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Cancer surgery remains the primary treatment option for most solid tumors and can be
curative if all malignant cells are removed. Surgeons have historically relied on visual and
tactile cues to maximize tumor resection, but clinical data suggest that relapse occurs
partially due to incomplete cancer removal. As a result, the introduction of technologies
that enhance the ability to visualize tumors in the operating room represents a pressing
need. Such technologies have the potential to revolutionize the surgical standard-of-care
by enabling real-time detection of surgical margins, subclinical residual disease, lymph
node metastases and synchronous/metachronous tumors. Fluorescence-guided surgery
(FGS) in the near-infrared (NIRF) spectrum has shown tremendous promise as an
intraoperative imaging modality. An increasing number of clinical studies have
demonstrated that tumor-selective FGS agents can improve the predictive value of
fluorescence over non-targeted dyes. Whereas NIRF-labeled macromolecules (i.e.,
antibodies) spearheaded the widespread clinical translation of tumor-selective FGS
drugs, peptides and small-molecules are emerging as valuable alternatives. Here, we
first review the state-of-the-art of promising lowmolecular weight agents that are in clinical
development for FGS; we then discuss the significance, application and constraints of
emerging tumor-selective FGS technologies.

Keywords: surgical oncology, fluorescence-guided surgery, contrast agents, low molecular weight agents,
cancer-targeted agents, receptor targeted imaging
INTRODUCTION

Fluorescence-guided surgery (FGS) is an imaging technique that is uniquely suited to bridge the gap
between pre-operative radiologic imaging and post-operative histopathological assessment of cancer.
The administration of a fluorescent contrast agent, its localization to sites of interest, and detection by
an optical imaging device are the fundamental steps for generating an intraoperative fluorescent
image. If effective, a fluorescent agent augments visual feedback to complement tactile guidance in
open surgery or overcome the lack of tactile feedback in minimally invasive surgery (MIS),
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thereby potentially increasing complete tumor resection rates.
Indeed, clinical FGS studies have reported improved surgical
outcomes and patient benefit with a variety of contrast agents (1–
4). The most widely used FGS agent is indocyanine green (ICG;
molecular weight [MW] = 776 g/mol; lExcitation/lEmission [Ex/Em] =
780/820 nm), a non-targeted, water-soluble tricarbocyanine dye and
the only FDA-approved near-infrared fluorescence (NIRF)
fluorophore. The excellent safety profile and favorable spectral
properties of ICG have led to its use in numerous clinical
applications such as angiography, tissue perfusion, sentinel lymph
node mapping, and tumor imaging (5, 6). Moreover, its hepatic
clearance and biliary excretion makes ICG an ideal agent for
fluorescence cholangiography, and is increasingly used for safe
cholecystectomy (7). Although ICG has been instrumental in
demonstrating the utility of FGS (8, 9), there is a critical need to
expand FGS applications with agents that possess improved
tumor specificity.

Monoclonal antibodies (mAbs) were among the earliest targeted
FGS agents to be translated into patients based largely on the
repurposing of therapeutic mAbs for imaging (10). Standard
bioconjugation techniques, such as N-hydroxysuccinimide (NHS)
ester-activated crosslinkers, allowed fluorescent dyes to be reacted
with primary amines on lysine residues of mAbs, producing, for
example, fluorescent analogs of cetuximab and panitumumab
(epidermal growth factor receptor [EGFR] targeting), or
bevacizumab (vascular endothelial growth factor receptor [VEGFR]
targeting). Clinical studies with these immunoconjugates
demonstrated selective receptor binding and feasibility of tumor-
specific FGS in several cancers (11–13). However, their large
molecular weight produces prolonged serum half-life and slow
clearance from non-target tissues. As a result, the time interval
between injection and intraoperative imaging with fluorescent
mAbs can be as long as one week to generate sufficient tumor
contrast. Furthermore, interactions between the Fc region of mAbs
and cognate receptors on immune effector cells produce additional
background fluorescence that can confound tumor imaging. Low
molecular weight (LMW) agents, such as peptides and small
molecules, also possess high binding affinity to cancer
biomarkers but have more favorable pharmacokinetic (PK)
properties than mAb-based agents; for instance, a circulating
half-life of a few hours and predominant renal excretion (14).
Collectively, these properties have the potential to provide high
tumor contrast within a few hours after injection (15, 16). Other
key advantages of FGS with LMW agents include tumor
visualization at microdose levels, amenability to chemical
modification and the absence of immunogenic effects (17, 18).

To further illustrate the clinical potential of LMW agents for
FGS, a recent review by Barth and Gibbs listed 39 novel
fluorescent agents that are under investigation in clinical trials,
25 of which were classified as peptides or small molecules (19).
Several recent review articles have highlighted the clinical
development of promising FGS agents (19–22). Here, we focus
on LMW agents and their potential to improve intraoperative
visualization in surgical oncology. Furthermore, we discuss the
significance, application and constraints of emerging tumor-
selective FGS technologies.
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TRANSLATING LMW AGENTS INTO
THE OPERATING ROOM

The pressing need for improved tumor visualization in the
operating room is reflected by the rapidly increasing number of
studies under clinical investigation. Although the overarching goals
of such studies are clear (i.e., determining safety and efficacy),
clinical trial design and endpoint selection are driven by complex
factors related to the semi-quantitative and combinatorial nature of
FGS (22–24). The lack of standardmethods and objectivemeasures
of efficacy (25) further complicate the assessment of trial results and
trial comparison (26), even when the same drug is used (e.g., in
combination with a different imaging device). However, several
converging and diverging points during clinical development of
LMW agents can be identified. Similarities in early phase trials
include determination of an optimal dose and imaging time point
along with safety and tolerability, thereby establishing feasibility of
the approach. Diverging points are plenty andmay be attributed to
unique requirements of each clinical application; for instance,
anatomical location, spectral properties of the tissue, the
identification of margins vs.multifocal lesions, etc. (27, 28).

FGS seeks to increase the surgical sensitivity. To date, LMW
agents have clinically demonstrated a promising avenue to do so. In
this section, we first describe the development of LMW agents that
have progressed to clinical studies and meet the specifications
outlined in “Selection Criteria, Search Strategy and Results.” To
contextualize the feasibility of the approach, we then aim to
provide a brief description of study design per agent (classified by
cancer type), associated endpoints, and emerging applications of FGS
that complement current clinical workflows, where appropriate.
Finally, in Tables 1 and 2 we summarize key parameters for
discussed studies such as dose, imaging time, device, tumor-to-
background ratios (TBRs) and diagnostic accuracy, if available.

Selection Criteria, Search Strategy and Results
For reviewed agents, we applied the inclusion criteria listed
below to the best of our ability:

• Tumor selectivitymust be afforded by receptor-mediateduptake
• The conjugate must be <10,000 g/mol
• Must not be a nanoparticle
• Contrast must be provided in the NIRF spectrum (emission

range: 750-900 nm)
• Must have advanced to clinical trials
• Must be intravenously administered
• References published on or before November 6th, 2020 were

considered
• Only papers published in the English language were reviewed
• Final list of agents discussed was produced based on relevance

to the present work

Methodology and Search Engines
On November, 6th, 2020, we used the clinical trial registry ran by
the United States National Institute of Health (NIH), https://
clinicaltrials.gov/, to search the following keywords: “cancer,
fluorescence, surgery” and found a total of 251 studies.
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We then manually checked each study to catalog fluorescent
agents used. Applying the aforementioned selection criteria, we
identified a total of 6 agents: OTL38, BLZ-100, ABY-029, LS301,
cRGD-ZW800-1 and BBN-IRdye800CW. We then searched the
name identifier of each agent in https://clinicaltrials.gov/ and
https://pubmed.ncbi.nlm.nih.gov/ to retrieve published content.
We also searched the keyword “cRGD-ZW800-1” in https://www.
trialregister.nl/, a Netherlands trial register for clinical studies
being conducted in the Netherlands.
OTL38 (SMALL MOLECULE)

The first clinical report demonstrating that tumor-specific FGS can
increase intraoperativedetectionof cancerused a folatemotif linked
to fluorescein-isothiocyanate (folate-FITC, EC17; Ex/Em = 494/
521 nm) to target the folate receptor a (FRa) in ovarian cancer
(29). Unfortunately, the benefits of EC17 are hindered by its
emission in the visible wavelength and thus, restricts detection of
occult lesions. To overcome detection-depth limits, the folate
motif was modified to enable conjugation of the NIRF dye,
S0456 (indole cyanine-like green), producing OTL38 (MW =
1,414 g/mol; Ex/Em = 776/793 nm; Figure 1) (31). In vivo studies
using mouse models and canine patients demonstrated the
Frontiers in Oncology | www.frontiersin.org 3
advantages of imaging in the NIRF range and supported the
continued development of OTL38 (32, 33). To date, at least 9
clinical trials have begun (Phase I-III) using OTL38 and initial
results (Table 1) are encouraging as described below.

Ovarian cancer: The main role of surgery in ovarian cancer is
cytoreduction and thus, the major value of tumor-specific FGS in
this setting is to increase debulking rates. Using OTL38,
Hoogstins et al. demonstrated an increase of 29% more lesions
resected compared to direct visual inspection and palpation (30).
To select the optimal dose and time window for imaging, the
authors first performed a randomized, placebo-controlled dose-
escalation study in healthy volunteers to assess PK in skin and
plasma. In patient studies, tolerability, PK, and efficacy were
investigated. Efficacy in the intraoperative setting was assessed by
measuring (i) TBRs, (ii) congruence between pathology and
fluorescence, (iii) number and location of FRa+ lesions
identified using standard-of-care and imaging, and (iv) the
surgeon’s evaluation of the practicality of the approach. In
addition to standard-of-care, study design permitted tumor
tissues identified by imaging to be eligible for resection if
deemed clinically beneficial and surgically feasible. In another
study, which supported progression to Phase III, Randall et al.
further investigated safety along with the diagnostic accuracy of
OTL38 in 44 patients (34). Results showed the approach to be
safe with sensitivity and positive predictive values (PPVs) of over
FIGURE 1 | OTL38. Chemical structure; folate motif (ligand) and linker in black, S0456 (dye) in green (A). Intraoperative detection of ovarian cancer metastases with
OTL38 administered 2-3 h prior to surgery: white-light only (B), NIRF only (C) and white-light with NIRF overlay (D). Panels (B–D) are adapted from (30) with permission.
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94.9% when lesions were FRa+ and the statistical model used
patients as random effect (Table 2).

Lung cancer: The major value of tumor-specific FGS in lung
cancer is to facilitate tumor localization and afford margin
assessment. Several feasibility studies (35–38) using OTL38 in
lung cancer have demonstrated accurate identification of known
lesions as determined by standard-of-care methods and
importantly, enabled detection of otherwise undetectable
synchronous subcentimeter processes. Using multivariate
analysis, Predina et al. (39) investigated the variables impacting
in situ tumor fluorescence and found that only nodule depth, but
not nodule size, dose administered, imaging time, nor
standardized uptake value by positron emission tomography (PET)
withfluorodeoxyglucose (18F-FDG),predicted in situfluorescence. In
another study, Predina and colleagues (40) demonstrated how FGS
can synergize with preoperative imaging to translate diagnostic
findings into the operating room. Patients who had undergone
PET with 18F-FDG were eligible for FGS with OTL38. Results
showed that 56 of 59 nodules (94.9%) identified preoperatively
were targeted by OTL38; remarkably, OTL38 detected 9 additional
unknown lesions, which resulted in upstaging and improved
management in 12% and 30% of patients, respectively. The authors
concluded that the combinationof PET (73%sensitivity, 89.3%PPV)
Frontiers in Oncology | www.frontiersin.org 4
with FGS (95.6% sensitivity, 94.2% PPV; Table 2) provided superior
oncologic outcomes.

Renal cancer:Maximal tumor resectionwithout excessive removal of
normal parenchyma is the primary role of surgery in renal cancer and
FGS could improve outcomes. Folate receptors are highly abundant in
normal kidneys, but physiological expression is downregulated upon
malignant transformation. Shum et al. (41) and Bahler et al. (42)
exploited this phenomenon by applying “reverse-FGS” using OTL38
during surgical resection of kidney tumors. The investigators
hypothesized that the lack of FR-mediated fluorescence demarcates
renal tumors. Preliminary results in 3 patients supported the hypothesis:
“dark” tumors were surrounded by fluorescent parenchyma prior to
resection and a uniformly fluorescent parenchyma post-resection
indicated intact margins. These observations were confirmed by
immunohistochemistry (IHC) analysis.

Gastric adenocarcinomas, endometrial carcinoma, osteosarcomas,
pituitary adenomas: The clinical evaluation of OTL38 has been
expanded to other cancers and yielded favorable results. Accurate
staging of gastric adenocarcinomas is challenging and existing
techniques are limited. In a pilot clinical trial, Newton et al. (43)
demonstrated the ability of OTL38 to color code tumors with a high
TBR (4.1 ± 2.9) in 3/5 patients and concluded that the approach is
feasible. In 4 high-risk endometrial cancer patients, Boogerd and
TABLE 1 | Summary of key parameters in clinical studies with LMW contrast agents.

Agent Type Phase Target Cancer type Dose
(mg/kg)

Imaging
time (h)

Image contrast* Imaging device Reference

OTL38 Small
molecule

I-III FRa Ovarian 0.0125 to
0.2

2-3 3.5-5.4 Artemis (Quest medical imaging);
PINPOINT (Novadaq); Iridium

(30, 34)

(Visionsense)
Lung 0.025 3-6 1.0-6.2 Iridium (35–40)

(1.48-3.29
mg total)

(Visionsense)

Renal 0.025 2 N/A da Vinci Fluorescence Imaging
Vision System (Intuitive Surgical)

(41, 42)

Gastric
adenocarcinoma

0.025 1.5-6 2.6-7.4 VS3 Iridium system (43)
(Medtronic)

Endometrial
carcinoma

0.0125 2-3 2.9-13.0 Artemis (Quest medical imaging) (44)

Osteosarcoma 0.025 4 2.9-3.0 Iridium (45)
(Visionsense)

Pituitary
adenoma

0.025 2-4 1.6-3.2 Iridium (46, 47)
(Visionsense)

BLZ-100 Peptide I-III Multiple Gliomas (adult
and pediatric)

3-30 mg 3-29 N/A FLUOBEAM 800 (Fluoptics); SIRIS
(Teal Light Surgical)

(48, 49)
(Tozuleristide,

Tumor Paint™)

(reported as -,
weak or +)

Breast carcinoma 6-12 mg 1-26 N/A SIRIS (Teal Light Surgical) (50)

ABY-029 Affibody 0-I EGFR Soft tissue
sarcoma

237 mg 1-3 2.0 Solaris (PerkinElmer) (51)
(30

nanomoles)
(n = 1)

BBN-
IRdye800CW

Peptide I GRPR Glioblastoma 1 mg 2-16 3.2-4.9 DPM-III-01 (Zhuhai Dipu Medical
Technology)

(52, 53)

cRGD-ZW800-1 Small
molecule

I-II Integrins Colorectal
carcinoma

0.005-0.05 2-18 In vivo, 1.1-1.6;
ex vivo, 1.4-6.2

Olympus Visera Elite II (54)
(CLV-S200-IR); Quest
Spectrum Platform (Quest Medical
Imaging)

LS301 Peptide I-II Annexin
A2, others

Breast, liver,
pancreas, gastric

- - - - -
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colleagues (44) showed the utility of OTL38 to paint tumors in situ
(3/4 patients) and lymph node metastases (n = 16), including one
otherwise undetectable malignant deposit. The authors also noted 17
false-positives in 50 non-metastatic lymph nodes, which was caused
by targeting of the FR variant, FRb, expressed in tumor-associated
macrophages. Further utility of OTL38 was described for improving
pulmonary metastasectomy in osteosarcoma, which could possibly
extend survival or provide cure. During minimally invasive
pulmonary resection, Predina et al. (45) reported the first successful
use of molecular imaging for osteosarcomas in a patient, which was
deemed safe, feasible and useful. Resection of pituitary adenomas is an
essential treatment, but 20% of patients relapse. In one study, Lee et al.
(46) reported that OTL38 afforded tumor visualization in 15/15
patients with an average TBR of 1.9 ± 0.70 (high FRa, 3.0 ± 0.29;
low FRa, 1.6 ± 0.43) and 100% sensitivity/specificity (Table 2). In
another study, Cho et al. (47) evaluated the benefits of non-specific
(ICG) vs. tumor-specific (OTL38) FGS compared to standard-of-care
in pituitary adenomas. Results showed that standard-of-care MIS of
pituitary adenomas had 88% sensitivity and 90% specificity; ICG
increased sensitivity to 100%, but had a specificity of 29% for both
functioning and non-functioning adenomas. By contrast, tumor-
specific FGS was 75% sensitive and 100% specific, but when the
analysis was limited to FRa+ adenomas, sensitivity and specificity
were both 100% (Table 2).
BLZ-100 (TOZULERISTIDE, TUMOR
PAINT™; PEPTIDE)

BLZ-100 (MW = 5,124 g/mol; Figure 2) is the first receptor-
selective NIRF agent for fluorescence-guided neurosurgery that
Frontiers in Oncology | www.frontiersin.org 5
advanced to clinical studies. It is composed of a chlorotoxin
(CTX) peptide coupled via standard NHS chemistry to the NIRF
dye, Cy5.5 (Ex/Em = 675/700-750 nm; ICG derivative). The CTX
targeting motif, a 36 amino acid peptide with four disulfide
bridges derived from scorpion venom, has been postulated to
bind to a number of targets overexpressed in tumors including
matrix metalloproteinases, Annexin A2, chloride ion channels,
and others (56). The rationale for selecting CTX for FGS drug
development came from several studies showing selective targeting
of glioma cells compared with non-neoplastic cells or normal brain
(57). Furthermore, a radiopharmaceutical analog ofCTX, 131I-TM-
601, demonstrated negligible toxicity in phase I/II clinical trials for
humanbrain cancer therapy (58). In addition to characterization in
mouse xenograft models using commercial instrumentation, BLZ-
100 has been investigated in combination with a customized device
in a drug-device development fashion. Butte and colleagues (59)
rationalized their approach on the fact that many commercially
available imaging systems are not designed for detection of low ICG
concentrations, emphasizing that non-optimal excitation,
acquisition and sensitivity settings for imaging a tumor-selective
agent may lead to underperformance. From this study, the authors
demonstrated an approach to reduce the size and cost of the
imaging system, while optimizing sensitivity with low noise. To
facilitate clinical translation, the utility of BLZ-100was evaluated in
canine patients using a dose-escalation strategy in combination
with commercial and custom imaging devices (60). Additionally,
the toxicology and PK profile of BLZ-100 was evaluated in mice,
rats, canines, andnonhumanprimates,with results supportingfirst-
in-human clinical trials. To date, at least 5 clinical trials have begun
(Phase I-III) using BLZ-100 (Table 1) and initial results
are encouraging:
TABLE 2 | Diagnostic accuracy of LMW contrast agents in clinical studies.

Agent Cancer type Test description Sensitivity
(95% CI)

Specificity
(95% CI)

PPV (95% CI) NPV (95% CI) Reference

OTL38 Ovarian Any lesion (FRa + or -) 83.9%-96.8% * - 85.3%-92.6% * - (34)
FRa + only 85.9%-97.9% * - 88.1%-94.9% * -

Lung >1 cm nodules 95.6% (87.6%–

99.1%)
42.9% (9.9%–

81.6%)
94.2% (85.8%–

98.4%)
50% (11.8%–

88.2%)
(40)

<1 cm nodules 100% (78.2%–

100%)
50.0% (1.2%–

98.7%)
93.8% (69.8%–

99.8%)
100% (2.5%–

100%)

Pituitary adenoma Nonfunctioning adenoma 75% (51–90%) 100% (60–
100%)

100% (75–
100%)

62% (43–77%) (47)

FRa-overexpressing adenoma 100% (75–
100%)

100% (31–
100%)

100% (75–
100%)

100% (31–
100%)

Margin detection with high
FRa-expression

100% 100% 100% 100% (46)

Margin samples 100% (54–
100%)

100% (63–
100%)

100% (54–
100%)

100% (63–
100%)

(55)

BBN-
IRdye800CW

Glioblastoma From 42 foci of fluorescent-
guided sampling

93.9% (79.8%–

99.3%)
100% (66.4%–

100%)
100% (88.8%–

100%)
81.8% (48.2%–

97.7%)
(52)

From 89 harvested samples 94.4% (85.6%–

98.2%)
88.2% (62.2%–

97.9%)
– – (53)

cRGD-
ZW800-1

Colorectal carcinoma; ex vivo
lymph node detection

0.005 mg/kg, 2-4 h 74% 79% 71% 82% (54)
0.015 mg/kg, 2-4 h 100% 69% 6% 100%
0.05 mg/kg, 2-4 h 100% 73% 70% 100%
0.05 mg/kg, 18 h 100% 87% 33% 100%
June 2021
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Adult and pediatric gliomas: Patil et al. (48) performed a
phase I clinical trial to characterize the safety and utility of BLZ-
100 in 17 adults with glioma undergoing surgery. The primary
objective was to establish the maximum tolerated dose by
conducting a nonrandomized, single-dose, open label, 3 + 3
dose-escalation study (3-30 mg administered 3-29 h before
surgery). Secondary objectives included evaluation of PK and
fluorescence quantitation of ex vivo specimens, whereas
exploratory objectives related to the assessment of fluorescence
in situ. Study design provided standard-of-care to patients, and
additionally allowed the surgeon to image the surgical cavity at
any point and biopsy fluorescent regions at their discretion. No
dose-limiting toxicity was observed and adverse events were not
associated with agent administration. Although fluorescence was
observed in both low- and high-grade gliomas, signal intensity
was dose-dependent and time-independent only for high-grade
gliomas. Image analysis was performed by independent reviewers
who scored the observed fluorescence as negative, weak (contrast
apparent but not well-defined) or strong (well-defined contrast).
Ex vivo scores yielded 5 negative, 7 weak and 5 strong specimens;
in situ scores yielded 11 negatives, 4 weak and 2 strong
specimens. The investigators attributed the low fluorescence to
the unoptimized commercial devices used in the study and
intend to couple BLZ-100 with an adequately sensitive imager
in the future. The authors concluded that further clinical trials
are justified. Lee and colleagues (49) are investigating the safety
and utility of BLZ-100 in a phase I study in pediatric brain tumor
patients; preliminary results have shown the agent to be safe and
yielded fluorescence in 13/15 tumors, including 5/7 low-
grade gliomas.
Frontiers in Oncology | www.frontiersin.org 6
Breast carcinoma: BLZ-100 has also been evaluated in breast
cancer for fluorescence-guided pathology (50). The objective of
this study was to investigate the feasibility of using BLZ-100 to
(i) target breast carcinoma and (ii) enable demarcation of surgical
margins. 23 patients undergoing surgery received either 6 or 12mg
of agent at least 1 h before the procedure. Resected specimens were
imaged using an investigational device and fluorescent patterns
were correlated with corresponding hematoxylin & eosin (H&E)
stained sections. Furthermore, fluorescent intensity was correlated
to clinical pathology, namely grade, histotype, prognostic
biomarkers and margin measurements. Results showed that
BLZ-100 afforded demarcation of pathologically-confirmed
breast carcinoma (low- and high-grade) from normal tissue,
independent of molecular marker/hormone receptor status.
ABY-029 (AFFIBODY)

The affibody conjugate ABY-029 (MW = 7,915 g/mol; Figure 3)
has emerged as an innovative agent to expand the surgical
armamentarium targeting EGFR. It is composed of the 58-
amino acid synthetic peptide, Z03115-Cys, labeled with IRDye
800CWmaleimide (Ex/Em = 774/789 nm). Rigorous evaluation of
in vitro and in vivo performance showed excellent PK, specificity
and utility for imaging (28, 61–63). Furthermore, toxicological
characterization in Sprague Dawley rats found no pathological
evidence of toxicity (64). Elliott et al. (65) demonstrated that ABY-
029 is a promising candidate for image guidance of brain tumors,
which overexpress EGFR in 50-70% of cases. In orthotopic mouse
models of glioma, Elliott and colleagues investigated and
FIGURE 2 | BLZ-100 (Tozuleristide, Tumor Paint™). Schematic* of the peptide CTX (targeting motif; gray) labeled with Cy5.5 (dye; green) (A). Intraoperative
glioblastoma imaging with 18 mg total BLZ-100 administered 4 h prior to surgery: white-light only (B), NIRF only (C) and white-light with NIRF overlay (D). Ex vivo
imaging, white-light with NIRF overlay (E). Panels (B–E) are adapted from (48) with permission. *Not to scale.
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compared the image contrast provided by (i) receptor targeting
(ABY-029), (ii) metabolic targeting (5-aminolevulinic acid [5-
ALA]–induced Protoporphyrin IX [PpIX]; emerging clinical
standard for FGS in glioma) and (iii) a permeability tracer
(IRDye 680RD). Results showed that receptor targeting
outperformed metabolic targeting by increasing TBRs at tumor
margins and core by 50% and 60%, respectively. Given that
commercial devices may be too insensitive, Elliott et al. (66)
investigated the detection limits and in vivo efficacy of ABY-029
microdoses in combination with a custom-built imaging module,
which enabled superior image contrast at all doses compared to a
commercial counterpart. ABY-029 could also provide benefits
during resection of soft tissue sarcomas, which overexpress
EGFR in 43-78% of cases. To simulate the spectral properties of
tissue surrounding sarcoma during wide local excision, Samkoe
et al. (67) developed a phantommodel to investigate how observed
fluorescence signals change in relation to tumor size, tumor depth,
bulk tissue type, and imaging system. Results validated the use of
subsurface fluorescence to direct the resection of a tumor-
mimicking inclusion to a desired margin thickness. ABY-029
has also been investigated for paired-agent imaging. This
approach uses a tumor-specific agent in combination with a
non-targeted or perfusion agent to subtract nonspecific signals,
thereby improving contrast and/or measuring extracellular EGFR
regions. Using ABY-029 along with IRDye 680RD conjugated to
Frontiers in Oncology | www.frontiersin.org 7
an affibody control or IRDye 700DX carboxylate, Samkoe et al.
(68) and Sardar et al. (69) have demonstrated the feasibility of the
approach in preclinical models of soft tissue sarcoma and head
and neck cancer.

Notably, the clinical introduction of ABY-029 has followed a
Phase 0 approach through submission of an exploratory
investigational new drug (IND) to the FDA (70). This trial
modality uses the concept of microdosing, namely sub-
pharmacologic exposure, which is defined by the FDA as
administration of ≤30 nmol of a protein product. It permits
analytical toxicology in a single mammalian species and intends
to expedite the estimation of key PK parameters of new drugs in
a more economically viable pipeline (71). In practice, it is
possible to request a modified Phase 0 study to the FDA with
doses slightly above a microdose as long as the dose is 100x lower
than the no observed adverse effect level in preclinical toxicity
studies (72). Understanding that the clinical study of FGS drugs
must be designed to maximize tumor contrast, Ribeiro de Souza
et al. identified the optimal dose for imaging within a microdose
framework in an orthotopic tumor model in rats (72). Results
showed that increasing the microdose dose 5-fold, increased
signal by 10-fold, which provided a rationale for performing a
modified Phase 0 trial. Interestingly, the authors also found that
whereas unlabeled cetuximab (anti-EGFR mAb) inhibited ABY-
029 binding in vitro, it had no effect on in vivo tumor contrast
FIGURE 3 | ABY-029. Schematic* of the affibody Z03115-Cys (targeting motif; gray) labeled with IRDye800 (dye, represented as a green circle). The chemical
structure of IRDye800 maleimide is also shown (A). Ex vivo sarcoma imaging with 237 mg (30 nanomoles) ABY-029 administered 1-3 h prior to surgery: white-light of
resected primary (breadloaf) (B), NIRF using a flatbed, closed-box device (C) and NIRF using a wide-field device (D). Panels (B–D) are adapted from (51) with
permission. *Not to scale.
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when injected 1 or 24 h before ABY-029. To date, at least 3
clinical trials have begun (Phase 0-I) using ABY-029 and
preliminary results are encouraging (Table 1):

Soft tissue sarcoma: Surgery can be curative if complete
sarcoma resection is achieved, but positive margin rates of 22-
34% have been reported and associated with recurrence. In a
proof-of-concept study, Samkoe et al. (51) evaluated the ability of
ABY-029 to selectively target EGFR and by extension, provide
tumor-specific contrast. A resected specimen from a patient who
had been administered a microdose (30 nmol, 237 µg) ~4 h prior
to wide local excision was imaged ex vivo using flatbed, closed-
box and open air, wide-field devices to investigate the observed
fluorescence and contrast. Qualitative assessment showed clear
fluorescence regardless of device and image analysis indicated
comparable signal intensity in the tumor region. Interestingly,
the closed-box system had increased image noise, which
translated to a reduced contrast-to-noise ratio (CNR), despite
having a higher TBR. Analysis of tumor samples for correlation
of fluorescence with EGFR IHC was found to be moderately
associated (r = 0.48), but could be improved by weighting the
intensities by the area fraction of EGFR expression. Overall, the
authors concluded that these results demonstrate the utility of
ABY-029 for selective ex vivo imaging of sarcoma.
BBN-IRDYE800CW (PEPTIDE)

BBN-IRdye800CW (MW = 2,450 g/mol; Ex/Em = 778/795 nm;
Figure 4) is the first LMW agent derived from a PET radiotracer
to advance to clinical studies. It is composed of a gastrin-releasing
peptide receptor (GRPR) targeting moiety, BBN(7-14) (amino
acid sequence: Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2), linked
to the radiometal chelator, NOTA, and NIRF dye, IRdye 800CW
NHS ester. The rationale for selecting a clinical radiotracer for
FGS drug development is significant since the approach expands
the imaging utility of a clinically-validated tumor-selective agent,
thereby reducing concerns associated with toxicity and diagnostic
efficacy (73). The safety and biodistribution of the parent
compound, 68Ga-NOTA-Aca-BBN(7–14), was shown to be well
tolerated and have favorable PK (74). Preclinical in vivo evaluation
was performed in an orthotopic model of glioblastoma in mice
with a customized imaging device for real time visualization (52).
To date, at least 2 clinical trials have begun (Phase I) using BBN-
IRdye800CW and initial results are encouraging (Table 1):

Glioblastoma: Maximum safe resection during glioblastoma
surgery remains a challenge despite FGS with non-targeted dyes
(e.g., fluorescein sodium) and metabolic markers (e.g., 5-ALA). As
an alternative, Li et al. (52) evaluated the utility of 68Ga-BBN-
IRdye800CW to provide receptor-mediated glioblastoma contrast
for increased resection and margin assessment in 14 patients. The
aim of the trial was to establish the safety and feasibility of PET and
NIRF imaging with the same targeting vector (i.e., theranostics). To
investigate the potential to translate pre-operative findings into the
operating room, the authors performed PET scans in all patients
with the parent radiotracer (n = 7), dual labeled counterpart (n = 4)
or both (n = 3). Results showed similar tumor uptake and no
significant biodistribution differences between radiotracers.
Frontiers in Oncology | www.frontiersin.org 8
For intraoperative imaging, 1 mg of unlabeled BBN-IRdye800CW
was injected to patients 2 h before surgery. The fluorescent signal
was well-visualized and provided superior ability to differentiate
residual tumor from normal brain when compared to intraoperative
white-light microscope imaging. Of note, the authors reported that
the approach was not optimal for deep-seated tumors as signal-to-
background ratios were not adequate during surgery in some
instances. In another study, He et al. (53) investigated the extent
of resection and survivability using BBN-IRdye800CW in 29
patients. To avoid confounding variability due to inter-surgeon
differences, all procedures were performed by the same surgeon.
Results showed that complete resection was achieved in ~83% of
cases as determined by post-operative magnetic resonance imaging
(MRI) scans. Median overall survival (OS) and progression-free
survival (PFS) were 23.1 and 14.1 months, respectively, which is
higher than values reported with standard-of-care techniques.
Diagnostic accuracy for both studies is shown in Table 2.
cRGD-ZW800-1 (SMALL MOLECULE)

Zwitterionic (i.e., net-neutral) NIRF dyes have demonstrated
reduced off-target interactions compared to commonly used
NIRF dyes and position as valuable options to increase tumor
contrast (75, 76). cRGD-ZW800-1 (MW = 1,729 g/mol;
Figure 5) is the first tumor-selective agent to incorporate the
zwitterionic-dye strategy to advance to clinical studies. It is
composed of a cyclic Arg-Gly-Asp peptide, cRGDyK,
conjugated to ZW800-1 NHS ester (Ex/Em = 772/788 nm).
The cRGD motif targets integrins, which are transmembrane
proteins that include a5b1, a8b1, avb1, avb3, avb5, avb6, avb8
and aIIb3. These cell-surface biomarkers have been associated
with tumor angiogenesis and migration in a wide range of
cancers, making them attractive candidates for tumor-selective
FGS drug development. In vivo preclinical characterization using
a clinical imager showed imaging utility in liver, lung, colorectal,
breast, pancreatic and oral orthotopic mouse models, even at
microdoses (77–79). In head-to-head comparison with IRDye
800CW and Cy5.5 analogs, cRGD-ZW800-1 demonstrated
similar tumor uptake, but superior tumor contrast due to
reduced background signal (TBR of 17.2 vs. 2.7-5.1) (77). The
authors also found that the best scaling factor to extrapolate the
dose of a targeted FGS drug from animal models to humans was
to adjust by body surface area. Interestingly, a cRGD-ZW800-1
derivative has also been investigated in a dual labeled format,
namely cRGD-ZW800-1-Forte-[89Zr]Zr-DFO, to potentially
develop a companion diagnostic for improved patient selection
and surgical planning (80). Nonclinical toxicity studies of cRGD-
ZW800-1 in rats were conducted according to ICH M3 (R2),
FDA, EMEA, and GLP regulations, and showed no significant
clinical signs or pathological changes. To date, at least 2 clinical
trials have begun (Phase I-II) using cRGD-ZW800-1 and initial
results are promising (Table 1):

Colon carcinoma: Partial or excessive resection in colon
cancer is associated with increased morbidity and mortality.
The establishment of neoadjuvant chemoradiotherapy as the
standard for locally advanced rectal cancer further complicates
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FIGURE 5 | cRGD-ZW800-1. Chemical structure; cRGDyK (ligand) in black, ZW800-1 (dye) in green (A). Intraoperative colon cancer imaging with 0.05 mg/kg
cRGD-ZW800-1 administered 18 h prior to surgery: white-light only (B), NIRF only (C) and white-light with NIRF overlay (D). Ex vivo imaging, white-light with NIRF
overlay (E). Panels (B–E) are adapted from (54) with permission.
FIGURE 4 | BBN-IRdye800CW. Chemical structure; BBN(7-14) (ligand) and NOTA (Chelator) in black, IRdye800CW (dye) in green (A). Intraoperative glioblastoma
multiforme imaging with 1 mg total BBN-IRdye800CW administered 16 h prior to surgery: NIRF prior to resection (B), residual fluorescence after initial tumor removal
(C) and tumor-cavity after complete resection (D). Panels (B–D) are adapted from (53) with permission.
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eventual surgical resection with MIS due to obscuring of critical
visual information. To overcome these challenges, de Valk et al.
(54) evaluated the utility of cRGD-ZW800-1 to provide real time
discrimination between tumor and normal tissues. The Phase I
trial was a randomized, placebo-controlled, double-blinded,
microdosing study to evaluate safety, tolerability and PK.
Results showed no acute or toxic effects at all doses and
measurable blood concentrations of drug up to 8 h after
injection. The objective of the Phase II study was to
demonstrate the feasibility of the approach and to determine
optimal dose and imaging time point. Study design was an open-
label ascending dose study in 12 patients and allowed MIS (n =
11) or open surgery (n = 1) 2-18 h after agent administration.
Although avb6 was selected as the biomarker for IHC staining,
selective targeting was solely based by correlating fluorescence
and H&E. de Valk and colleagues measured intraoperative TBRs
of 1.1-1.6 with fluorescence visualization through the bowel wall
being only possible with the highest dose. Ex vivo fluorescence
intensity in tumor and normal tissues increased in a dose-
dependent manner in the 2-4 h post-injection cohort, with
comparable TBRs for the median (4.0) and highest (4.1) doses.
18 h post-injection fluorescence intensity at the highest dose
decreased in tumor and normal tissue but the TBR (6.2) did not
change significantly. Negative predictive value (NPV) and PPV
ranges for lymph node detection were 82-100% and 6-71%,
respectively, depending on dose and time (Table 2). The
authors concluded that (i) the approach is feasible but requires
further dose and time optimization and (ii) widespread
investigation of cRGD-ZW800-1 in cancer surgery is warranted.
LS301 (PEPTIDE)

Iterative pharmacophore optimization for improved performance is
a hallmark facilitated by LMW agents. Such strategy was applied
during the development of LS301 (MW= 1,469 g/mol; Figure 6)—
a tumor-selective FGS agent consisting of the cyclic octapeptide,
cyclic (d-Cys-Gly-Arg-Asp-Ser-Pro-Cys)-Lys-OH [c(CGRDSPC)
K-OH], conjugated via standard methods to the ICG derivative,
cypate (Ex/Em = 780/830 nm) (81). The pharmacophore c
(CGRDSPC)K-OH was derived from the linear hexapeptide, Gly-
Arg-Asp-Ser-Pro-Lys (GRDSPK), to enhance the stability of the
first-generation agent, cypate-GRDSPK, via intramolecular disulfide
cyclization (82). Recently, LS301 has been shown to target the
phosphorylated phospholipid-binding protein Annexin A2, which
is an abundant post-translational modification of the Annexin A2
preferentially found in tumor microenvironments (82). LS301 is
also thought to bind to integrins (e.g., b3), but their identities remain
unknown (83). Overall, LS301 could be a versatile approach for
targeting a wide range of solid tumors. In preclinical in vivo studies,
LS301 has been shown to selectively accumulate in tumors and
metastases of the breast, fibrosarcoma, pancreas and glioblastoma
(82). Interestingly, the utility of LS301 for real-time intraoperative
imaging has been investigated in combination with “cancer vision
goggles” (84), an emerging interface for fluorescence visualization.
To date, at least 2 clinical trials have been registered (Phase I-II)
using LS301 (Table 1).
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PERSPECTIVE ON EMERGING TUMOR-
SELECTIVE FGS TECHNOLOGIES

Significance and Application
FGS holds the promise of color-labeling the surgical field and
enhancing surgical outcomes in several ways. Tumor-specific
probes that delineate the location and extent of malignant tissues
can improve staging accuracy and margin-negative resection;
furthermore, they can potentially shorten operative time and
avoid excessive removal of normal tissues. Indeed, the anatomy of
normal tissues can be distorted by malignant processes, and
safeguarding key structures during oncologic surgery can be as
important a goal as complete resection of cancer (85). This point is
especially important in neurosurgery, where destruction of non-
cancerous brain tissue can lead to functional impairments. For
gynecologic malignancies, fluorescence is used to evaluate and
address disease burden during cytoreductive surgery. Conversely,
improved detection of peritoneal dissemination in gastrointestinal
cancers, such as cholangiocarcinomas, gastric and pancreatic
cancers is critical as accurate tumor detection may spare patients
a morbid and futile radical operation. The rapid evolution of MIS,
particularly with robotic surgery platforms, has resulted in its
widespread application for various cancer types (86–88). FGS
technologies can also supplement these emerging surgical
techniques with built-in fluorescent imaging systems to overcome
the lack of tactile guidance. Maximal benefit, however, can only be
realized if the fluorescent signal can accurately define tumor extent.

Development, Constraints and Outlook
FGS shares many similarities with nuclear medicine (e.g., PET) as
a functional imaging modality; however, constraints in the
translation of drugs for FGS are unique. For instance, nuclear
medicine is inherently quantitative, with well-established methods
for determining in vivo drug distribution and concentration based
on collected images or signals (89). By contrast, the underlying
physics of fluorescence imaging in bulk tissue (90), compounded
with the myriad of FGS devices (91), leads to uncertainty in the
FIGURE 6 | LS301. Chemical structure; c(CGRDSPC)K-OH (ligand) in black,
cypate (dye) in green.
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quantitative evaluation of drug performance (92). Particularly,
tumor-specific FGS relies on fluorescent drugs that accumulate
preferentially in tumors and a device to detect their distribution and
concentration to reveal measurable outputs such as tumor contrast
(93, 94). For FGS imaging devices, confounding imaging factors
include differences in spectral sensitivity, excitation and emission
regimes, operating distance, ambient illumination, and efficiency of
collection optics (25). Whereas many of these factors could be
modeled and accounted for to directly compare commercial devices,
this is unlikely to be achieved due to competitive concerns in sharing
detailed specifications and optical schematics. Currently, most
commercial FGS devices are designed to image ICG, matching its
spectral and sensitivity requirements, which may differ from cancer-
targeted probes. This is significant because non-optimal excitation
and emission collection could lead to underperformance. Imaging
efficiencymay also be compromised by the tumoral concentration of
a targeted dye, as was reported for the BLZ-100 clinical trials. Indeed,
the concentrationof a targeteddye is expected tobe in thenanomolar
range, as opposed to the micromolar levels of ICG, and may be a
limiting factor (95).Regardless, as seen inTable1, several commercial
and experimental NIRF devices are compatible with LMW agents
and demonstrate the feasibility of the approach. Optimal image
quality [e.g., high signal-to-noise ratio (93)], however, will require
instrumentationdesigned for imagingnon-ICGNIRFdyes (e.g.,with
differing spectra) and with superior sensitivity (e.g., robust low
nanomolar detection with low noise); such imaging devices are
currently commercially limited or in experimental phases. In
response to the growing need for second-generation imagers,
specifications of ICG imagers and required capabilities to build
upon them were outlined in the seminal work by DSouza et al. (91).

Tumor contrast alsodepends largely on thedifferential druguptake
between tumor and normal tissue. This suggests that superior contrast
may be achieved by (i) increasing tumor uptake, (ii) decreasing
background uptake, or (iii) a combination of (i) and (ii) (92). Points
(i-iii) are clinically significant because they could enable contrast
detectability with higher certainty, which may directly increase the
positive and negative predictive value (96) of tumor-specific FGS for
real-timedecisionmaking (97). Froma chemical structure perspective,
a strategy that could advance the specificity of targeted FGS agents
involves modulating the physicochemical properties of dyes. Indeed,
dye conjugation to tumor-specific vectors can impact the
biodistribution of the native ligand, a phenomenon exacerbated for
LMW motifs (98). This understanding has, for example, driven the
emergence of NIRF dyes with a net-neutral charge (i.e., zwitterionic)
that possess reduced nonspecific interactions and faster elimination
from normal tissues (75, 76). In combination with high affinity
targeting motifs, these attributes could enhance tumor selectivity
along contrast in the operating room. Encouragingly, the first clinical
application of this technology was with the LMW agent, cRGD-
ZW800-1, as previously detailed.

This review focuses on six clinical-stage receptor-targeting LMW
FGSagents tonot only illustrate the safety and efficacyof the approach,
but to also serve as roadmaps. In this sense, knowledge gained from
these clinical-stage agents could be applied toward the development of
FGS agents that are based on high-value cancer targets across different
tumor types (99). For instance, radiolabeled peptides and small
Frontiers in Oncology | www.frontiersin.org 11
molecules have convincingly demonstrated the ability to target the
somatostatin receptor subtype-2 (SSTR2) (100) and prostate-specific
membrane antigen (PSMA) (101), which are hallmarks of
neuroendocrine tumors and prostate cancer, respectively. Surgery is
an essential treatment for both diseases and clinical data suggests that
incomplete tumor resection can predict recurrence (102, 103). Thus,
LMWfluorescentanalogs that targetSSTR2(89)andPSMA(104–106)
are promising candidates for translation.

Several factors ultimately define the translational route of a FGS
agent and include mechanism of targeting, and importantly,
whether the dye or ligand has been previously shown to be safe in
humans (107). Generally, traditional or exploratory IND enabling
studies are conductedfirst. The drug thenundergoesPhase I, II, and
III clinical trials to demonstrate safety and efficacy (108), likely
resulting in FDAapproval of the drug tobe device agnostic. There is
also the possibility for drug-device combination products to receive
FDA approval following a pivotal Phase II clinical trial, which
streamlines the regulatory process but requires the drug to be used
with thedevicewithwhich itwaspaired.Keyorganizationalbarriers
that may affect the adoption of FGS agents in clinical practice [e.g.,
evidence-based care, clinical trial design (109)] must also be
considered, and could be mitigated through consistent reporting
methods and regulatory approaches that allow objective evaluation
of these promising technologies [discussed in (94, 107, 108, 110)].
Regardless, the rapid growth of FGS in terms of new drugs, devices,
and clinical applications is a testament to the multidisciplinary
aspects of the field and its distinct stakeholders.

CONCLUSION

Several drug design approaches for tumor-selective FGS have been
translated into the clinic with the overarching goal of improving
diagnostic accuracy. The physicochemical properties of these drugs
play an important role in their in vivo performance and can define
clinical parameters such as dose and imaging time. FGSmediated by
low molecular weight drugs is a safe and potentially efficacious
approach to advance the precision of surgical oncology.
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