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High production of pro‑inflammatory 
cytokines by maternal blood mononuclear cells 
is associated with reduced maternal malaria 
but increased cord blood infection
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Abstract 

Background:  Increased susceptibility to malaria during pregnancy is not completely understood. Cellular immune 
responses mediate both pathology and immunity but the effector responses involved in these processes have not 
been fully characterized. Maternal and fetal cytokine and chemokine responses to malaria at delivery, and their asso-
ciation with pregnancy and childhood outcomes, were investigated in 174 samples from a mother and child cohort 
from Mozambique. Peripheral and cord mononuclear cells were stimulated with Plasmodium falciparum lysate and 
secretion of IL-12p70, IFN-γ, IL-2, IL-10, IL-8, IL-6, IL-4, IL-5, IL-1β, TNF, TNF-β was quantified in culture supernatants by 
multiplex flow cytometry while cellular mRNA expression of IFN-γ, TNF, IL-2, IL-4, IL-6, IL-10 and IL-13 was measured by 
quantitative PCR.

Results:  Higher concentrations of IL-6 and IL-1β were associated with a reduced risk of P. falciparum infection in 
pregnant women (p < 0.049). Pro-inflammatory cytokines IL-6, IL-1β and TNF strongly correlated among themselves 
(ρ > 0.5, p < 0.001). Higher production of IL-1β was significantly associated with congenital malaria (p < 0.046) and 
excessive TNF was associated with peripheral infection and placental lesions (p < 0.044).

Conclusions:  Complex network of immuno-pathological cytokine mechanisms in the placental and utero environ-
ments showed a potential trade-off between positive and negative effects on mother and newborn susceptibility to 
infection.
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Background
In malaria endemic areas, the negative outcomes of Plas-
modium falciparum infections on health concentrate in 
infants and pregnant women [1]. Parasites accumulate in 
the placenta during pregnancy, and this has been asso-
ciated with adverse consequences in mother and fetus 
[2]. Cellular responses have been involved in pathology 

and immunity to malaria, but cytokines mediating these 
processes have not been fully characterized [3–5]. Lym-
phoproliferative responses and TH1 cytokines like IL-12, 
IFN-γ and IL-2 are generally depressed during gestation, 
particularly in primigravidae [6–8], in response to malar-
ial and non-malarial antigens and mitogens. Alterations 
during pregnancy appear to be due to modulation of 
cellular immunity rather than involve a malaria-specific 
phenomenon [9].

Systemic cytokine profiles during pregnancy are biased 
towards TH2, a pre-requisite for successful gestations 
[10], with predominance of IL-4 and IL-5. Overall, P. 
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falciparum induces placental immune responses involv-
ing TH1 and TH2 pathways [11] but increasing TH1/
pro-inflammatory responses involving IL-1β, IL-6, IL-8 
and TNF to a greater extent. However, the secretion of 
the anti-inflammatory cytokine IL-10 is also elevated 
presumably to control the negative effects of excessive 
inflammation [12, 13]. Production of IFN-γ by placental 
cells (natural killer and CD4+ TH1 cells) has been associ-
ated with protection against placental malaria [14–17].

Placental malaria influences fetal immune responses 
[18], and may affect infant health [19]. Prenatal immune 
priming to Plasmodium is common in endemic areas 
[20–24]. Maternal infection may affect the TH1/TH2 bal-
ance in cord through IL-10 production by T regulatory 
cells (Tregs), which is elevated in parasitaemic women 
[25], being a mechanism of neonatal immune suppres-
sion to reduce TH1 responses [26–29]. Cells of neonates 
born to infected mothers have altered IFN-γ and TNF 
responses after stimulation with toll-like receptor ligands 
[30, 31]. Treg frequencies are higher in cord blood from 
neonates born to mothers infected early in pregnancy, 
and activated CD4+ T cells and myeloid dendritic cells 
are more common in neonates born to mothers with 
active placental infection at the time of delivery [32]. 
How these abnormalities impact acquisition of immunity 
in infancy is not clear, however recent studies show that 
increased inflammatory mediators in cord blood due to 
prenatal exposures are inversely associated with risk of 
severe malaria in early life [33, 34].

In this study, the factors that affect maternal and fetal 
cytokine responses to P. falciparum antigens at delivery 
were analysed. The investigation focused on three groups 
of cytokines including (i) those that are important for the 
control of malaria infection, i.e. TH1 and pro-inflamma-
tory responses, (ii) those that are important to restrict 
the pathology associated with exacerbated inflammation, 
i.e. regulatory cytokines, and (iii) those that are impor-
tant to ensure a successful pregnancy, i.e. TH2 responses. 
To this end, a multiplex panel of cytokines that included 
a sufficient breadth of cytokine functions that was suc-
cessfully applied in previous studies by the same group 
was used. The analysis was completed with an assessment 
of the association of those cytokines with pregnancy and 
childhood outcomes. The study included maternal and 
cord samples collected from a mother–child cohort in 
Mozambique, in the context of a randomized, double-
blind, placebo-controlled trial (AgeMal, ClinicalTrials.
gov: NCT00231452) [35].

Methods
Study area
The study was conducted at the Centro de Investigação 
em Saúde de Manhiça (CISM) in southern Mozambique 

[36]. CISM runs demographic and morbidity surveil-
lance systems at the Manhiça District Hospital (MDH) 
and nearby health posts where standardized informa-
tion on paediatric outpatient visits and admissions is 
collected. Recruitment and follow up of participants 
were done at the Maragra Health Post (MHP) (Septem-
ber 2005–March 2009). Transmission of P. falciparum 
is perennial with marked seasonality (warm rainy sea-
son November–April, cool dry season rest of year) and 
of moderate intensity.

Study design
HIV-negative pregnant women resident in Manhiça 
were recruited during the third trimester of pregnancy 
at the antenatal clinic [35]. Exclusion criteria included 
birth weight < 2 kg, same gender twins, congenital mal-
formations, birth asphyxia or apparent health prob-
lems. 349 eligible newborns were enrolled.

Samples were collected at delivery: 10 mL of maternal 
venous blood (EDTA vacutainer), 8  mL of cord blood 
(EDTA vacutainer), blood slides, bloodspots onto filter 
papers and placental tissue. When delivery occurred 
outside the maternity, only maternal blood samples 
were collected.

Children were followed up until age 24  months. 
Weekly active case detection was conducted from birth 
to age 10.5 months, and monthly home visits from 10.5 
to 24  months. Children with fever (axillary tempera-
ture ≥ 37.5 °C) or history of fever in the preceding 24 h 
were taken to the MHP for examination, parasitaemia 
and haematocrit assessment. Passive case detection was 
carried out at the MHP and MDH to monitor attend-
ances to outpatient/inpatient clinics.

Laboratory procedures
Parasitaemia was quantified in blood slides at CISM 
following standard quality-controlled procedures [35]. 
Haematocrit was measured after centrifugation in hep-
arinized microcapillary tubes with a haematocrit reader 
(Hawksley & Sons Ltd, Lancing, UK), and full blood 
counts performed using a KX-21N cell counter (Sysmex 
Corporation, Kobe, Japan). Placental biopsies collected 
from the maternal side were placed into 10% neutral 
buffered formalin and presence of parasites or pigment 
evaluated [37]. Real-time quantitative PCR (qPCR) 
for P. falciparum 18SrRNA (ABI PRISM 7900HT Fast 
Real-Time System) using TaqMan® probe and FAM/
TAMRA, in duplicates, in filter papers of maternal and 
cord blood [38].
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Cell stimulation and cytokine and chemokine 
quantification
Peripheral blood mononuclear cells (PBMC) and cord 
blood mononuclear cells (CBMC) were isolated using 
a Ficoll-Hypaque 1.077 gradient, resuspended in com-
plete medium (RPMI 1640 culture medium with glu-
tamine and antibiotics plus decomplemented 10% fetal 
calf serum), and stimulated as previously reported 
[39]. Briefly, 1.2 million fresh PBMC and CBMC were 
incubated with 20  μL of a 3D7 P. falciparum schiz-
ont extract corresponding to 2 million synchronized 
infected red blood cells (iRBC, lysed by freezing–thaw-
ing cycles, endotoxin and Mycoplasma tested), or with 
20  μL of lysate from uninfected RBC (uRBC, control) 
in 24-well plates in a total volume of 590 μL. Superna-
tants were collected after 24, 48 or 72  h cultures and 
frozen at − 80  °C. The PBMC and CBMC pellets were 
collected in Trizol (InVitrogen) and frozen at − 80  °C. 
Supernatants were shipped in dry ice to ISGlobal where 
they were thawed and IL-12p70, IFN-γ, IL-2, IL-10, 
IL-8, IL-6, IL-4, IL-5, IL-1β, TNF, TNF-β quantified 
with the Bender Human TH1/TH2 11plex FlowCyto-
mix Multiplex Kit (MedSystems, Aachen, Germany) as 
previously described [39]. Cytokine production in cul-
ture supernatants of unstimulated maternal and neona-
tal samples (uRBC) was not subtracted from the iRBC 
stimulated samples [40], but shown side by side as it is 
possibly biologically relevant [41–43]. Limits of detec-
tion for cytokine/chemokine concentrations are as 
reported [39].

Messenger RNA (mRNA) and complementary DNA 
(cDNA) from 44 maternal PBMC samples stimulated 
for 24  h with parasite iRBC lysate and uRBC control 
were purified and cytokine transcript levels measured 
at QIMR [44]. RNA was extracted from PBMC in Tri-
zol (Invitrogen, Carlsbad, CA, USA). Total RNA was 
reverse transcribed using Superscript™III R (Invitro-
gen). cDNA was quantified by reverse transcriptase 
qPCR (RT-qPCR) in triplicate using commercially avail-
able primers and probes (Taqman™, Applied Biosystems, 
CA, USA) specific for human IFN-γ (Hs00174143_m1), 
TNF (Hs00174128_m1), IL-2 (Hs00174114_m1), IL-4 
(Hs00174122_m1), IL-6 (Hs00174131_m1), IL-10 
(Hs00174086_m1), IL-13 (Hs00174379_m1) and riboso-
mal protein L13a (RPL13a) (Hs03043885_g1) as reference 
gene (Apte JI 2010, unpublished). Thermal cycler param-
eters (Corbett Rotor-Gene 3000, Mortlake, Australia) 
were 95 °C for 2 min and 60 °C for 30 s, 45 cycles at 95 °C 
for 5 s, and 60 °C for 30 s. Results were calculated by the 
number of molecules of each sample as determined from 
the standard curve for each gene, which was then stand-
ardized against the number of molecules of RPL13a (ref-
erence gene) for that sample.

Definitions and statistical methods
Pregnant women were classified into primigravidae (PG) 
and those with at least one previous pregnancy (multi-
gravidae, MG). Maternal age was categorized as ≤ 20, 
21–24 and ≥ 25  years. Distance to the river was calcu-
lated with Hawth’s tools in ArcGIS software (ESRI) as 
the mean distance of each neighbourhood centroid to the 
Incomati river, and neighbourhoods classified as those 
adjacent to the river (mean distance ≤ 2.5  km) or those 
at a greater distance (> 2.5 km) [45]. Season during preg-
nancy was defined as dry if the gestation period included 
May–October, and rainy if it included ≥ 4 rainy months 
(November–April). Maternal malaria was defined as par-
asites in peripheral blood by microscopy and/or qPCR. 
Placental malaria was defined as parasites and/or pig-
ment by histology. Placental inflammation was defined 
as presence of > 5 mononuclear cells and/or polymor-
phonuclear leukocytes in intervillous spaces, assessed in 
10 high power fields at 400× [2]. Congenital malaria was 
defined as parasites on cord blood by qPCR. The primary 
case definition of clinical malaria in children was fever or 
history of fever plus P. falciparum parasites of any density 
[35].

Cytokine and chemokine concentrations (pg/mL) 
were logarithmically transformed. Continuous variables 
were compared by ANOVA and categorical variables 
by Fisher’s exact test. Spearman’s test and scatter plots 
assessed correlations among cytokines and chemokines. 
The Bonferroni correction was applied to p values to 
adjust for multiple comparisons in correlation analyses. 
Linear regression models were used to assess whether 
age, parity, neighbourhood, season (rainy vs dry), use of 
insecticide-treated net (ITN), or use of indoor residual 
spraying (IRS), affected the magnitude of maternal and 
fetal cytokine and chemokine responses and whether 
there was an interaction between parity and these vari-
ables. Analyses were done univariate and multivariable, 
adjusting for all the other variables. When a significant 
interaction with parity was found, an additional set of 
regression analyses was performed stratifying women by 
parity. Logistic (for infection and inflammation) or lin-
ear (for weight and haematocrit) regression models were 
used to evaluate the effect of doubling the levels of mater-
nal and fetal cytokines and chemokines on pregnancy 
outcomes: P. falciparum infection (maternal, placental, 
cord), placental inflammation, maternal haematocrit 
and birth weight. Analyses were adjusted for age, parity, 
season, neighbourhood, ITN, IRS and, when applicable, 
P. falciparum infection. In women with peripheral para-
sitaemia, Spearman’s correlations between parasite den-
sity (microscopy and qPCR) and cytokine and chemokine 
levels, and between parasite density and placental inflam-
mation, were performed. Adjusted negative binomial 
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regression models evaluated the effect of doubling the 
levels of maternal and fetal cytokines and chemokines on 
the incidence of multiple malaria episodes in children up 
to 12 months of age. Significance was defined at p < 0.05. 
Crude p values are interpreted for internal coherence, 
consistency of results and biological plausibility. Analyses 
were performed using Stata/SE 10.1 (College Station, TX, 
USA).

Results
Kinetics of cytokine and chemokine production by cells 
after Plasmodium falciparum antigen stimulation
To determine the optimal timepoint for cytokine and 
chemokine secretion in supernatants after stimulation 
with iRBC and uRBC lysates, a pilot study was conducted 
with 44 maternal PBMC and 44 matched CBMC sam-
ples (28 aparasitaemic and 16 parasitaemic mothers). 
Cytokine and chemokine concentrations were compared 
at 24, 48 and 72  h (n = 264 supernatants). In general, 
there was not a significant difference in cytokine and 
chemokine concentrations between timepoints. For some 
cytokines (IFN-γ, IL-6, IL-10, TNF) responses tended to 
be higher at 24 h and thus this timepoint was chosen for 
subsequent studies. Another pilot study was conducted 
to determine the optimal timepoint for cytokine mRNA 
production with 11 maternal PBMC samples and the 24 h 
incubation was also selected as the most appropriate.

Correlations among cytokine and chemokine proteins 
and mRNAs
Analyses reported here are based on cytokine and 
chemokine data obtained from 174 women (Table  1, 
see Additional file  1) in whom PBMC and/or CBMC of 
enough quantity and quality were obtained, cells could 
be stimulated with antigen ex vivo and supernatants pro-
cessed. Table  2 presents the Spearman’s ρ coefficients 
and p values (Bonferroni adjusted) of the correlation 
analyses. Pro-inflammatory cytokines and chemokines 
IL-1β, IL-6, TNF and IL-8 were highly correlated (Fig. 1 
PBMC supernatants, see Additional file 2 CBMC super-
natants, Additional file  3 mRNA). A significant correla-
tion was also found between pro-inflammatory cytokines 
and the regulatory cytokine IL-10. Moderate correlations 
were seen among TH1 cytokines, TH2 cytokines, and also 
between TH2 and TH1 cytokines (Table  2). Inverse cor-
relations were observed for IL-8 and IFN-γ or IL-12. No 
substantial differences were found between peripheral 
and cord cytokines but peripheral responses tended to 
be slightly higher (see Additional file  4). Some cytokine 
and chemokine responses appeared not to be malaria-
specific, as spontaneous release of pro-inflammatory 
cytokines was also found in control stimulations (see 
Additional file 5).  

The correlations between secreted proteins and intra-
cellular mRNA cytokines were also examined. For the 
positive IFN-γ, TNF, IL-10 and IL-6 responses, there 
was a high correlation between the levels of cytokines 
secreted in the supernatants and the mRNA levels con-
tained within the PBMC (Fig. 2). However, a number of 
supernatant cytokine responses were below the detec-
tion limit of the FlowCytomix kit but were measurable 
as mRNA by RT-qPCR, and this rendered the correla-
tions non-significant (Fig. 2). This could be because (i) 
the RT-qPCR method was more sensitive, and/or (ii) 
the mRNA transcribed in the cytoplasm was not trans-
lated into protein and secreted to the supernatant, and/
or (iii) the cytokines/chemokines secreted were bound 
to receptors and internalized by the cells. For IL-2 and 

Table 1  Parasitological, demographic and epidemiological 
characteristics of  the  women whose peripheral and  cord 
blood samples were assessed for cytokine and chemokine 
secretion following  cell stimulation with  Plasmodium 
falciparum lysate

Numbers and percentages (in parenthesis) are shown

Parasite densities (geometric mean, 95% CI) in infected women were: peripheral 
microscopy (n = 13) 41,364, 1585–81,144; peripheral qPCR (n = 29) 0.98, 
0.28–3.43; placental parasitaemia 5.76, 0.73–45.42; cord qPCR 0.05, 0.01–0.15

The combination between peripheral malaria vs placental malaria vs congenital 
malaria vs placental inflammation is shown in Additional file 1

ITN insecticide-treated net, IRS indoor residual spraying
a  By histology: 3 acute infections, 1 chronic infection, 31 past infections

Peripheral blood 
samples (n = 172)

Cord blood 
samples 
(n = 174)

Placental infection 35 (20.3)a 35 (20.1)

Peripheral infection 31 (18) 30 (17.2)

Cord infection 6 (3.5) 6 (3.4)

Placental inflammation 9 (5.2) 9 (5.2)

Age

 15–20 60 (34.8) 61 (35.5)

 20–25 48 (27.9) 48 (27.6)

 > 25 64 (37.2) 65 (37.8)

Parity

 Primigravidae 48 (27.9) 47 (27)

Neighbourhood

 1 75 (43.6) 76 (43.7)

 2 97 (56.4) 98 (56.3)

ITN use 21 (12.2) 20 (11.5)

IRS use 81 (47.1) 86 (49.4)

Season

 Dry 77 (44.8) 77 (44.2)

Child group

 Control 61 (35.4) 58 (33.3)

 Late exposure 51 (29.6) 55 (31.6)

 Early exposure 60 (34.8) 61 (35.0)
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IL-4, concentrations were overall low. Subsequent anal-
yses included only supernatant proteins due to the lim-
ited number of samples in which mRNA cytokine levels 
were quantified.

Factors affecting secretion of cytokines and chemokines
Concentrations were significantly affected by age, par-
ity, seasonality and ITN use, but not by neighbourhood 
or IRS. After ex  vivo stimulation with iRBC and uRBC, 
PBMC from older women secreted significantly higher 
levels of IL-1β and IL-6 than younger women and the dif-
ferences remained significant after adjustment (Table 3). 
Upon iRBC stimulation, CBMC from MG secreted sig-
nificantly higher levels of IL-8 than PG women (Table 3). 
A significant interaction between age and parity was 
observed for IL-5 production by PBMC (p = 0.026). After 
stratifying the analyses by parity, higher IL-5 concen-
trations in PG but not in MG women were significantly 
associated with older age (Table 3).

Depending on the season during pregnancy, the mag-
nitude of IL-1β, IL-6, TNF and IL-8 responses at deliv-
ery varied significantly for both peripheral and cord 
blood cells following incubation with iRBC and uRBC. 
Lower levels of these pro-inflammatory cytokines and 
chemokines were significantly and consistently associ-
ated with the dry season (Table 3). In addition, cord IL-2 
and IL-4 after stimulation with iRBC were also signifi-
cantly lower in the dry season.

When examining the effect of malaria control tools on 
cytokine levels, CBMC from women sleeping under ITN 
produced higher levels of IL-10 than those not using ITN 
(Table  3). A weak interaction was noted between parity 
and ITN (p = 0.15); in the analyses stratified by parity the 
significant effect of ITN on IL-10 levels appeared to be 
attributable to MG women (Table 3).

Finally, maternal haematocrit was significantly associ-
ated with cord IL-8 in the adjusted analysis (ratio of mean 
IL-8 levels by haematocrit  = − 2.46, 95% CI [− 4.28; 
− 0.63], p = 0.009 for iRBC, and − 2.83 [− 5.13; − 0.52], 
p = 0.018 for uRBC).

Association of cytokines and chemokines with malaria 
and pregnancy outcomes
Lower production of IL-1β by PBMC following incu-
bation with iRBC and uRBC was significantly associ-
ated with maternal peripheral infection (Table 4). Some 
interactions between peripheral infection and parity 
were noted for TNF (p = 0.054), IL-12 (p = 0.061), IL-2 
(p = 0.003), IFN-γ (p = 0.025), IL-8 (p = 0.151), and IL-5 
(p = 0.031). In the analysis stratified by parity, higher 

Table 2  Correlations among  cytokines and  chemokines 
in supernatants

The table shows results that are statistically significant or that are close to 
significance, after adjustment for multiple comparisons

Cytokines and chemokines Spearman’s rho 
[ρ] coefficient

p value 
(Bonferroni 
adjusted)

Pro-inflammatory

 Peripheral blood

  IL-1β and IL-6 0.9 < 0.001

  IL-6 and TNF 0.6 < 0.001

  TNF and IL-1β 0.5 < 0.001

  IL-6 and IL-8 0.3 < 0.024

 Cord blood

  IL-1β and IL-6 0.9 < 0.001

  IL-6 and TNF 0.6 < 0.001

  TNF and IL-1β 0.5 < 0.001

Pro-inflammatory and regulatory

 Peripheral blood

  IL-6 and IL-10 0.6 < 0.001

  IL-1β and IL-10 0.6 < 0.001

  TNF and IL-10 0.4 < 0.001

 Cord blood

  Il-6 and IL-10 0.6 < 0.001

  IL-1β and IL-10 0.6 < 0.001

  TNF and IL-10 0.4 < 0 .001

  IL-2 and IL-10 0.3 < 0.015

TH1

 Peripheral blood

  IL-12 and IL-2 0.3 0.018

  IL-2 and IFN-γ 0.3 0.004

  IL-12 and IFN-γ 0.3 0.110

 Cord blood

  IL-12 and IL-2 0.3 0.018

  IL-2 and IFN-γ 0.3 0.004

  IL-12 and IFN-γ 0.3 0.110

TH2

 Cord blood

  IL-4 and IL-5 0.4 < 0.001

TH1 and TH2

 Peripheral blood

  IL-4 and IFN-γ 0.3 0.001

 Cord blood

  IL-4 and IFN-γ 0.5 < 0.001

  IL-4 and IL-12 0.3 < 0.001

  IL-4 and IL-2 0.3 < 0.001

TH1 and chemokines

 Peripheral blood

  IL-8 and IFN-γ − 0.3 < 0.001

 Cord blood

  IL-8 and IL-12 − 0.3 0.011
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Fig. 1  Correlations among cytokines and chemokines secreted by peripheral blood mononuclear cells in culture supernatants. Stimulation with a 
lysate of Plasmodium falciparum infected erythrocytes (a) and a lysate of uninfected erythrocytes (b). Significant Spearman rho (ρ) coefficients and p 
values (Bonferroni corrected) are reported in Table 2
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Fig. 2  Correlations between cytokines produced by peripheral blood mononuclear cells in culture supernatants and mRNA within cells. 
Stimulation with a lysate of Plasmodium falciparum infected erythrocytes (a) and a lysate of uninfected erythrocytes (b), showing the rho (ρ) 
coefficients and p values (Bonferroni corrected). X axis: due to the data pre-processing of the cytokine RT-qPCR data (see “Methods”), in cases of very 
low responses negative values were obtained that are considered as zero
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Table 3  Factors affecting the concentration of cytokines and chemokines secreted in culture supernatants of peripheral 
and  cord blood mononuclear cells after  incubation with  P. falciparum-infected erythrocyte (iRBC) or  uninfected 
erythrocyte (uRBC) lysates

The following variables were included in the multivariable regression analyses: peripheral and placental infection, placental inflammation, age, parity, neighbourhood, 
season, use of insecticide treated net and use of indoor residual spraying. Cytokines and chemokines not included in the table did not show any differential pattern 
according to any variable

NS not significant
a  Ratio in the mean cytokine/chemokine levels in older women (> 25 years) compared to younger women (15–20 years)
b  Ratio in the mean cytokine/chemokine levels in multigravidae compared to primigravidae
c  Ratio in the mean cytokine/chemokine levels of women with a pregnancy during the dry season compared to women with a pregnancy during the rainy season
d  Effect only manifested in primigravidae women in stratified analysis
e  Effect only manifested in multigravidae women in stratified multivariable analysis

Peripheral blood Cord blood

Univariate Multivariable Univariate Multivariable

Effect (95% CI) p Effect (95% CI) p Effect (95% CI) p Effect (95% CI) p

Older agea

 IL-1β

  iRBC 3.44 (1.58;7.50) 0.017 4.42 (1.40;13.91) 0.025 NS NS

  uRBC 3.33 (1.46;7.60) 0.008 NS NS NS

 IL-6

  iRBC 4.42 (1.79;10.91) 0.005 7.75 (2.02;29.8) 0.013 NS NS

  uRBC 3.10 (1.18;8.15) 0.036 5.49 (1.31;22.9) 0.046 NS NS

 IL-5d

  iRBC 37.7 (11.7;121.1) < 0.001 38.3 (12.0;122.0) < 0.001 NS NS

  uRBC NS NS NS NS

Parityb

 IL-8

  iRBC NS NS NS 1.29 (0.65;2.55) 0.048

  uRBC NS NS NS NS

Dry seasonc

 IL-1β

  iRBC 0.25 (0.13;0.48) < 0.001 0.23 (0.12;0.43) < 0.001 0.23 (0.12;0.46) < 0.001 0.21 (0.11;0.43) < 0.001

  uRBC 0.23 (0.12;0.47) < 0.001 0.21 (0.11;0.42) < 0.001 0.21 (0.10;0.42) < 0.001 0.18 (0.09;0.37) < 0.001

 IL-6

  iRBC 0.25 (0.12;0.54) < 0.001 0.25 (0.12;0.52) < 0.001 0.14 (0.06;0.33) < 0.001 0.14 (0.06;0.32) < 0.001

  uRBC 0.19 (0.08;0.41) < 0.001 0.19 (0.09;0.42) < 0.001 0.12 (0.05;0.27) < 0.001 0.11 (0.05;0.26) < 0.001

 TNF

  iRBC 0.51 (0.27;0.95) 0.036 0.53 (0.28;1.00) 0.051 0.26 (0.14;0.49) < 0.001 0.28 (0.15;0.53) < 0.001

  uRBC 0.40 (0.21;0.75) 0.005 0.40 (0.21;0.74) 0.004 0.32 (0.17;0.61) 0.001 0.34 (0.18;0.66) 0.002

 IL-8

  iRBC 0.66 (0.48;0.91) 0.012 0.65 (0.47;0.90) 0.011 NS NS

  uRBC 0.67 (0.52;0.86) 0.002 0.68 (0.52;0.88) 0.003 0.70 (0.51;0.96) 0.026 0.67 (0.48;0.93) 0.017

 IL-2

  iRBC NS NS 0.75 (0.57;0.99) 0.046 0.74 (0.57; 0.96) 0.027

  uRBC NS NS NS NS

 IL-4

  iRBC NS NS 0.79 (0.63;0.98) 0.033 0.79 (0.63;1.00) 0.047

  uRBC NS NS NS NS

Insecticide treated net use

 IL-10e

  iRBC NS NS 3.00 (1.06;8.51) 0.040 4.17 (1.34;12.98) 0.015

  uRBC NS NS 3.25 (1.16;9.13) 0.026 3.38 (1.20;12.20) 0.025
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TNF and lower IL-12 secretion after iRBC and uRBC 
stimulations were significantly associated with maternal 
peripheral infection in PG women (Table 4). In contrast, 
lower IL-8 and higher IL-2 were associated with periph-
eral infection in MG women (Table 4). Such associations 
were not observed for CBMC stimulations (p > 0.05).

When taking into account parasite density in infected 
women, only IL-5 production by CBMC correlated 
inversely with parasitaemia by microscopy (Spearman’s 
ρ = − 0.67, p = 0.023). In contrast, when parasites were 
quantified by qPCR, a consistent inverse correlation 
emerged for PBMC TH1 cytokines IFN-γ (ρ = − 0.34, 
p = 0.06), IL-2 (ρ = − 0.35, p = 0.070) and IL-12 
(ρ = − 0.41, p = 0.025), and a direct correlation for PBMC 
TNF (ρ = 0.38, p = 0.042) and CBMC TH2 cytokines IL-4 
(ρ = 0.40, p = 0.032) and IL-5 (ρ = 0.36, p = 0.060), but 
no association was shown for IL-1β, IL-6, IL-10 or any 
other cytokine. Geometric mean parasite densities by 
qPCR but not by microscopy were significantly higher in 
women with placental inflammation (10.38 parasites/µL, 
standard deviation 4.62) than without (0.46 parasites/µL, 
standard deviation 1.63, p = 0.034).

Placental infection was significantly associated with 
lower production of IL-6 and TNF by PBMC (Table  4). 
Higher IL-5 production after iRBC stimulation was sig-
nificantly associated with placental infection in MG 
(p = 0.023, Table  4). Placental inflammation was signifi-
cantly associated with higher TNF secretion by PBMC 
(Table 4), only significant for PG in the stratified analysis.

Cord blood infection was significantly associated 
with higher concentrations of IL-1β secreted by PBMC 
(Table 4). It was not possible to perform this multivari-
able analysis stratified by parity due to the low number of 
congenital infections (n = 8: 2 PG, 6 MG).

Finally, cytokine or chemokine concentrations were not 
significantly associated with maternal haematocrit, birth 
weight or incidence of clinical malaria in the children 
(p > 0.05).

Discussion
The main finding of this study is that IL-6 and IL-1β were 
associated with a reduced risk of P. falciparum infection 
in pregnant women. Pro-inflammatory cytokines IL-6, 
IL-1β and TNF strongly correlated among themselves. 
However, higher production of IL-1β by PBMC was also 
significantly associated with congenital malaria after 
adjusting for potential confounding variables. In addition, 
excessive TNF, particularly in PG, was associated with 
peripheral infection and placental lesions. The appar-
ently paradoxical association of IL-1β with both positive 
and negative outcomes could be reconciled if the effects 

Table 4  Multivariable analysis of concentrations of cytokines 
and chemokines secreted by peripheral blood mononuclear 
cells in  relation to  P. falciparum infection and  delivery 
outcomes

Adjusted for age, parity, indoor residual spraying, insecticide treated net, 
season, and neighbourhood. In some cases, the analyses were also adjusted 
for placental or peripheral infection, as indicated in the footnotes and in 
the text. The analyses were conducted first in all mothers and later stratified 
in primigravidae and multigravidae women separately, as indicated in the 
footnotes and in the text

NS not significant, iRBC Plasmodium falciparum infected red blood cells, uRBC 
uninfected red blood cells
a  Also adjusted for placental infection
b  Also adjusted for peripheral infection
c  Effect only manifested in primigravidae women in stratified multivariable 
analysis
d  Effect only manifested in multigravidae women in stratified multivariable 
analysis

Effect (95% CI) p

Maternal peripheral P. falciparum infectiona

 IL-1β

  iRBC 0.83 (0.72;0.97) 0.017

  uRBC 0.86 (0.75;0.98) 0.026

 TNFc

  iRBC 1.57 (1.01;2.45) 0.044

  uRBC 1.70 (1.11;2.60) 0.015

 IL-12c

  iRBC 0.38 (0.18;0.80) 0.015

  uRBC 0.26 (0.08;0.79) 0.023

 IL-8d

  iRBC NS

  uRBC 0.71 (0.52;0.98) 0.035

 IL-2d

  iRBC NS

  uRBC 1.54 (1.03;2.28) 0.034

Placental P. falciparum infectionb

 IL-6

  iRBC 0.89 (0.80;1.00) 0.049

  uRBC 0.88 (0.79;0.98) 0.020

 TNF

  iRBC NS

  uRBC 0.82 (0.70;0.96) 0.015

 IL-5d

  iRBC 1.80 (1.15;2.80) 0.009

  uRBC NS

Placental inflammation

 TNF

  iRBC 1.35 (1.02;1.78) 0.034

  uRBC 1.38 (1.06;1.79) 0.018

Cord P. falciparum infection

 IL-1β

  iRBC 3.58 (1.03;12.41) 0.045

  uRBC 1.83 (1.01;3.32) 0.046
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on maternal periphery vs placental-fetal microenviron-
ments may differ depending on concentration thresholds 
and locations. Thus, a given cytokine could be beneficial 
against parasites at a given concentration in a given tis-
sue, while at certain other concentrations, and combined 
with other factors (e.g. placental inflammation) could be 
detrimental in other tissues, possibly favouring mother-
to-child P. falciparum transmission.

Lower IL-1β secretion by PBMC was associated with 
peripheral infection at delivery and lower IL-6 secre-
tion by PBMC was associated with placental infection 
during pregnancy, supporting the hypothesis that these 
pro-inflammatory cytokines may contribute to control 
maternal parasitaemia. However, these correlations did 
not translate into a clinical effect, which could be due 
to insufficient study power. Furthermore, in the parity-
stratified analyses, some of these associations were only 
significant in MG mothers, suggesting that higher pro-
inflammatory cytokines might lead to less malaria in 
a parity-dependent manner. Past studies showed that 
the ability to control malaria parasitaemia is predomi-
nantly age-dependent, suggesting naturally acquired 
immunity [10]. The finding that IL-1β and IL-6 increase 
in older pregnant women, and that this was P. falcipa-
rum antigen-specific in the multivariable analyses, fur-
ther supports that these cytokines might be markers of 
acquired anti-malarial immunity in the mothers. How-
ever, there was also a clear and consistent effect of sea-
sonality on the concentrations of secreted IL-1β, IL-6, 
TNF, and IL-8 from peripheral and fetal cells at delivery, 
that were higher when pregnancy occurred in the rainy 
season. This may indicate that these cytokines could 
also be markers of exposure to P. falciparum. Neverthe-
less, fluctuation of cytokines and chemokines might not 
be solely related to malaria, but to other factors affected 
by seasonality in Manhiça (e.g. respiratory infections, 
nutritional status). Unfortunately, phenotypic data from 
PBMC to check compositional variations according to 
season were not available.

An excessive production of pro-inflammatory 
cytokines may damage host tissues and it is believed that 
as part of the acquisition of immunity, the regulation by 
the anti-inflammatory cytokine IL-10 is key in preventing 
pathology. This is consistent with the finding that IL-1β, 
IL-6 and TNF were highly correlated among themselves 
and moderately correlated with IL-10, though TNF to a 
lesser extent. In fact, higher TNF production by PBMC, 
mostly in PG women, was associated with peripheral 
infection at delivery and placental inflammation, suggest-
ing that in less immune pregnant women TNF produc-
tion might be exacerbated during malaria and perhaps 
not well regulated by IL-10, becoming a marker of pla-
cental lesions. Other studies found TNF to be associated 

with placental malaria [46]. Thus, inflammation may 
result in increased levels of TNF, which in turn may cause 
more inflammation.

Increased IL-1β production by PBMC cultured with 
iRBC and uRBC was also associated with cord infec-
tion. In this cohort, congenital infection was significantly 
associated with placental inflammation and peripheral 
infection at delivery (Mayor et al., pers. comm.). In addi-
tion, higher peripheral parasite density by qPCR was 
associated with higher TNF and placental inflammation. 
Higher parasitaemias and lack of appropriate regulation 
by IL-10 may exacerbate IL-1β, IL-6 and TNF, leading to 
more placental inflammation and pathogenesis. Under 
those circumstances, it can be speculated that the integ-
rity of placental tissue may become more compromised, 
being more likely that parasites may leak from the mater-
nal side to cord blood.

Significantly less levels of IL-1β, IL-6, TNF and IL-10, 
but more IFN-γ secreted in response to iRBC, have been 
detected in grand MG (> 5 pregnancies) compared to 
women in their second to fourth pregnancy (44), giv-
ing insight into the modulation of PBMC function with 
increasing parity and on the balance between host pro-
tection and immunopathology in placental malaria. In 
contrast to some studies, increased IFN-γ did not cor-
relate with protection against placental malaria [14–17]. 
However, an association between low levels of IL-12 and 
peripheral infection in PG was found, and IL-12 induces 
IFN-γ production. In addition, increased secretion of 
IL-5 by PBMC was significantly associated with placental 
infection in MG after parity stratification (consistent with 
[22, 23]), and this fits with the concept of protective TH1 
vs non-protective TH2 for control of placental parasitae-
mia. Consistently, an inverse correlation between periph-
eral parasitaemia by qPCR and IL-12, IFN-γ and IL-2 
(TH1), and a direct correlation between parasite density 
and IL-4 and IL-5 (TH2), were identified.

Regarding fetal responses, IL-10 production by CBMC 
was elevated in women sleeping under ITNs, particularly 
MG. The effect of ITN use on malaria incidence in moth-
ers may influence IL-10 production in fetal cells, and 
this phenomenon may be modulated by parity-acquired 
immunity [47–49]. Also, CBMC from MG women 
secreted more IL-8 than CBMC from PG women, and 
lower maternal haematocrit was significantly associated 
with elevated production of IL-8 by CBMC. Although 
IL-8 was not assessed in placental tissue, the findings 
support that IL-8 is involved in the negative outcomes of 
malaria in pregnancy [19, 50, 51].

Some relevant cytokine or chemokine responses might 
not necessarily be P. falciparum-specific, as spontaneous 
release of pro-inflammatory cytokines was also found in 
control stimulations. In general, there was not a great 
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difference between iRBC and uRBC stimulated samples. 
This suggests that in many cases we were measuring 
non-specific responses and/or that lysate stimulations 
are often not potent enough. Unfortunately, the study 
did not include a mitogen control in the stimulations due 
to limitation in cell numbers. In Manhiça, it is not fea-
sible to have continuous production of fresh iRBC from 
in  vitro parasite cultures to be used as antigens, which 
are more potent stimuli ex vivo. Nevertheless, non-spe-
cific cytokine responses are important and potentially 
relevant for disease outcomes, including malaria, as seen 
in this and other studies (Y. Song et al., pers. comm.), and 
should not be underestimated in the analyses as part of 
the overall action of innate and adaptive immunity.

No robust associations were found between cytokines 
or chemokines measured in maternal or cord blood and 
newborn or infant outcomes. Placental high TNF and low 
IFN-γ and IL-5 levels have been associated with low birth 
weight [46, 52]. Only newborns ≥ 2 kg were recruited as 
per trial criteria, which may account for the lack of asso-
ciations in infant outcomes.

A limitation of this study is that only PBMC and 
CBMC but no placental blood cells were analysed, and 
there are immunological differences between peripheral 
and placental compartments, also affected by parity. As 
a result of this, placental qPCR and immune responses 
were not investigated due to the difficulty of obtaining 
fresh placental samples, although classical histology was 
performed. Thus, in this analysis, peripheral parasitaemia 
included submicroscopic infections and reflected diagno-
sis at delivery, while placental malaria included histologi-
cal presence of pigment or past infections, and reflected 
diagnosis during pregnancy. In consequence, the protec-
tive association of IL-1β refers to the delivery while that 
of IL-6 includes the previous period of gestation. The 
restricted numbers of active placental malarias precluded 
from evaluating potential associations between pres-
ence of infections at delivery and cytokines. Future work 
should include flow cytometry characterization of cell 
populations producing the cytokines and chemokines. 
Finally, multiple associations were evaluated and chance 
in some of them cannot be excluded, thus findings must 
be taken with caution and confirmed in larger studies. 
Nevertheless, the internal consistency and biological 
plausibility of results generates confidence that data are 
robust.

Conclusions
The most consistent finding of this study was the 
inverse association between increased levels of pro-
inflammatory cytokines and maternal infection, and 
at the same time the direct association between IL-1β 

and cord infection, and between TNF, peripheral infec-
tion and placental inflammation in PG. Although no 
clear evidences for impact on child morbidity were 
found, findings highlight the complexity of immuno-
pathological cytokine networks that might be acting in 
the placental and utero environments during malaria 
in pregnancy, with a potential trade-off between posi-
tive and negative effects on the mother and newborn 
susceptibility to P. falciparum infection, modulated by 
parity.
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