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Stenosis is caused by an abnormal growth in the artery’s lumen. This undesirable growth can 
change the hemodynamic characteristics of the blood flow which could be injurious to normal 
health. Theoretical results obtained for specific geometrics are given for the velocity distribution, 
pressure, wall shearing stress, and other different phenomena. Flow resistance has been shown 
that the wall shear decreases with decreasing peripheral layer viscosity, but these properties 
increase with increasing stenosis size. A two-fluid blood model with a core of micro-polar fluid 
and a periphery of Newtonian blood has been researched in the presence of moderate stenosis. 
In terms of modified Bessels functions of zero and first order, analytical equations for flow 
resistance, wall shear stress, and diffusion via stenosis have been found. Therefore, understanding 
and preventing arterial illnesses need a thorough grasp of the specific flow characteristics of a 
channel with restriction. The results for wall shearing stress resistance to flow and concentration 
profiles have been obtained and discussed with the help of graphically.

1. Introduction

Stenosis is caused by an abnormal growth in the artery’s lumen which is developed due to the formation of intravascular plaques 
or the impingement of ligaments or spurs on the vessel wall. As the disease progresses, it affects severely the coronary flow rate and 
perfusion. The pressure, shear, and other flow parameters, among others, are significant in an arterial system. These are linked to an 
increase in flow resistance and the presence of a low-pressure area that creates a suction effect, the potential for red and endothelial 
cell damage as a result of a high shear region, and the potential for a change from laminar to turbulent flow inside the blood vessel 
that results in high-intensity shear zones that are unfavourable to blood flow and the arterial wall.

Lee and Fung [1] described a numerical result for flows in tubes with local dumbbell-shaped constriction. Kaur [2] solved the 
problem of heat transfer by one dimensional steady state conditions. Forrester and Young [3] employed approximation techniques to 
find the flow solution in a tube having a constriction in the shape of a cosine curve. Several works have studied the Viewing the blood 
as a Newtonian or non-Newtonian fluid, one may determine the blood’s flow characteristics in an artery with minor stenosis [Caro et 
al. [4], Shukla et al. [6], Forrester and Young [5], Rodbard [7], Fox and Hugh [8], May et al. [9]]. Recently, Awasthi and Kaur [10]

* Corresponding author at: Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

E-mail addresses: dramitawasthi@gmail.com, amit.25155@lpu.co.in (A.K. Awasthi), harpreettalwar47@gmail.com (H. Kaur), drrktripathi_fgiet@rediffmail.com
Available online 7 November 2023
2405-8440/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(R.K. Tripathi), dr.amonaft@gmail.com (M. Khademi), homan_emadi@yahoo.com (H. Emadifar).

https://doi.org/10.1016/j.heliyon.2023.e20807

Received 4 April 2023; Received in revised form 12 September 2023; Accepted 6 October 2023

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:dramitawasthi@gmail.com
mailto:amit.25155@lpu.co.in
mailto:harpreettalwar47@gmail.com
mailto:drrktripathi_fgiet@rediffmail.com
mailto:dr.amonaft@gmail.com
mailto:homan_emadi@yahoo.com
https://doi.org/10.1016/j.heliyon.2023.e20807
https://doi.org/10.1016/j.heliyon.2023.e20807
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e20807A.K. Awasthi, H. Kaur, R.K. Tripathi et al.

explained method of finite difference is adopted to come up with the model signifying molecular diffusion and facilitated diffusion are 
responsible for the movement of organisms. Shukla et al. [11,12] examined how pheripheral layer affected the blood’s ability to flow 
through an artery with only a mild stenosis. In these investigations, two Newtonian fluids with differing viscosities are used to depict 
the fluid in the core region and the periphery layer, and or both the fluids are represented by Law fluids of different consistencies 
𝑚1 and 𝑚2 completely independent of each other. Awasthi et al. [13,29] solved the problem of displacement components and stress 
components at the interface of two medium. Awasthi et al. [30] solved the bone crack problem inspired pair of Griffith crack opened 
by forces at crack faces. Recently, Tandon et al. [14–16] investigated the Micro-structural and blood flow through an artery with 
mild stenosis is affected by peripheral layer viscosity. This study examines the properties of blood flow through a mildly stenotic 
artery have been investigated by modelling the blood as a micro-polar fluid in the core enclosed by a peripheral layer having the 
same viscosity as that of suspension of the whole blood’s medium. The effects of percent stenosis, micro-structure, and peripheral 
layer viscosity have been discussed. It may be observed that the work reported above introduces a constant width of the peripheral 
layer in almost every paper. The width depending on the stenosis’s size and shape under consideration for a more realistic model. 
Numerous researchers have studied the continuous flow of blood via a stenosed tube and have modelled blood as a Newtonian fluid 
[Deshpande et al. [17], Macdonald [18], Shukla, et al. [6], Young [5]].

In microcirculation, where the peripheral layer thickness and viscosity effects predominate the flow characteristics, the conse-

quences of stenosis are significantly more significant. In their investigations, assumptions of rigid wall symmetric constriction seem 
to be the reason because the changes induced by the stenosis predominate in comparison to distensibility and taperness of the walls 
and the pulsatile nature of the blood flow [Young [19]].

Fung [20], Burn [21] endeavored to recognize the dispersion pathways of water-soluble low molecular weight substances such as 
ions, sugars, and amino acids. When combined with the information from electron microscopy, it would seem that the endothelial 
cells are rather impervious to these chemicals and that the inter cellular spaces are the main diffusion channels for these water-

soluble compounds. Now till date, the emphasis has been laid down on fluid dynamical aspects and the only discussion of mas 
transfer was undertaken concerning the transfer between red cells and the surrounding plasma, only peripheral comments have been 
made regarding the mass transfer from blood to the tissue [Fleteher [22]].

Different substances are exchanged between plasma and the surrounding tissue as blood passes through capillaries; some of these 
substances, like glucose, package, and albumin, are present under normal physiological circumstances, whereas others are artificially 
added to the blood or tissue as indicators in an experimental programme. In both healthy and diseased conditions, it is crucial to 
determine these chemicals’ intra- and extra-vascular concentrations [Crone and Lassen [23]]. Analysis of entropy generation shows 
that the concentration difference parameter maximizes the entropy and minimizes the dimensionless Bejan number [28].

In this article, an attempt has therefore, been made to determine the concentration profiles and related physiological diffusion for 
healthy and unhealthy systems connected to stenosis brought on by localised lipid deposition. The outcome of the analysis may prove 
to be more useful in the identification and location of such diseases. An iteration scheme based on picards type iteration method has 
been developed which yields approximate results but this contributes to many complexities such as possible effect of micro-structural 
and blood flow is impacted by peripheral layer viscosity, and diffusion through a tube with mild stenosis in pathological states 
including tapering and inertial effects which are difficult to handle with other techniques. The results for flow are impeded by wall 
shearing stress and concentration profiles have been obtained and discussed.

2. Formulation of the problem

The shape of stenosis in a cylindrical polar coordinate system has been developed in Fig. 1 and additionally, it was considered 
that stenosis developed in the artery wall in an axially symmetric way and that it is development was influenced by the axial distance 
𝑍 and thickness of its growth 𝛿𝑆 of the wall. The radius of the wall in the affected region is given in equation (1)
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Where 𝛿𝑆 denotes the maximum height of the stenosis, 𝑅𝑜, 𝐿𝑜, 𝑑 is the radius of the artery with stenosis length of the stenosis 
and its location respectively.

The governing equation of flow and diffusion for micro-polar fluids (suspension) in the core region 0 ≤ 𝑟 ≤𝑅1(𝑍) and peripheral 
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Fig. 1. The geometry of the artery with stenosis.

Where the (𝑉1, 𝜔) denotes the local particle rotation’s suspension speed and velocity 0 ≤ 𝑟 ≤𝑅1 and 𝑉2 is the velocity of the fluid in 
the region 𝑅1 ≤ 𝑟 ≤𝑅2, 𝐾 is the relative rotational viscosity, 𝜇, 𝛽, 𝛾 are viscosities and the gradients of particle angular velocity, and 
𝑑𝑝

𝑑𝑧
is constant pressure gradient and 𝑟 is the radial coordinate and 𝐶1, 𝑚1, 𝐷1, 𝑉1 are the solute concentration, rate of production or 

degeneration of cells, diffusion co-efficient of under-solved cells and velocity in the region 0 ≤ 𝑟 ≤𝑅1 respectively and 𝐶2, 𝑚2, 𝐷2, 𝑉2
are the solute concentration, rate of production or degeneration of cells, diffusion co-efficient of under solved cells and velocity in 
the region 𝑅1 ≤ 𝑟 ≤𝑅2.

2.1. Boundary condition

𝑤 = 0, and 𝑉1 is finite at 𝑟 = 0

𝑉1 = 𝑉2, 𝜏1 = 𝜏2,
𝜕𝑉1
𝜕𝑟

= −(2 + 𝑎)𝑤 at 𝑟 =𝑅1 (7)

𝑉2 = 0, at 𝑟 =𝑅2

𝐶1 = 𝐶𝐴, at 𝑍 = 0

𝐶2 = 𝐶𝐴, at 𝑍 = 0
𝜕𝐶1
𝜕𝑟

= 0 𝑎𝑡 𝑟 = 0 (8)
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Where 𝑠 is the boundary condition parameter ranging over the interval 0 ≤ 𝑠 ≤∞, 𝜏1 & 𝜏2 are the shear stress in the two regions 
described above. 𝑁 is the retention parameter. 𝐶0 is the same reference concentration of solute.

2.2. Solutions to the problem

The solutions of the equation (2) to (4) with boundary condition (7) are
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Where
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And 𝐼0 & 𝐼1 consists of modified Bessel functions of order 𝑉 . Since modified Bessel functions can be approximately calculated for 
small values as
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Table 1

Variation of resistance to flow (RF) and wall shearing stress (𝜏𝜔) with 
boundary condition parameter (𝑆̄) at 60% stenosis.

𝑆̄ 0 0.237 0.727

RF × 10 gm/cm4 sec 3.6089 3.6110 3.6161

𝜏𝜔 gm/cm sec−2 3.0096 3.0099 3.0150

Table 2

Variation of wall shearing stress 𝜏𝜔 with hematocrit at 60% stenosis.

%H 40 20 10

𝜏𝜔 gm/cm sec−2 6.9378 6.9357 6.9335

Fig. 2. Variations of resistance to flow with stenosis percentage for different values of peripheral layer viscosity and fixed values of 𝑠 = 0.231,𝐻 = 40%,
𝐿0
𝐿

= 0.02.
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4

))
− 1
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4

)
{𝑙𝑜𝑔 𝑅2 − 𝑙𝑜𝑔 𝑟}

]
+

(
𝑑𝑝

𝑑𝑧

)
𝛽

4𝜇𝐷2

[
𝑅2
2
2

(
1
2

(
𝑅2
2 − 𝑟2

)

−𝑅2
1

(
𝑙𝑜𝑔 𝑅2 − 𝑙𝑜𝑔 𝑟

))
− 1

4

(
1
4

(
𝑅4
2 − 𝑟4

)
−𝑅4

1

(
𝑙𝑜𝑔 𝑅2 − 𝑙𝑜𝑔 𝑟

))]
−𝐺

(
𝑙𝑜𝑔 𝑅2 − 𝑙𝑜𝑔 𝑟

)
(19)

3. Results and discussion

In this article, a two-fluid model of blood with a micro-polar fluid core and a Newtonian fluid peripheral layer has been in-

vestigated in the presence of mild stenosis. Analysis of the wall shear stress and flow resistance at the highest stenosis height and 
diffusion through stenosis based on modified Bessels functions of zero and first order, results have been obtained. It is discussed that 
the analysis of this article is a generalization of the [Shukla [11], Tandon et al. [14]], two-fluid model, and [Young [19,25]], New-

tonian fluid model. Since earlier studies have not considered the diffusion through the stenosis. Therefore, these cases are obtained 
as certain limiting cases of the present research. Further, it is noted that in the earlier models the blood has either been assumed 
to be a Newtonian fluid or a two-layered Newtonian fluid model with distinct viscosities in the core and the peripheral region. But 
experimental results [Gould [26] and Cokelet [24]] imply the presence of a central core of non-Newtonian fluid and a peripheral 
layer of Newtonian fluid (R.B.C. Suspension). Therefore it is clear that the earlier models are unrealistic. Additionally, it has been 
found that the velocity profiles in the core rely on the tube’s diameter and particle size ratio in addition to hematocrit. Since the 
5

two-fluid models with the core of Casson fluid or power-law fluid [Shukla et al. [11,12]] do not think about how particle size affects 
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Fig. 3. Variations of resistance to flow with stenosis percentage for different values of Hematocrit and fixed values of 𝑠 = 0.231, 𝜇 = 1.5𝑐𝑃 ,
𝐿0
𝐿

= 0.02.

Fig. 4. Variations of resistance to flow with stenosis percentage for different values of length of the stenosis and fixed values of 𝑠 = 0.727,𝐻 = 40%, 𝜇 = 1.5𝑐𝑃 .

things. It has a few restrictions. The present model includes all the above effects with diffusion and has improved agreement with 
the outcomes of the experimental.

Tables 1 and 2 depict the effects of the boundary conditions parameter 𝑆̄ on resistance to flow and wall shearing stress. Chaturani 
and Mahagan have determined the values of boundary condition parameter 𝑆̄ by using the experimental values of the other param-

eters of the fluid. We have used the same values (0 ≤ 𝑆̄ ≤ 1). It may be noted that 𝑆̄ decreases as concentration (i.e. hematocrit) 
decreases or particle size increases. The wall shearing stress increases with 𝑆̄ and the resistance to flow also increases. It has been 
noted that the boundary condition parameter is directly proportional to apparent viscosity and therefore, we conclude that the wall 
shearing stress as well as resistance to flow increases with apparent viscosity of the blood. These results are also consistent with our 
6

result reported above and with the literature.
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Fig. 5. Variations of wall shearing stress with stenosis and fixed value of 𝑠 = 0.727,𝐻 = 40%, 𝜇 = 1.5𝑐𝑃 .
7

Fig. 6. Concentration profile in the capillary for different values of the parameters 𝑠.
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Fig. 7. Concentration profiles in the capillary for different values of
𝜕𝑠

𝑅0
.

For various levels of peripheral layer viscosity, Fig. 2 shows the fluctuation in flow resistance with percentage stenosis. It is 
noticeable that the flow resistance rises gradually, reaching a maximum of 40%. Stenosis and thereafter it increases very rapidly. It 
also rises in proportion to the peripheral layer’s viscosity. Therefore, we may draw the conclusion that the disease affects is more 
prevalent in people with higher peripheral layer viscosity.

Fig. 3 shows how, at various hematocrit values, the resistance to flow varies with the percentage stenosis. As the hematocrit value 
rises, it is seen that the flow resistance also rises. It is clear that this is the case since the blood’s apparent viscosity consistently rises 
as hematocrit does.

According to Fig. 4, the resistance to flow rises as the length of the stenosis increments for a given percentage of stenosis.

Fig. 5 shows that wall shearing stress increases with percentage stenosis and decreases with the length of stenosis similar result 
has earlier been obtained by Chow and Soda [27]. These results further agree in respect of small constrictions when the effect of 
stenosis is negligible but the effects are more severe as the percentage of stenosis increases.

Fig. 6 displays the diffusion of dissolved nutrients in the capillary as well as n peripheral layer region. We observe that concen-

tration in the peripheral layer is much less than that in the capillary region. The concentration in the capillary region is maximum 
near the central line and decreases towards the peripheral layer and the concentration in the peripheral layer also decreases towards 
the wall. We have also observed from this figure that as 𝑆 increases concentration increases due to the axial migration of the cells 
because of narrowing the region of flow.

Fig. 7 describes the diffusion of dissolved nutrients in normal and stenosis capillary the effect of increasing stenosis is to increase 
the concentration in the peripheral layer as well as in the capillary region. As the stenosis progresses the concentration near the 
surface increases more rapidly. From this we may conclude once the stenosis is formed, it further increases more rapidly due to the 
deposition of more cells.

Fig. 8 shows the impacts of the maintenance boundary on fixation as well as in the area of the peripheral layer. Expanding upsides 
of N depict the expansion in maintenance of the solute inside the capillary region. N=1 infers the total maintenance that is no solute 
diffuses into the tissue region also, as the maintenance boundaries decline from 1 to 2, more solute diffuses in the tissue region which 
in term decreases the concentration in the capillary region as well as in the peripheral layer area.

Fig. 9 depicts the variation of concentration in the capillary and peripheral layer region for different ratios of diffusivities. As the 
8

proportion diminishes, the focus in the capillary area increments as the ratio falls.
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Fig. 8. Concentration profiles for different values of retention parameter.

4. Conclusion

This research focuses on analytical expressions for resistance to flow and wall shear stress at the maximum height of the stenosis 
and diffusion through stenosis has been obtained in terms of modified Bessel functions of zero and first order along with increased 
apparent velocity of the blood. These results are consistent with our development reported above and the literature review. As a 
result, it will undoubtedly assist researchers who are working in this field. The outcomes acquired prove helpful for doctorly uses 
such as enhancing effectiveness and sensitivity.

5. Significance of this research

The most serious biological reaction is the formation of stenosis, which causes several complications in cardiovascular illnesses. 
The exciting findings from the studies listed above, as well as the practical applications highlighted, will help medical practitioners 
predict blood flow behaviour in stenotic arteries. Medical practitioners may use the physical information gathered from individuals 
diagnosed with diabetes and a variety of other conditions to identify the medicine needed to treat them.
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Fig. 9. Concentration profiles in the capillary for different values of
𝐷2
𝐷1

.
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