as (C), but obtained from simulated threshold-linear cells 
with refractory period.
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the upward stimulus excursion? In order to explore this ques-
tion, we estimated the probabilities P(n|h) of obtaining bursts 
of n spikes following an upward stimulus excursion of height h 
(see Materials and Methods). For an example cell, Figure 10 
shows a marked segregation between the responses elicited by 
defl ections of different heights. Whereas fairly low excursions 
produce either no response (dotted line) or an isolated spike 
(black, solid line), large defl ections are associated with dou-
blets (dark grey), triplets (grey), or bursts with four spikes (light 
grey line). All cells showing a bursting behavior exhibited this 
phenomenon.

DISCUSSION
The role of burst fi ring for neural coding has been studied 
extensively in systems where individual neurons have an intrin-
sic tendency to burst. Typical examples are electrosensory neu-
rons of electric fi sh (Metzner et al., 1998; Oswald et al., 2004) 
and thalamic relay cells in the visual systems of cat (Alitto et al., 
2005; Denning and Reinagel, 2005; Lesica et al., 2006) and 
mouse (Grubb and Thompson, 2005). For downstream neu-
rons, however, it is irrelevant how bursts are generated. All that 
matters is their representational properties, i.e., their structure 
and coding capability. Therefore, we have focused on the cod-
ing properties of cells that lack intrinsic burst mechanisms. In 
particular, we wanted to know how much sensory information is 
transmitted and which symbols in the neural code are associated 
with each stimulus feature. To that end, we analyzed the activ-
ity of grasshopper auditory receptor neurons and simulated 
neurons, both lacking intrinsic bursting mechanisms. We fi rst 
introduced a criterion that allowed us to determine the cases 
where a neural response could be considered as a sequence of 
bursts. Next, we explored a code based on the intra-burst spike 
count n. We estimated the information transmitted by this code, 
and characterized the correspondence between specifi c stimulus 
features and specifi c n-values. We observed that long bursts are 
associated with particularly high or long stimulus excursions, 
and that this effect could not be reproduced by concatenating 

the stimuli generating short bursts. In the following subsections, 
we discuss our results in the context of previous studies.

BURST IDENTIFICATION BENEFITS FROM CONSIDERING 
NEURAL RESPONSE STATISTICS
In previous analyses, burst identifi cation typically relied on 
strict boundaries on the ISIs (see, for example, Alitto et al., 2005; 
Denning and Reinagel, 2005; Lesica and Stanley, 2004; Oswald 
et al., 2004). This is appropriate for cells that have intrinsic burst 
mechanisms with fairly rigid time constants. However, neurons 
that do not burst intrinsically exhibit intra-burst ISIs of variable 
duration, depending on the temporal properties of the stimulus 
as shown by a comparison of the peak widths in Figures 3B,G. 
Hence, in this work the criterion used to determine whether two 
consecutive spikes were or were not part of a burst was uniquely 
tailored for each session. Note that if a cell is classifi ed as non-
bursting, this does not imply that it does not generate bursts at 
all, but rather, that the intra-burst ISIs (if present) cannot be 
cleanly separated from the inter-burst ISIs. In these cases it is not 
possible to interpret the neural code in terms of distinct words 
formed by closely spaced spikes.

BURST CODING DOES NOT REQUIRE INTRINSIC BURST DYNAMICS
Not all cells investigated in this study were bursters: Some cells 
bursted in response to some stimuli, and responded tonically 
to other stimuli. Indeed, grasshopper receptors do not burst 
when driven with constant or step stimuli (Gollisch and Herz, 
2004; Gollisch et al., 2002). In other studies, the time-scales of 
stimuli eliciting bursts have often been related to the particular 
ionic currents involved in burst generation (Alitto et al., 2005; 
Denning and Reinagel, 2005; Dorion et al., 2007; Krahe and 
Gabbiani, 2004; Lesica et al., 2006). Oswald et al. (2004) also 
presented a mathematical model in which bursts were only 
able to support effi cient feature detection when a specifi c active 
dendritic backpropagation was present. Our results, however, 
demonstrate that burst-coding does not require complex intrin-
sic neural dynamics, as shown by our minimal computational 
model (see Keat et al., 2001, for another example). Although 
simulated neurons were in general less precise than real neu-
rons, they showed similar correlation functions (Figure 3), and 
coding properties (Figures 7 and 8). These fi ndings underscore 
that the tendency to burst does not need to be an intrinsic pro-
pensity of the cell per se, but may arise as a consequence of how 
its cellular properties interact with the temporal characteristics 
of the external stimulus. Our system, therefore, is an example 
of stimulus-induced bursting as previously reported by Neiman 
et al. (2007).

COMPARISON WITH OTHER NEURAL CODES
We have assumed that the relevant code symbols are the time 
at which a burst is initiated, and the intra-burst spike count n. 
There are, however, other burst-based neural codes that have 
been explored previously. For example, Kepecs et al. (2002, 
unpublished) reported that the relevant information can be 
encoded in the total duration of a burst. In the cells of our 
study, n was proportional to burst duration (data not shown). 
This implies that for those neurons a code based on the intra-
burst spike count n is equivalent a burst-duration code. On the 
other hand, in electrosensory neurons of electric fi sh, ISIs in 
bursts with two spikes depend on the amplitude of electric-fi eld 
upstrokes was encoded in the duration of ISIs of bursts of n = 2 
(Oswald et al., 2007). Grasshopper auditory receptors, however, 

Figure 10 | Probability of generating no response (dotted line), an isolated 
spike (black, solid line), a spike doublet (dark grey) or triplet (grey), or 
a burst with four spikes (light grey line) as a function of the height of 
the stimulus defl ection, for an example cell. The uncertainties of these 
probabilities have been estimated (Samengo, 2002), and the absolute error 
was always below 0.025. The segregation between the lines indicates that 
the number of spikes in a burst contains information about the height of the 
stimulus upward excursion preceding the burst.

45 50 55 60

0.0

0.5

1.0

Pr
ob

ab
ilit

y

Stimulus deflection (dB)

no spike

n = 1

2

3

4

1125
1126

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244



Frontiers in Computational Neuroscience | July 2008 | Volume 2 | Article 3

16

Eyherabide et al.

have rather narrow ISI range of at most 3 msec, to be compared 
with the typical range of 8 msec in electric fi sh. We have there-
fore not explored a code utilizing the intra-burst ISI length.

Previous studies have also reported n-based neural codes 
in different sensory modalities. In visual cortex, for example, 
n depends on stimulus orientation, as shown by DeBusk et al. 
(1997), Martinez-Conde et al. (2002) and others. In the verte-
brate retina, n carries information about the stimulus history 
preceding burst initiation (Berry et al., 1997). Experimental data 
from cat LGN (Kepecs et al., 2001; Kepecs et al., unpublished) 
and computational models (Kepecs et al., 2002) demonstrate 
that n can encode the slope of stimulus upstrokes.

We would like to emphasize that an n-burst code differs from 
a fi ring-rate code. Within a fi ring-rate code, each point in time 
is associated with a specifi c time-dependent fi ring rate. This rate 
may be computed as an instantaneous fi ring rate from local ISIs, 
or by convolving the spike train with a certain fi lter function. 
In either case, the precise time course of the original spike train 
may be fully recovered. This is not true for the n-burst code, 
where information about the exact spike times within each burst 
is lost – in essence, the code only looks at whether there is a spike 
within the time interval defi ned through the correlation func-
tion, or not. Thus, the n-burst code provides a highly reduced 
representation, and not a full fi ring-rate code.

Our analysis shows, however, that in spite of this reduction 
the n-burst code still contains a large fraction (∼85%) of the total 
transmitted information, as deduced from comparing our results 
with the direct method. In addition, by parsing the responses 
into code-words, the code is amenable for read-out. Our results 
show signifi cant differences between the stimuli encoded by dif-
ferent n-values and reveal those stimuli explicitly.

IMPLICATIONS FOR THE NEURAL CODE
We have also derived a procedure to calculate the mutual infor-
mation rate between stimuli and responses if different bursts 
can be assumed to be independent from each other. This tech-
nique should be extended with caution to other systems since 
the small size of inter-burst correlations found in grasshopper 
auditory receptors may not be shared by other sensory systems. 
In addition, vanishing inter-burst correlations do not guarantee 
that the bursts be independent. Higher-order correlations could 
still be present. Our approximation assumes that those terms 
can be neglected when computing information measures.

The consequence of assuming that different n-bursts are 
independent from one another is that the total transmitted 
information may be decomposed into the sum of the informa-
tion transmitted by each n-burst. This allows one to quantify 
which n-values are most relevant. Our data show that n-bursts 
with n > 1 can transmit at least the same amount of information 
as isolated spikes (n = 1).

To analyze the relation between particular n-values and the 
stimuli represented by these bursts, we calculated burst-triggered 
averages for each n. The set of stimuli preceding different n-values 
differed signifi cantly from one another. Specifi cally, n was shown 
to be reliably associated to the height of the stimulus upstroke 
preceding burst generation. In some cells, a weak dependence on 
the width of the amplitude defl ection, its slope, and its integral 
was observed, too (data not shown). However, at the population 
level, the stimulus feature that most reliably co-varied with n was 
the maximal height of the AM signal.

The two aspects that seem to be most relevant for informa-
tion transmission, i.e., the time at which a burst is initiated and 

the intra-burst spike count n, would also be good candidates to 
represent what in the literature has been distinguished as the 
when and the what in a stimulus (Berry et al., 1997; Borst and 
Theunissen, 1999; Theunissen and Miller, 1995). In our data, 
bursts containing different numbers of spikes are associated with 
sound fl uctuations of different heights and widths. The n-value 
thus provides qualitative information about two key stimulus 
aspects. In addition, the time at which a burst begins indicates 
when the corresponding acoustic feature occurred. Notice 
that both aspects are interwoven, because the response latency 
decreases with increasing n. To decode the precise arrival time 
of an acoustic signal, downstream neurons therefore also need 
to read out the intra-burst spike count n. This provides addi-
tional independent evidence for the usefulness of the n-burst 
code investigated in this study.
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