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We consider the problem of extracting features from passive, multi-channel

electroencephalogram (EEG) devices for downstream inference tasks related to high-level

mental states such as stress and cognitive load. Our proposed feature extraction method

uses recently developed spectral-based multi-graph tools and applies them to the

time series of graphs implied by the statistical dependence structure (e.g., correlation)

amongst the multiple sensors. We study the features in the context of two datasets each

consisting of at least 30 participants and recorded using multi-channel EEG systems. We

compare the classification performance of a classifier trained on the proposed features

to a classifier trained on the traditional band power-based features in three settings and

find that the two feature sets offer complementary predictive information. We conclude by

showing that the importance of particular channels and pairs of channels for classification

when using the proposed features is neuroscientifically valid.

Keywords: electroencephalogram, band-based features, multi-graph features, mental workload prediction,

ablation study

1. INTRODUCTION

Successful non-invasive Brain-Computer Interfaces (BCI) require solving a high dimensional, high
frequency prediction problem. For EEG-based systems in particular, we have access to tens of
streams of data that are drastically attenuated by the skull. Hence, mining relevant predictive signal
is a serious challenge. This is particularly true for passive tasks such as cognitive load and stress
prediction where no explicit action or evoked potential is used to differentiate conditions. Since
passive tasks and prediction are not trial based, the “ground truth” labels are often weaker compared
to active tasks (e.g., command and control viamotor imagery; Miller et al., 2010; Kaya et al., 2018)
and tasks with evoked responses (Spüler et al., 2012).

The most common approach to passive, non-invasive EEG-based BCI predictive tasks is to
leverage neuroscientifically relevant features from the waveforms from each of the channels. For
example, the alpha band (8–12 Hz) is known to be more active in stressed individuals and the theta
(4–7 Hz) and low beta (13–20 Hz) bands are known to be active in fatigued persons (Nayak and
Anilkumar, 2021). Simple functions of the relative masses of the sub-waveforms are also popular
and useful features (Kamzanova et al., 2011). Similarly, functions of data from two channels of the
EEG-device (such as frontal alpha asymmetry) have been shown to have different characteristics
under different mental states and can be useful features for classification (Fischer et al., 2018). Both
of these types of features rely on conventional neuroscience wisdom and are thus often hand-crafted
for the particular predictive task.

Connectivity and correlation-adjacent features such as synchronization and EEG coherence
between signals from different sensors have been explored inWei et al. (2007) andWu et al. (2021).
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However, the choice of different sensors to measure coupling
strength is highly subjective and require neurophysiological
a priori knowledge. Recent research has also investigated
representing EEG signals as matrices (Yger et al., 2016; Congedo
et al., 2017). These approaches derive the kernel on the
Riemannian space using the average correlation matrix for a
particular class. For other EEG-based tasks, such as classifying
motor imagery (Oikonomou et al., 2017), techniques such as
Common Spatial Filtering (CSP) and its variants (Koles, 1991;
Blankertz et al., 2007; Ang et al., 2008) are used to learn a
supervised projection from the set of sensors to an optimal
subspace. Supervised methods embeddings such as CSP, at least
empirically, often fail in passive BCI applications due to the
supervisory signal being “weak” and not trial based.

On the flip side of conventional neuroscientific features
is deep learning. Deep learning has achieved a state-of-art
performance in fields such as speech recognition, visual object
recognition, and object detection (Bengio et al., 2003; LeCun
et al., 2015). Many recent works have explored the use of
convolutional neural network-based methods for automatic
feature extractions in EEG-based BCIs (Lawhern et al., 2018;
Siddharth et al., 2022). These approaches either use a pre-
trained model such as VGG-16 (Simonyan and Zisserman, 2014)
to extract features from the power spectral density heat maps
of different bands (Siddharth et al., 2022) or encapsulated an
optimal spatial filtering in the network structure (Lawhern et al.,
2018). In our experience, as seems to be the experience of others
(Lotte et al., 2018), current deep learning-based methods have
not shown a significant improvement over methods utilizing
conventional features in multiple BCI applications (Lotte et al.,
2018) and are notably less interpretable.

In this paper we propose a method that jointly learns a
set of features from relationships between pairs of channels.
The method leverages the temporal and spatial relationships
between channels and will learn a different projection from the
space of statistical-dependence matrices for each task—yielding
considerable flexibility compared to traditional hand-selected
features. The process from going from EEG signal to feature
vectors borrows heavily from recent developments in spectral-
based multi-graph analysis (Wang et al., 2019; Gopalakrishnan
et al., 2020). We demonstrate in three different experiments
each on two datasets that the proposed set of features can
improve performance over standard band-based features and
that the combination of the two nearly always improves over
either individually. We argue that this improvement is due to
the two sets of features capturing complementary predictive
information. Lastly, we analyze the importance of each channel
and each pair of channels and argue that the proposed feature set
is neuroscientifically valid.

2. MATERIALS AND METHODS

2.1. Band-Based Features
In this subsection, we detail the traditional band frequency (BF)
power spectral density approach (Lotte et al., 2018). Consider a
(potentially preprocessed) multi-variate EEG time series {S(t) ∈

R
nc : t = 1, 2, . . . ,T}, where S

(t)
j represents signal from the j-

th channel at time t and nc is the number of channels. We
first window the multi-variate EEG time series into potentially
overlapping windows. Defining the window size to be w and the
overlap between windows to be h, the EEG segment of the k-th

window of the j-th electrode X
(k)
j ∈ R

w is given by

X
(k)
j = [S

(k∗(w−h)+1)
j , S

(k∗(w−h)+2)
j , . . . , S

((k+1)∗(w−h)+h)
j ].

We let nw be the number of windows after splitting the original
times series in the time domain. For each channel j, we estimate

the power spectral density {P̂i(X
(k)
j ) : k = 1, 2, . . . , nw}

I
i=1 and

sum the powers in I non-overlapping bands. We then normalize
the band powers such that for each channel the features sum to 1,

F
(k)
ij := f̂i(X

(k)
j ) =

P̂i(X
(k)
j )

∑I
i=1 P̂i(X

(k)
j )

.

Thus, for each time window k, we have nc × I features. We
consequently flatten this matrix into a single, nc · I length vector
F(k). Finally, because usually nc · I-dimensional space will be
relatively large given the amount of data we have access to, we
project the feature vector into a low-dimensional space. The
projection is learned via PCA of the available training data.

2.2. Learning a Representation From a
Time Series of Graphs
The method we describe herein takes as input a collection of
multi-channel time series and induces a network or graph on the
set of channels. It then induces a graph on the set of networks
and finally learns a single vector representation for each multi-
channel time series. The representation can then be used as input
to a classifier or other tools to aid downstream inference. See
Figure 1 for an illustration of the method.

The described method is natively transductive and thus only
learns a representation for the windows of the multi-channel
time series that it has access to when learning the embedding.
This can be limiting in applications where we want to apply
the learned embedding from one session (or participant) to
the data from another session (or participant). To alleviate this
issue we describe an “out-of-sample” embedding that can take a
previously unseen multi-channel time series and map it to the
learned embedding space. We sometimes refer to the process
of taking a windowed segment of EEG and projecting it into
the appropriate embedding space as a feature mapping and the
corresponding function as a feature map.

We consider the windowedmulti-variate time series described
in Section 2.1:

X
(k)
j = [S

(k∗(w−h)+1)
j , S

(k∗(w−h)+2)
j , . . . , S

((k+1)∗(w−h)+h)
j ].

Let s :Rw × R
w → R be a similarity function

on objects in R
w and A(k) be the similarity matrix
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FIGURE 1 | Illustration of going from a multi-channel EEG recording to a classifier via a time series of graphs.

between pairs of the windowed times series for window
index k,

A(k) =









s(X
(k)
1 ,X

(k)
1 ) . . . s(X

(k)
1 ,X

(k)
nc )

...
. . .

...

s(X
(k)
nc ,X

(k)
1 ) . . . s(X

(k)
nc ,X

(k)
nc )









.

The matrix A(k) ∈ R
nc×nc can be thought of as a graph where the

vertices are channels and the edge weight is the similarity score
between the two channels for window k.

Given the collection of graphs {A(k)}
nw
k=1

there are numerous
kernels that map a graph to a real-valued vector space (Kriege
et al., 2020). We use a spectral approach because it is relatively
scalable and statistically principled in general settings (Athreya
et al., 2018). Hence, we induce a graph on the {A(k)} by
considering a pairwise similarity s′ :Rnc×nc × R

nc×nc → R and
corresponding pairwise similarity matrix

B =







s′(A(1),A(1)) . . . s′(A(1),A(nw))
...

. . .
...

s′(A(nw),A(1)) . . . s′(A(nw),A(nw))






. (1)

Recall from results in statistical network analysis that when a
graph B = U6VT is a realization of a random dot product
graph (RDPG) (Athreya et al., 2018) that the appropriately
truncated left singular vectors of B scaled by the square root of
the corresponding singular values are consistent estimates for the
underlying latent positions Z ∈ R

nw×d where Z(k) ∈ R
d is the

latent position corresponding to window k. In applications where
the RDPG assumption is violated—as is likely in ours—reducing
the dimensionality from nw to dimension d < nw in this way has
shown to be useful for downstream inference tasks.

We let Ẑ ∈ R
nw×d be the estimate of the latent positions after

embedding B. These vectors will be the representations for the

multi-channel time series that we use for inference. They will
also serve as the basis representation for embedding previously
unseen EEG windows.

In our experiments we evaluate the effectiveness Ẑ as the
representations used for mental state classification when letting
s(·, ·) be Pearson correlation and

s′(A(k) ,A(k′)) = 1−
||A(k) − A(k′)||2 −min{||A(k) − A(k′)||2}k,k′∈{1,..,nw}

max{||A(k) − A(k′)||2}k,k′∈{1,..,nw} −min{||A(k) − A(k′)||2}k,k′∈{1,..,nw}
.

Wemake some comments on potential improvements over these
functions in Section 4.

As mentioned above, the process to go from a windowed time
series to a jointly learned vector representation in R

d does not
natively extend to previously unseen data. Though one could
learn a new embedding every time new data is collected, this
approach is relatively unscalable in both time and computation
and of little use for real-time systems. To overcome this problem,
“out-of-sample” extensions of popular transductive embedding
methods have been proposed to map new data to the space
spanned by the original embeddings (Bengio et al., 2003; Trosset
and Priebe, 2008; Tang et al., 2013; Levin et al., 2018). We now
describe the out-of-sample extension to the adjacency spectral
embedding analyzed by Tang et al. (2013).

Given the original set of windowed time series {X(k)}
nw
k=1

, the

learned embeddings Ẑ ∈ R
nw×d, a similarity function on data

from the channels of the time series (i.e., s(·, ·) from above),
a similarity function on the graphs R

nc×nc [i.e., s′(·, ·)], and a
(potentially yet unseen) windowed time series X ∈ R

nc×w with
corresponding similarity matrix A, we define the out-of-sample
mapping to be

T(X; {X(k)}
nw
k=1

, Ẑk, s, s′) :=

nw
∑

k=1

s′(A,A(k))
[

(ẐT Ẑ)−1ẐT
]

k
. (2)
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As discussed in Tang et al. (2013), in the context of graph
embeddings the feature mapping T is considerably more time
and computationally efficient than recalculating the singular
value decomposition of the matrix defined in (1) at the cost
of a small performance degradation on downstream inference.
Hence, for real-time applications T is preferred to recalculation.

2.3. Datasets
Mental Math (Zyma et al., 2019) and MATB-II (proprietary) are
representative of stress prediction and cognitive load prediction
tasks, respectively, and are thus helpful in understanding the
high-level mental state prediction capabilities of the three
sets of features.

2.3.1. Mental Math
In the Mental Math study there are two recordings for
each participant—one corresponding to a resting state and
one corresponding to a stressed state. For the resting state,
participants counted mentally (i.e., without speaking or moving
their fingers) with their eyes closed for three minutes. For the
stressful state, participants were given a four digit number (e.g.,
1,253) and a two digit number (e.g., 43) and asked to recursively
subtract the two digit number from the four digit number for 4
min. This type of mental arithmetic is known to induce stress
(Noto et al., 2005).

There were initially 66 participants (47 women and 19men) of
matched age in the study. Thirty of the participants were excluded
from the released data due to poor EEG quality. Thus we consider
the provided set of 36 participants analyzed by Zyma et al. (2019).
The released EEG data was preprocessed via a high-pass filter and
a power line notch filter (50 Hz). Artifacts such as eye movements
and muscle tension were removed via ICA.

The EEGs were recorded monopolarly using Neurocom EEG
23-channel system (Ukraine, XAI-MEDICA). For our analysis
we further apply high pass (0.5 Hz) and low pass (30 Hz)
filters and window the data into two and a half second chunks
with no overlap. In our experiments we consider the two-class
classification task {stressed, not stressed} and note that some of
the windowed data in the training will be adjacent to some of the
windowed data in the test set by virtue of how the experiment was
set up.

The TSG features that we use in the Mental Math experiments
are based on the pairwise Frobenius norms between correlation
matrices as described in Section 2.2. The number of components
kept in the singular vectors is data-dependent and is the second
“elbow” of the scree plot of singular values estimated by Zhu and
Ghodsi’s method Zhu and Ghodsi (2006).

The BF features we use are derived from the low (4.1–
5.8 Hz) and high (5.9–7.4 Hz) theta bands; low (7.4–8.9 Hz),
middle (9.0–11.0 Hz), and high (11.1–12.9 Hz) alpha bands; and
low (13.0–19.9 Hz), medium (20.0–25.0 Hz), and high (25.0–
30.0 Hz) beta bands. Once the power of each of these bands
is normalized by channel there are 19 (8) = 152 features per
window that we then project into a lower dimension via PCA.
As with the TSG features, we select the number of components
via Zhu and Ghodsi’s method. In our experiments this translates

to between a 3 and 8 dimensional feature space that we then use
for classification.

2.3.2. MATB-II
We also consider data collected under NASA’s Multi-Attribute
Task Battery II (MATB-II) protocol. MATB-II is used to
understand a pilot’s ability to perform under varying cognitive
load requirements (Santiago-Espada et al., 2011) by attempting to
induce four different levels of cognitive load—no (passive), low,
medium, and high—that are a function of how many tasks the
participant must actively tend to.

The data we consider includes 50 healthy subjects with normal
or corrected-to-normal vision. There were 29 female and 21 male
participants and each participant was between the ages of 18 and
39 (mean 25.9, std 5.4 years). Each participant was familiarized
with MATB-II and then actively underwent for two sessions
containing three segments. The three segments were further
divided into blocks with the four different levels of cognitive
requirements. The sessions lasted ∼50 min and were separated
by a 10 min break.

The EEG data was recorded using a 24-channel Smarting
MOBI device and was preprocessed using high pass (0.5 Hz)
and low pass (30 Hz) filters and segmented in ten second, non-
overlapping windows. In our analysis we consider the two-class
problem {no & low cognitive load, medium & high cognitive
load} and use the same feature extraction methods as described
in Section 2.3.1.

2.4. Classification Experiments
We study the three sets of features in in-session, non-constant
querying, and transfer learning contexts derived from the two
class classification problems {stressed, not stressed} and {no
& low cognitive load, medium & high cognitive load}. The
experiments attempt to mimic real-world use cases for passive
BCIs: the in-session experiment will inform us on how much
data we need to be performant for an average participant given
no auxillary data (e.g., data from additional sessions, tasks, or
participants); the passive querying experiment gives us an idea
of how often a system must query the participant for a label
when passively recording EEG signal; and the transferability
experiment will quantitatively (via balanced accuracy) measure
the utility of pre-trained and lightly fine tunedmodels from other
sessions and other subjects. In all, we think this set of experiments
provides a useful suite of results to evaluate the considered feature
sets and to inspire more nuanced experiments.

For all the experiments we use scikit-learn’s (Pedregosa
et al., 2011) implementation of a random forest as the classifier
after learning the appropriate set of features. The default
hyperparameters (e.g., number of trees, maximum depth of each
tree, impurity, etc.) from version 0.22 are used. We report the
balanced accuracy for all experiments except for the sensor
importance analysis for which we report standard accuracy. Error
bars correspond to the standard error of the average accuracy
across subjects. We provide a summary table in Table 1 to more
easily compare results across experiments.
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TABLE 1 | Summary table of the in-session, non-constant querying, and transfer results for the Mental Math (“MM”) and MATB-II (“MATB”) datasets.

MM

(p = 0.0)

MM

(p = 0.1)

MM

(p = 0.8)

MATB

(p = 0.0)

MATB

(p = 0.1)

MATB

(p = 0.8)

TSG-1 n/a 59.2 (1.2) 82.0 (2.4) n/a 62.6 (1.2) 69.0 (1.5)

TSG-2 n/a 72.1 (2.0) 82.1 (2.4) n/a 65.9 (1.3) 69.0 (1.4)

TSG-3 n/a n/a n/a 66.6 (0.1) 65.6 (0.8) 68.2 (0.8)

TSG-4 53.4 (0.7) 62.0 (1.5) 66.5 (1.8) 58.2 (0.4) 63.2 (0.6) 65.9 (0.6)

BF-1 n/a 58.0 (1.2) 70.9 (2.5) n/a 68.3 (1.2) 77.4 (1.3)

BF-2 n/a 56.2 (1.0) 70.7 (2.5) n/a 68.9 (1.2) 77.4 (1.3)

BF-3 n/a n/a n/a 71.8 (0.8) 70.3 (0.7) 75.3 (0.8)

BF-4 52.8 (0.5) 64.2 (1.2) 72.9 (1.5) 55.7 (0.2) 63.6 (0.5) 68.8 (0.5)

TSG+BF-1 n/a 59.5 (1.0) 85.1 (2.2) n/a 70.4 (1.2) 80.3 (1.3)

TSG+BF-2 n/a 61.9 (1.2) 85.2 (2.2) n/a 72.4 (1.2) 80.4 (1.3)

TSG+BF-3 n/a n/a n/a 75.3 (0.9) 74.2 (0.8) 78.8 (0.8)

TSG+BF-4 53.6 (0.7) 66.5 (1.3) 76.5 (1.7) 59.0 (0.4) 68.1 (0.6) 74.3 (0.7)

ANOVA-1 n/a *** n/a *** ***

ANOVA-2 n/a *** *** n/a *** ***

Each column corresponds to a different proportion (p ∈ {0.0, 0.1, 0.8}) of in-distribution data available per the experiments described in the first three subsections of Section 2.4.

For each method {TSG, BF, TSG+BF} there are four variations (1 = in-session, 2 = non-constant querying, 3 = cross-session transfer, 4 = cross-subject transfer). Values are average

balanced accuracies across subjects. Standard errors are given in parentheses. An “n/a” indicates that the method is not valid for a setting. For example, “BF-1” and “MM (p = 0)”

is “n/a” because the method “BF-1” cannot be trained in settings without in-task data. The bottom two rows present one-way repeated measure ANOVAs results comparing three

methods {TSG, BF, TSG+BF} at two variations (1 = in-session, 2 = non-constant querying). *** denotes that p < 0.001 according to one-way repeated measure ANOVAs.

2.4.1. In-session Classification
The first experiment we consider is a standard classification
experiment: we split the in-session data into a training set and
a testing set, learn the feature map and classifiers using only the
training set, and evaluate the classifier using the testing set. We
estimated the performance using 20 random train-test splits with
varying proportions of the data used for training for each subject.

2.4.2. Non-constant Querying
The next experiment we consider is inspired by the scenario
where a participant is wearing an EEG headset throughout
the day and the system has a the capability to query the user
for a self-reported {stress, not stressed} or {no & low load,
medium & high load} label for the most recent time windows.
In these scenarios there is often a non-trivial amount of in-
distribution but unlabeled data that can be leveraged to improve
the representations ultimately used for inference.

For this experiment, as in the in-session experiment, we
randomly split the data into a training set (here always 80%) and
a testing set (20%). We then further split the training set into
an unlabeled set and labeled set and evaluate systems for varying
ratios of labeled data to training data. This means that when the
ratio is 0.125 the feature extractionmethods have access to 80% of
all of the data and the classifier has access to only 10 of the 80%.
When the ratio is equal to 1 then 80% of all of the data is used
for feature extraction and to train the classifier. The performance
is estimated by 20 random train-test splits. Note that here we
do not need to change our feature extraction techniques to
accommodate unlabeled data because both methods are entirely
unsupervised. More involved methods may require treating the
labeled and unlabeled data differently (Zhou and Belkin, 2014).

2.4.3. Transferability
The last classification experiment we consider investigates
the transferability of feature maps and classifiers from one

session to another. Successful zero-shot or few-shot transfer
for all participants would enable rapid deployment of real-time
prediction systems for a variety of tasks. Unfortunately, as with
many biosignals, the inter-session and inter-subject variability
of EEG signals means that pre-trained models are unsuited
for prediction related to a new participant (Wei et al., 2021).
Our transfer experiments are designed to help understand the
limitations and possibilities of single-session transfer in the
context of mental state prediction.

We consider two transfer paradigms: zero-shot learning (Xian
et al., 2017) and classifier fine-tuning. For zero-shot learning we
simply take the feature maps and classifiers learned from another
session and apply it to a new session. These approaches are rigid
and only work well when the distribution shift between sessions
is small. For classifier fine-tuning we use the feature map from
another session and transform the data from the new session
into the appropriate feature space. We then use data from the
new session to update the classifier trained on the other session.
Since we are using random forests, this simply means taking
the existing structure of the trees and updating the posteriors in
each of the leaf nodes for each tree with new labeled data. The
posteriors of empty leaf nodes are set to 0.5 for simplicity. In
the transferability results, the zero-shot performance corresponds
to the x-tick 0.0 and the rest of the figure corresponds to
classifier fine-tuning. The performance is estimated via 20 monte
carlo simulations.

3. RESULTS

We evaluate three sets of features—band-power based features
(“BF”) of Section 2.1, time series of graphs-based features (“TSG")
of Section 2.2, and the concatenation of the two (“TSG + BF”)—
in three different settings (in-session classification, non-constant
querying, and transfer) in the context of two datasets (“Mental
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Math” and “MATB-II”). Our analysis demonstrates the value of
including both band-based and graph-based features for high
level mental state prediction tasks across multiple experimental
settings. After discussing the classification experiments we argue
that the graph-based features are neuroscientifically reasonable
via a channel and pair of channels importance study.

3.1. In-session Classification Results
We study the three sets of features in in-session setting. The
top panels of Figure 2 show the average performance across
subjects of the three sets of features for varying amounts of data
available for training. For the Mental Math study (left), we see
the graph-based features outperform the band-based features and
their concatenation equal to the best throughout. For the MATB-
II study (right), we see the band-based features outperform the
graph-based features and their concatenation outperform both
for the entirety of the studied regime. The result that TSG > BF
for Mental Math but BF > TSG for MATB-II combined with
the result that their concatenation is always preferred to either
one suggests that the predictive information contained in the
TSG and BF features is somewhat complementary—there exists
information in one set that is not present in the other.

The bottom panels of Figure 2 show the histograms of the
accuracies for each participant when the feature maps and
classifiers have access to 80% of the data for training. The left
tail of the histograms shows that the performance is highly
dependent on the subject. For example, in the Mental Math
study (left) we see a non-trivial number of participants at chance
level for each method even with 80% of the data available for
training. On the other hand, we also see numerous participants
with a balanced accuracy well above 90%. This effect is less
exaggerated for the MATB-II data (right) but is still present for
the band-based features and the concatenated features.

While not particularly informative of how real passive BCI
predictive systems work, the performance of the systems in this
experiment is somewhat of an upper bound for what we can
expect from a real-time system when there is no additional data
from other sessions or subjects. In particular, in this experiment
the standard assumption of independence between the training
and testing sets is likely violated due to correlations between
adjacent windows. This can inflate classification performance
(Hand, 2006).

The lines shown in Figure 2 are estimated averages over all of
the subjects. For each subject we estimated their corresponding
average using 45 random train-test splits for reach amount of
training data. The histograms on the bottom row of Figure 2
show the distribution of these averages when the system has
access to 80% of the data.

3.2. Non-constant Querying Results
Next, we compare the three sets of features in non-constant
querying setting. Figure 3 shows the average performance across
subjects for the three semi-supervised methods. Of note is the
performance of TSG on the Mental Math study in the regime
where the majority of the data is unlabeled relative to the same
amount of labeled data for the in-session experiment (the x-tick

0.125 in Figure 3 corresponds to the x-tick 0.1 in Figure 2). The
boost is less impressive in the MATB-II study but still present.

The band-based features are not meaningfully improved with
the availability of a set of unlabeled data which likely implies that
the principal components of the data are relatively stable across
windows. The gain in performance of the concatenated features is
somewhere in between the two composite features.We see a small
(1–3%) improvement over the corresponding in-session result
for the first half of the regime.

The boosts in performance for the graph-based features and
the concatenation of the features implies that the data used
between queries in real-world systems can be used to improve
predictive performance. This means that fewer queries can be
made and users will be less likely to tire from self-reporting labels
when leveraging the collected but unlabeled data.

This experiment likewise suffers from the effect of adjacent
windows being in different splits of the data. The averages in
Figure 3 are estimated using 45 random train-test splits.

3.3. Transferability Results
We next present the transferability results of feature maps and
classifiers from one session to another. The top panel of Figure 4
shows the zero-shot and classifier fine tuning results when
transferring from one MATB session to another for a given
subject. We again plot the average across subjects as in the
previous two experiments.

In theMATB experimental design the two sessions are close in
time and thus the distribution shift is relatively small as is evident
by the good zero-shot performance across methods. For TSG the
zero-shot is effectively as good as the fine tuning for the majority
of the regime. For all methods the zero-shot performance and is
approximately as good as having access to about 30% of the in-
session data. Recall that in the MATB experiment each session
is ∼50 min, meaning the zero-shot approach across sessions can
save∼50 (0.3) = 15 min of calibration time and data collection.

The performance across methods degrades non-trivially when
going from zero-shot to parts of the regime where only a small
amount of training data is available. This dip in performance is
again indicative of the proximity of the distributions between
sessions and can be smoothed out by continual or lifelong
learning techniques (Thrun, 1995; Vogelstein et al., 2020; Geisa
et al., 2021). Unfortunately there is no concept of transferring
across sessions for the Mental Math study and so there is no
corresponding figure.

The bottom row of Figure 4 contains the cross-subject
transfer results for both Mental Math (left) and MATB-II (right).
For each subject there are nsubjects − 1 = 35 corresponding
accuracies for the Mental Math data and nsubjects · nsessions −
2 = 98 corresponding accuracies for the MATB-II data. From
these accuracies we record the average, minimum accuracy,
and maximum accuracy when transferring to each subject. The
average across subjects of these three statistics for both datasets
are shown in the respective figures.

The range between the averages of the minimums and
maximums in both datasets is particularly interesting—if you
attempt to use zero-shot or few-shot classification from the
wrong subject the performance is severely hampered; on the
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FIGURE 2 | In-session classification results. (A) Mental math. (B) MATB-II. (C) Histogram and estimated densities of in-session subject balanced accuracies at p =

0.8 for Mental Math. (D) Histogram and estimated densities of in-session subject balanced accuracies at p = 0.8 for MATB-II.

FIGURE 3 | Non-constant querying (semi-supervised) classification results. (A) Mental math. (B) MATB-II.
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FIGURE 4 | Transfer results. (A) MATB-II (across session). (B) Mental Math (across subject). (C) MATB-II (across subject).

other hand, if you can correctly identify which feature map and
classifier is “best” you can get a serious improvement gain over
the average performance. Selecting which model or set of models
to transfer from is an active area of research (Helm et al., 2020)
and successful techniques will likely be of unusual importance in
biosensing settings to keep on-device models as light, private, and
effective as possible.

The dip present in the cross-session figure is not present in the
average cross-subject transfer curves (it is present in the “max”
curve) and is indicative of the average out of subject distribution
being sufficiently far from the distribution we are attempting to
transfer to.

3.4. Summary Table
Table 1 summarizes the results across the three experiments for
easier comparison across the different settings. Note that for
non-constant querying the x-ticks in Figure 3 are multiplied
by 0.8 to get to the appropriate amount of labeled training
data [e.g., 0.125 (0.8) = 0.1].

One-way repeated measure ANOVAs are performed to
test whether there was a significant difference among the
band-power based features (“BF”), time series of graphs-
based features (“TSG”), and the concatenation of the two
(“TSG + BF”). The results of 20 random train-split Monte
Carlo simulations at two different settings are shown in
Table 1. In the majority of contexts explored above the
combination of the band-based and graph-based features out
performed either on their own and, again, suggests that both
should be used to capture as much predictive information
as possible.

3.5. Sensor Ablation Analysis
While the classification results of Section 2.4 are interesting
in their own right, the sensor locations and device set ups
used in the experimental procedures are relatively arbitrary
and are not subjected to the same design constraints as a
real-world system. Indeed, commercially viable EEG hardware
needs to be performant with a relatively minimal head
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FIGURE 5 | Sensor and pair of sensors analysis. The top figure shows the distribution of averages for varying numbers of channels for TSG, BF, and TSG+BF. The

bottom figure shows the importance of each sensor and pair of sensors: the size of the circles for each channel is proportional to its rank amongst channels; the line

width of the edge between two channels is proportional to the pair’s rank amongst pairs of channels; the color of the channel is indicative of the region of the head

(frontal, temporal, central, occiptal). (A) Combinatorial search over sensor configurations with corresponding accuracies. Shaded regions contain 90% of the

accuracies for a given number of subsets. (B) Channel importance (size of channel) for every channel and channel pair importance (line width of connection) for top

subset of all pairs. We do not show all edges so as not to crowd the figure.

coverage and number of sensors. To understand the effect
of removing sensors on classification performance, we re-
ran the in-session classification experiment from Section
2.4.1 with all subsets of {3,4,5,6,7,8,13,14,18,19} channels and
recorded their accuracy on the Mental Math data. For each
subset we estimated the average accuracy using 30 random
train-test splits with 80% of the data used for training for
each subject.

Figure 5A shows the average accuracy1 across subsets as a
function of the number of channels in the subset. Shaded regions

1We performed this analysis before the classification experiments of Section

2.4 and, importantly, before we began considering balanced accuracy instead of

standard accuracy. Since the analysis is combinatorial and thus computationally

expensive we did not re-run the analysis. While the quantitative results change

with the switch to standard accuracy, the qualitative results still hold.
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indicate the 90% interval around the mean subset accuracy.
The subsets in the right tail of the distribution of subsets are
notably close in performance to the full suite of channels for the
concatenated features with access to only three or four channels.
This implies that a performant system is possible with only a
small selection of channels.

We can understand which channels and pairs of channels are
driving the high accuracy with such a small subset by estimating
their importance. For each channel we first calculate the average
accuracy on the stress prediction task for subsets that it is an
element of. We then rank the channels based on their average
accuracy. We can do the same for pairs of channels. Figure 5B is
a pictorial description of these rankings for subsets of size 4, 6,
and 8: the size of the circles for each channel is proportional to
its rank amongst channels and the line width of the edge between
two channels is proportional to the pair’s rank amongst pairs of
channels. The color of the channel is indicative of the region of
the head (frontal, temporal, central, occiptal).

The channel importance and pair of channel importance
for each 4, 6, and 8 channel subsets are well aligned with
conventional stress-related neuroscience wisdom. In particular,
the average importance of individual channels in the frontal
region (blue channels) is noticeably larger than the average
importance of the other regions (Yuen et al., 2009). Further, there
are a considerable amount of heavily weighted edges between
frontal channels on one side of the brain to frontal or temporal
channels on the other side of the brain (Fischer et al., 2018).
Hence, we think that including the pairwise correlation matrix
as the basis for a set of features is neuroscientifically reasonable.

4. DISCUSSION AND CONCLUSION

In this note we proposed a set features, TSG, that are jointly
learned from the correlation matrices of different windows.
We showed in multiple classification paradigms that the TSG
features can be used to significantly improve performance over
canonical band-based features, BF, in both stress and cognitive
load contexts. We noted that neither the TSG features nor the BF
features dominate the other across the different experiments and
thus argued that these two sets of features are “complementary,”
or that one set of features contains predictive information that
the other does not. Given these results we think that graph-
based features will be useful in pushing the community closer to
performant non-invasive BCIs.

We note that the effectiveness of prediction results is
restrained to the context of our pipeline. We note that though
we interpret the results below as if the labels used to train the
classifiers are only related to stress and cognitive load, there
is a possibility of non-trivial confounding variables that could
artificially improve performance on the intended task. We do not
pursue a formal analysis of these confounding variables herein.

We also want to emphasize that the proposed set of
features are but one instance of a class of features based
on the implicit graph structure on the channels. We plan
to investigate other natural similarities on the channels
beyond just Pearson correlation, e.g., mutual information

and conditional entropy, and think that these more nuanced
statistical dependence measures could capture more meaningful
class-conditional information.

Further, the similarity that we use to induce a graph on
the collection of statistical-dependence matrices is Frobenious
norm based and as simple as possible. It is well known in the
network statistics community that the Frobenious norm between
matrices is too crude of a metric to uncover particular asymptotic
behaviors of the graph (Athreya et al., 2018; Kriege et al., 2020).
Indeed, often dimensionality reduction techniques are used on
the collection of graphs before calculating the distance between
the objects. We think that including a multi-graph embedding
step such as the omnibus embedding (Levin et al., 2017) or
the COSIE framework (Arroyo et al., 2021) could non-trivially
improve performance over the results presented here. Similarly,
we think applying different kernels on the networks, such as the
Gaussian kernel, could be a fruitful direction.
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