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Abstract: Every colon cancer has its own unique characteristics, and therefore may respond differently to
identical treatments. Here, we develop a data driven mathematical model for the interaction network of
key components of immune microenvironment in colon cancer. We estimate the relative abundance of
each immune cell from gene expression profiles of tumors, and group patients based on their immune
patterns. Then we compare the tumor sensitivity and progression in each of these groups of patients,
and observe differences in the patterns of tumor growth between the groups. For instance, in tumors
with a smaller density of naive macrophages than activated macrophages, a higher activation rate of
macrophages leads to an increase in cancer cell density, demonstrating a negative effect of macrophages.
Other tumors however, exhibit an opposite trend, showing a positive effect of macrophages in controlling
tumor size. Although the results indicate that for all patients the size of the tumor is sensitive to the
parameters related to macrophages, such as their activation and death rate, this research demonstrates
that no single biomarker could predict the dynamics of tumors.

Keywords: colon cancer; data driven mathematical model; immune pattern; sensitivity analysis;
gene expression profiles; tumor deconvolution; macrophages; T-cells; dendritic cells; HMGB1

1. Introduction

Recent studies show that many cancers arise from sites of chronic inflammation [1–4].
Balkwill et al. [5] provide a list of inflammatory conditions that predispose an individual to cancer,
in particular to colorectal cancer. Indeed, inflammatory bowel diseases like ulcerative colitis and colonic
Crohn’s disease are strongly associated with colorectal cancer [6]. For example, inducing colitis to create
chronic inflammation after introducing procarcinogen is an established and reliable two-step mouse model
of colitis-associated cancer (CAC) [7–9].

Most common cancer treatments are designed to kill tumor cells. However, the way in which cells die
is very important, because dying cells may release molecules that initiate an immune response. We shall
refer to cells that go through the process of necrotic cell death as necrotic cells. Necrotic cells are known
to release damage-associated molecular pattern (DAMP) molecules such as high mobility group box
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1 (HMGB1), which triggers immune responses [10,11]. In particular, HMGB1 activates dendritic cells
(DCs) [12]. There is evidence that the expressions of HMGB1 and RAGE, its receptor, are significantly
higher in ulcerative colitis than in control cases [13]. HMGB1 has been observed in other cancers, as a
result of treatments by radiotherapy and chemotherapy [12,14–16].

In colon cancer, activated CD8+ T cells enhance production of necrotic cells by expressing high levels
of cytokines like IFN-γ and FasL [17]. Necrotic cells and macrophages release HMGB1 to activate dendritic
cells [12], which leads to activation of T-cells [18]. In addition, intestinal epithelial cells, which are in
close contact with DCs, activate dendritic cells by releasing molecules like thymic stromal lymphopoietin
(TSLP) [19,20]. Once activated, dendritic cells release cytokines STAT4, STAT6, and IL-4, which induce
differentiation of naive T-cells into effector T cells (Th1, Th17 and Th2) [21]. CD4+ T-cells can also become
activated by TNF-α, which is released by M1 macrophages [22]. Activated CD4+ T-cells release IL-2, 4, 5, 13
and 17 to activate killer cells like CD8+ T-cells [18,23,24]. CD4+ T-cells also release IFN-γ, which activates
M1 macrophages [25,26]. Activated macrophages and CD4+ effector T-cells release tumor-promoting
cytokines interleukin 6 (IL-6) [27]. IL-6 promotes tumor growth by activating STAT3 in intestinal epithelial
cells [28].

Knowledge of the cancer microenvironment is essential in predicting the progression of cancer.
A strong correlation between in situ immune reactions in tumor regions and prognosis has been observed
regardless of the local extent of the tumor and of invasion of regional lymph nodes [29]. A weak in situ
immune reaction in tumor regions is associated with a poor prognosis even in patients with minimal
tumor invasion (stage I). Moreover, high expression of the Th17 markers predicts a poor prognosis
for patients with colorectal cancer, whereas patients with high expression of the Th1 markers have
prolonged disease-free survival [30]. However, it has been observed that a high proportion of CD8+ T cells,
effector memory T cells and CD4+ T cells is correlated with longer survival in colorectal cancer [31–33].
Moreover, in colon cancer, patients with a low level of macrophages have a deeper depth of invasion than
patients with a high level of macrophages [33]. All these observations indicate the importance of the
relative abundance of various immune cells, as well as their interaction networks, in the colonic tumors’
initiation and progression. Therefore, to accurately model the progress of cancer, we need to divide
patients into similar cohorts based on their tumor-infiltrating immune cells and predict the progression for
each group separately.

While there are many papers that use mathematical models for colon cancer progression [34–43],
only a few have attempted to include immune interaction in their model. Models such as [40–42] define a
system of ordinary differential equations (ODEs) that describe the interactions between cancerous cells
and various sub-populations of immune cells (including NK cells, CD8+ T cells, lymphocytes, natural
death cells and interleukins) and explore how these interactions can influence tumor growth over time.
While time course data for the growth of untreated tumors are not currently easily available to verify
models such as [40], other models such as [41] include simulations of treatment plans that can be compared
on the population-level to results from previous clinical trials. To generate population-level simulation
results while acknowledging the different responses to treatment that can arise from differing patient
immune profiles, this study selects a range of parameter values to simulate 64 unique “virtual patients”
for which to solve the system of ODEs describing potential treatments.

In the present paper, we develop a data driven mathematical model of colon cancer with emphasis on
the role of immune cells, including T-cells, dendritic cells and macrophages. Although there are many
cell types and molecules involved in colon cancer, in order to avoid too much complexity, we only model
some of the key players and interaction networks that we determined by reviewing articles on colon
cancer progression. The resulting mathematical model is based on the network shown in Figure 1, and it
is represented by a system of ODEs within the tumor. In order to explore differences in tumor growth
among patients with different immune profiles, we use cancer patients’ data to estimate the percentage of
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each immune cell type in their primary tumors, and use clustering to group these patients into five distinct
groups of immune patterns. We then use the data within each cluster to generate five “virtual patients”, for
which we can calculate patient-specific parameters to use in the mathematical model. Lastly, we examine
the differences in the resulting dynamics between the 5 clusters, and look for potential biomarkers that can
link details of the tumor microenvironment to the dynamics of tumor growth.
4 The Role of Inflammation in Colitis-associated Cancer
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Figure 1: Network of cells and cytokines. Sharp arrows indicate activation or proliferation, and the
blucked arrow indicates killing

[µ1]can be written as

d [µ1]

dt
= λµ1Th [Th] + λµ1M [M ] + λµ1D [D]− δµ1 [µ1] .

IL-10 is produced by macrophages [2,18], dendritic cells [24,28] and Treg cells [10,32,58,64]. CCL20

is produced by macrophages [14]. Thus, the equation for [µ2] is

d [µ2]

dt
= λµ2M [M ] + λµ2D [D] + λµ2Tr [Tr]− δµ2 [µ2] .

IFN-γ is secreted by sub-population of macrophages [2,13,47,52,70], helper T-cells [8,46] and cytotoxic

Figure 1. Network of cells and cytokines. Sharp arrows indicate activation or proliferation, and the blunt
arrow indicates inhibitions.

2. Materials and Methods

2.1. Mathematical Model

We develop a mathematical model for colon cancer based on the interaction network among key
players in colon cancer shown in Figure 1, and the list of variables is given in Table 1. The model is
represented by a system of differential equations for concentrations and changing in time in unit of day.
For clarity, we develop a simplified model in terms of ordinary differential equations. For biochemical
processes A + B → C, we use the mass action law dC

dt = λAB, where λ is production rate of C [44,45].
Throughout the paper, we use the symbol λ for production, activation or proliferation rates, and the
symbol δ for decay, natural death or premature death (necrosis) rates.
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Table 1. Model’s variables. Names and descriptions of variables used in the model.

Variable Name Description

TN Naive T-cells
Th Helper T-cells
TC Cytotoxic cells includes CD8+ T-cells and NK cells
Tr Regulatory T-cells
Dn Naive dendritic cells
D Activated dendritic cells antigen presenting cells
M Macrophages
C Cancer cells
N Nectrotic cells
H HMGB1
µ1 Carcinogenic cytokines includes effects of IL-6, IL-17, IL-21 and IL-22
µ2 Immunosuppresive agents includes effects of IL-10 and CCL20
Iγ IFN-γ
Gβ TGF-β

2.1.1. Cytokine Approximation

In order to reduce the complexity of the system, we treat some of cytokines as independent variables
and approximate the value of other cytokines through already existing variables. Additionally, we combine
the cytokines that have a similar function in the interaction network (Figure 1). Therefore, we combine
IL-6, IL-17, IL-21 and IL-22 and denote their sum by the variable µ1. We also combine IL-10 and CCL20
and denote their sum by the variable µ2. The cytokines treated as model variables are HMGB1, IFN-γ,
TGF-β, IL-6 and IL-10. We then model the dynamics of cytokines in the following way.

HMGB1 is passively released from necrotic cells [46], or actively secreted from activated T-cells and
macrophages [47,48]. Thus, we can model the dynamics of HMGB1 by the equation:

d [H]

dt
= λHN [N] + λHM [M] + λHTh [Th] + λHTC [TC] + λHTr [Tr]− δH [H] . (1)

IL-6 is secreted by tumor associated macrophages (TAMs) [27,49–51], helper T-cells [27,51–53] and
sub-population of dendritic cells [54,55]. IL-17, IL-21 and IL-22 are produced by helper T-cells [56].
Therefore, the resulting dynamics for [µ1] can be written as

d [µ1]

dt
= λµ1Th [Th] + λµ1 M [M] + λµ1D [D]− δµ1 [µ1] . (2)

IL-10 is produced by macrophages [57,58], dendritic cells [54,59] and T-reg cells [52,56,60,61]. CCL20 is
produced by macrophages [62]. Thus, the equation for [µ2] is

d [µ2]

dt
= λµ2 M [M] + λµ2D [D] + λµ2Tr [Tr]− δµ2 [µ2] . (3)

IFN-γ is secreted by a sub-population of macrophages [57,63–66], helper T-cells [25,26] and cytotoxic
cells [17], which results in the following equation:

d [Iγ]

dt
= λIγTh [Th] + λIγTC [TC] + λIγ M [M]− δIγ [Iγ] . (4)
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TGF-β is produced by macrophages [57,58] and T-reg cells [52,56,60,67] leading to the equation:

d
[
Gβ

]
dt

= λGβ M [M] + λGβTr [Tr]− δGβ

[
Gβ

]
. (5)

Other cytokines, like IL-2, IL-4, IL-5 and IL-13, we consider to be in a quasi-equilibrium state, i.e.,
proportional to the concentration of cells that secrete/produce them. In particular, IL-2, IL-5 and IL-13 are
produced by CD4+ T-cells [18,24,68], so we consider

[IL-2] ≈ Const× [Th] ,

[IL-5] ≈ Const× [Th] ,

[IL-13] ≈ Const× [Th] .

IL-4 is also produced both by CD4+ T-cells [18,24,68] and dendritic cells [21], so we take

[IL-4] ≈ Const× [Th] + Const× [D] .

IL-12 secreted by macrophages [57,58] and dendritic cells [49,50,54,56,69,70], thus can be
approximated as

[IL-12] ≈ Const [M] + Const [D] ,

while IL-23 and TNF-α are secreted solely by macrophages [49,50]; hence, their approximation is

[IL-23] ≈ Const [M] , [TNF-α] ≈ Const [M] .

2.1.2. T-Cells

In this model, we differentiate four subgroups of T-cells: naive, helper, cytotoxic and regulatory.
Naive T-cells, TN , are not necessarily part of tumor microenvironment, as they usually are activated

within lymph nodes. However, making activation rates for other types of T-cells proportional to the
density of naive cells creates a better controlled system and avoids unlimited exponential growth. Thus,
we summarize the equation for the dynamics of the naive T-cells after detailing the equations of other
types of T-cells. The variables Th, TC and Tr correspond to the concentration of activated T-helper, cytotoxic
and T-reg cells, respectively.

Helper T-cells can be activated with antigen presentation by dendritic cells [18]. CD4+ T-cells can be
additionally activated by IL-12, while Th17 are activated by IL-6, TNF-α and IL-23 [56]. Regulatory
T-cells inhibit protective immune response (helper and cytotoxic T-cells) in several ways including
production of immunosuppresive cytokines such as IL-10 and CCL20 as well as through contact-dependent
mechanisms [56]. Additionally, we introduce the natural death rate for helper cells δTh . The resulting
equation is

d [Th]

dt
=
(
λThD [D] + λTh M [M] + λThµ1 [µ1]

)
[TN ]−

(
δThµ2 [µ2] + δThTr [Tr] + δTh

)
[Th] . (6)

The variable corresponding to cytotoxic cells accounts for the effects of cytotoxic T-lymphocytes
(mainly CD8+ T-cells) and possibly natural killer cells. CD8+ T-cells are activated by IL-2, IL-4, IL-5
and IL-13 [18,24,68]. Cumulative effect of these cytokines can be written as

[IL-2, 4, 5, 13] ≈ Const× [Th] + Const× [D] .
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Activation of natural killer cells requires IL-2 [71], which is already included. We also include
inhibitory effects mediated by T-reg cells. The dynamics of TC cell group is modeled by the
following equation:

d [TC]

dt
=
(
λTCTh [Th] + λTC D [D]

)
[TN ]−

(
δTCµ2 [µ2] + δTCTr [Tr] + δTC

)
[TC] . (7)

Regulatory T-cells can be activated by IL-2 [56,72,73], CCL20 [62] and TGF-β [56,67]. IL-6 suppresses
T-reg differentiation and shifts it towards T-helper type [74]. The resulting dynamics can be described
as follow:

d [Tr]

dt
=
(

λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[
Gβ

])
[TN ]−

(
δTrµ1 [µ1] + δTr

)
[Tr] . (8)

Combining all activation and introducing independent naive T-cell production ATN , we get the
following equation for naive T-cells:

d [TN ]

dt
=ATN −

(
λThD [D] + λTh M [M] + λThµ1 [µ1]

)
[TN ]

−
(
λTCTh [Th] + λTC D [D]

)
[TN ]

−
(

λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[
Gβ

])
[TN ]

− δTN [TN ] . (9)

2.1.3. Dendritic Cells

Dendritic cells become activated by HMGB1 [12]. Moreover, TSLP, which is released by cancer
cells [19,20], leads to the activation of dendritic cells (green arrow in Figure 1 from cancer cells to DCs).
We take TSLP in quasi-equilibrium state as

[TSLP] ≈ Const× [C] .

On the other hand, multiple factors induced by cancer cells may promote natural death of dendritic
cells [75–79] (black arrow in Figure 1 from cancer cells to DCs). Additionally, there’s evidence that HMGB1
can reduce the maturation rate of dendritic cells [61,79]. Introducing the independent production rate
of naive dendritic cells ADN , we get the following system for dynamics of naive (DN) and activated (D)
dendritic cells:

d [DN ]

dt
=ADN − (λDH [H] + λDC [C]) [DN ]− (δDH [H] + δD) [DN ] , (10)

d [D]

dt
= (λDH [H] + λDC [C]) [DN ]− (δDH [H] + δDC [C] + δD) [D] . (11)

2.1.4. Macrophages

There are two main sub-types of macrophages: M1 and M2. M1 phenotype can be activated by IFN-γ,
while M2 can be activated IL-4 and IL-13, which are secreted by helper T-cells [57,58]. Additionally there’s
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a possibility of TAM activation by IL-10 [57,80,81]. Introducing naive (MN) and activated (M) TAMs, as
well as production rate for naive macrophages AM, we can write the following system:

d [MN ]

dt
=AM −

(
λMµ2 [µ2] + λMIγ [Iγ] + λMTh [Th]

)
[MN ]− δM [MN ] ,

d [M]

dt
=
(

λMµ2 [µ2] + λMIγ [Iγ] + λMTh [Th]
)
[MN ]− δM [M] .

It has been shown that there is a diverse spectrum of TAM sub-types [82]. We therefore decided to
combine all activated macrophages, including both M1 and M2 macrophages into one variable M and let
the system parameters carry the differences between sub-populations and determine which effects prevail.

Next, to simplify the system, we introduce the total amount of macrophages M0 = [MN ] + [M].
Adding the above equations, we get dM0

dt = AM − δM M0. If we assume initial conditions for M0 to be at
the equilibrium M0 = AM/δM, then M0 will remain constant at all times. Then we can express naive
macrophages as [MN ] = M0 − [M] and write the resulting equation for macrophages as follows:

d [M]

dt
=
(
λMµ2 [µ2] + λMIγ [Iγ] +λMTh [Th]

)
(M0 − [M])− δM [M] . (12)

2.1.5. Cancer Cells

Cancer cells are epithelial cells with abnormally high growth and abnormally small death rate.
Additional loss of apoptosis (cell death) in cancer cells is induced by IL-6 [75,77,83,84]. In addition to innate
abnormally high proliferation rate λC, proliferation in cancer can be stimulated by expression of STAT3
in cancer cells, where STAT3 is activated by cytokines such as IL-6, IL-17, IL-21 and IL-22 [56,85]. On the
other hand, cancer development is suppressed by TGF-β [56,86–88], IL-12 and IFN-γ [56]; the suppressive
properties of IL-12 are mediated by IFN-γ [89] (so it is not directly included in the equation). Cytotoxic
T-cells also directly target cancer cells for destruction [56]. In cancer modeling, proliferation is traditionally
taken to be proportional to [C] (1− [C] /C0), where C0 is the total capacity [90,91]. Effect of dendritic cells
on cancer cells is only modeled through intermediary agents, such as T-cells, IL-6 and IL-10. Thus, the
resulting equation is

d [C]
dt

=
(
λC + λCµ1 [µ1]

)
[C]
(

1− [C]
C0

)
−
(

δCGβ

[
Gβ

]
+δCIγ [Iγ] + δCTC [TC] + δC

)
[C] . (13)

2.1.6. Necrotic Cells

We designate cells which go through the process of necrotic cell death as necrotic cells. Since there
is a limited amount of resources in the tumor microenvironment, and cells are under pressure, there
are always some necrotic cells produced by the tumor. In addition, when activated cytotoxic T-cells kill
colorectal cancer cells by expressing high levels of cytokines like IFN-γ and FasL [17], a fraction of the
cancer cells may go through the stage of first becoming necrotic cells. Therefore, the rate of “production”
of the necrotic cells is given by the fraction of dying cancer cells (αNC) and the resulting dynamics can be
written as follows:

d [N]

dt
= αNC

(
δCGβ

[
Gβ

]
+ δCIγ [Iγ] + δCTC [TC] + δC

)
[C]− δN [N] . (14)
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2.2. Non-Dimensionalization and Sensitivity Analysis

For additional numerical stability and to eliminate scale dependence, we perform
non-dimensionalization of the system. For variable X converging to a steady-state X∞, we consider
non-dimensional variable X̄ = X/X∞. Then, X̄ satisfies the equation

dX̄
dt

= F (X̄, θ, t) .

The (first order) solution sensitivity S with respect to the model parameter θ = {θi}i=1, N is defined
as a vector

Si =
dX̄
dθi

, i = 1, N.

In general, the sensitivity vector is time dependent and varies for different solutions and parameter
sets [92–94]. However, here we consider sensitivity at the steady-state of the equation. The sensitivity of
each parameter in the neighborhood of a chosen parameter set Ω(θ) is defined as

Si =
∫

Ω
Si(θ) dθ,

where the integration is evaluated numerically with sparse grid points [95,96].
We choose three quantities of interest for the sensitivity analysis: amount of cancer cells C, total

amount of cells, and a measure of how fast the system is converging to the steady-state. Consider general
steady-state system as follows

F (X?, θ) = 0,

where X? is the equilibrium. We then consider a small perturbation to X? as X̄(t) = X? + εX1(t).
The linearized system becomes

dX1(t)
dt

= ∇F (X?, θ) X1(t) + O(ε),

where ∇F (X, θ) is the Jacobian matrix of F (X, θ) with respect to X. Thus, we have X1(t) ≈ e∇F(X? , θ)t

and the minimal eigenvalue min λ (∇F (X?, θ)) determines how fast it reaches the steady-state.

2.3. Cancer Patients’ Data

In recent years, several tumor deconvolution methods have been developed to estimate the relative
abundance of various cell types in a tumor from its gene expression profile. A review of these methods [97]
and an application of CIBERSORTx on renal cancer [98] show a great performance of CIBERSORTx
model. To identify the immune profiles of colonic tumors, we applied CIBERSORTx [99] on RNA-seq
gene expression profiles of primary tumors of patients with colon cancer from the Cancer Genome Atlas
(TCGA) project of Colon Adenocarcinoma (COAD) downloaded from University of California Santa Cruz
(UCSC) Xena web portal. There are a total of 329 patients with RSEM normalized RNA-seq data in log2
scale. Before applying CIBERSORTx on this data set, we transformed the gene expression values to the
linear space.

2.4. Numerical Methods

In order to solve the time dependent system, we employ the SciPy odeint function [100] using initial
conditions based on patients with the smallest tumor area within each cluster. The sensitivity analysis of the



J. Clin. Med. 2020, 9, 3947 9 of 42

system based on the cancer and total cell density at steady-state is obtained analytically by differentiating
the steady-state equation with respect to the parameters, namely,

∇F (X?, θ)
dX∗

dθ
+

∂F (X?, θ)

∂θ
= 0.

Then to obtain the sensitivity, dX∗
dθ , one just needs to numerically invert the matrix ∇F. On the

other hand, it is hard to analytically obtain the sensitivity of the eigenvalue, so instead a finite-difference
approach is used as follows:

d min λ (∇F (X?, θ))

dθ
≈

min λ
(
∇F

(
X?, θ + 1

2 ∆θ
))
−min λ

(
∇F

(
X?, θ − 1

2 ∆θ
))

∆θ
,

where ∆θ is a small discretization parameter.

3. Results

We derived an ODE system describing complex dynamics in the colon cancer microenvironment.
Assuming non-negative values of all parameters and non-negative initial conditions, the solution of the
system remains non-negative and globally bounded (see Appendix A).

3.1. Patient Data Analysis

We downloaded TCGA clinical data, which includes tumor dimension, stage, gender, vital and
tumor status at last follow up, as well as gene expression profiles of primary tumors for patients with
colon cancer from the Genomic Data Commons (GDC) portal. We applied CIBERSORTx B-mode on gene
expression profiles to estimate the fraction of each immune cell type in each tumor. Elbow method applied
on estimated cell fractions (Figure 2A) showed the existence of five distinct immune patterns. We hence
performed K-means clustering with K = 5, in order to group patients based on the immune pattern of
their primary tumors. Figure 2B shows average cell fractions for the patients in each of the five clusters.
In order to demonstrate the immune variation between these clusters, the average frequencies shown in
this plot are of immune cells that have high discrepancy in abundance between clusters. To investigate the
effect of these immune patterns on the dynamics of tumors, we model each cluster separately, and based
on the steady-state assumptions (see Appendix B). We assume that tumors in each cluster might behave
differently not only because of immune cell variations, but also because of variations in their parameter
values. For this reason, we estimate parameter values for each cluster separately based on steady-state
values derived from patient data, as described further below. The effects of variations in parameter values
are investigated through sensitivity and dynamic analyses.

The deconvolution data, described in Section 2.3, only provide the ratios of immune cells in the tumor
microenvironment. These data are utilized to obtain the values of variables as detailed in Appendix C.
For each patient P, we define their size of tumor, size(P), to be the product of the longest and the shortest
dimensions of the tumor, and we assume total cell density is proportional to the size of the tumor:

Total_Cell_DensityP = αdim
size(P)

1
K ∑all P size(P)

.

Then, we take each immune cell value from deconvolution multiplied by 0.4αdim ∑ (Immune cell ratios)
and

C =
2
3
(Total_Cell_Density− Total_Immune_Density) , N = 0.5C.
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while macrophage capacity M0 is derived from the data, we assume cancer capacity to be C0 = 2 ∗ C for
both mean-based and extreme-based data. We choose the scaling factor αdim = 1.125× 105 to approximately
match the average density of cancer cells across all patients to 4.5 × 104 cells/cm3 reported in [101].
However, it is important to note that this is no more than scaling and has no effect on the dynamics of the
dimensionless system.

�� �� �� �� ��

�� �� �� �� ��

A

B

Figure 2. Immune cell fractions. (A) The fraction of immune cells in each colonic tumor. (B) The
frequencies of immune cell types in each cluster of patients. Clusters were formed based on variations in 22
immune cell types, some of which were later combined and others that were not included in the model. Cell
frequencies in this figure are averaged within the cluster. The vertical bars show the standard deviations.

We further investigate the clinical features of the clusters to see if there are other differences between
clusters rather than ratio of immune cells. Although distributions of gender (Figure 3E,F), tumor dimension
(multiplication of the longest and the shortest dimension) (Figure 3D), density of cancer cells, and ratio of
cancer to immune cells (Figure 3F) show similar trends in each cluster, we observed some differences in
clinical outcomes between the clusters. For example, cluster 5 has the highest percentage of alive patients
and tumor-free patients, while cluster 4, which has the lowest M0 macrophages and the highest M2
macrophages, has the highest percentage of patients with tumor at the last time of follow up. In addition,
a Chi-squared test shows that cluster 4 has significantly different percentage of tumor status compared to
clusters 1 and 5 with p-values 0.0002 and 0.0006, respectively. In addition to these, cluster 3, which has the
highest frequency of M0 macrophages, has the highest proportion of deceased patients and stages III and
IV tumors. These observations suggest that these clusters represent different immune patterns that might
lead to different outcomes. Importantly, no immune cell has a correlation higher than 0.6 with any other
immune cells or cancer cells in each cluster. Moreover, Figure 3F demonstrates that as the size of a tumor
increases, the ratio of cancer cells over the total number of cells increases.

For each cluster, we consider the mean of variables of patients with tumor size above the average of
their cluster as the steady-state values of the variables for the corresponding cluster. The resulting data
are given in Table 2. These data are only used as in Appendix B to generate the parameter sets given in
Tables A2 and A3. In other words, we assume the largest tumors in each cluster are near their steady-state.
Since we have estimated the values of all variables for all tumors from their gene expression profiles, we
have the values of all variables at the steady-state. To estimate the parameters, we first set the left side of
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the ODEs to zero, in order to create a system of equations that does not depend on time. In order to obtain
unique solutions, we need to have the same number of equations as the number of parameters. Therefore,
we estimate a small number of parameters using biological studies. We also assume some relations among
parameters as described in Appendix B. Hence, by these assumptions, we obtain a unique set of parameter
values for each cluster, and therefore all parameters are identifiable.

C

FED

BA

Figure 3. Clinical features of the clusters. (A–C) The percentage of patients alive or dead at the last time
of follow up (A), the stage of tumors I-IV at time of initial diagnosis (B) and tumor status (with tumors or
without tumors) at the last time of follow up (C). (D–F) Tumor dimension (D), density of cancer cells (E)
and ratio of cancer to total immune cells (F) in each cluster, respectively. Colors in (F) show the different
tumor dimensions, grouped into six categories (cm2): S1: 0–0.25, S2: 0.25–0.5, M1: 0.5–0.75, M2: 0.75–1, L1:
1–1.25, L2: >1.25.

Table 2. Steady-state cell densities. We group large tumors in each cluster and calculate their average cell
densities in cells/cm3. These data are used for parameter derivation detailed in Appendix B.

Cluster T∞
N T∞

h T∞
C T∞

r D∞
N D∞ M∞ M0

1 1.4914 × 104 4.6358 × 103 2.5845 × 103 2.3891 × 103 3.0504 × 102 6.0214 × 102 1.1798 × 104 2.1004 × 104

2 1.1429 × 104 6.0411 × 103 5.3853 × 103 3.3646 × 103 1.0329 × 102 5.1299 × 102 8.6227 × 103 1.6445 × 104

3 9.2381 × 103 1.3864 × 103 1.1139 × 103 2.7910 × 103 1.8878 × 10−1 1.8635 × 102 6.7972 × 103 3.2146 × 104

4 1.3878 × 104 2.4910 × 103 3.2172 × 103 2.2783 × 103 1.4196 × 102 6.2154 × 102 1.2931 × 104 1.5761 × 104

5 1.0262 × 104 3.7844 × 103 1.6853 × 103 2.6394 × 103 8.0199 × 10 1.9084 × 102 1.1603 × 104 2.8198 × 104

C∞ N∞ µ∞
1 µ∞

2 H∞ I∞
γ G∞

β

1 9.1531 × 104 4.5765 × 104 1.6328 × 102 1.2987 × 103 8.9811 × 103 8.5737 1.9037 × 104

2 9.7064 × 104 4.8532 × 104 1.7552 × 102 1.3249 × 103 8.5279 × 103 10.5677 2.2275 × 104

3 9.0029 × 104 4.5014 × 104 1.9866 × 102 1.2906 × 103 9.5122 × 103 0.8287 2.5145 × 104

4 9.6956 × 104 4.8478 × 104 1.1410 × 102 3.3689 × 102 5.1782 × 103 1.2703 8.1734 × 103

5 8.0584 × 104 4.0292 × 104 1.2058 × 102 7.1551 × 102 7.7848 × 103 5.7892 2.6260 × 104

In order to investigate the dynamics of tumors and solve the system of ODEs, we need the initial values
of variables. We assume the smallest tumors in each cluster represent the initial conditions. Therefore, we
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use the values of the variables of the smallest tumors (estimated using their gene expression profiles) as
the initial conditions. The relative values are given in Table 3. The dynamics with initial conditions based
on other patients are presented in Appendix C.

Table 3. Dimensionless initial conditions. Values of initial conditions for the dimensionless system
derived from the patients with the smallest tumor size.

Cluster TN/T∞
N Th/T∞

h TC/T∞
C Tr/T∞

r DN/D∞
N D/D∞ M/M∞

1 0.9311 1.2492 2.4626 0.6872 1.6328 0.0003 0.6737
2 1.2302 1.3155 1.5210 0.5107 2.0461 2.7822 1.2920
3 1.1997 0.8555 1.6948 × 10−4 0.6572 1.0000 1.0130 × 10−3 1.4150
4 1.4471 0.1571 0.5823 0.8910 5.6827 4.2945 0.9259
5 0.6794 2.6119 1.6294 1.8819 2.3538 × 10−3 0.4542 0.7749

C/C∞ N/N∞ µ1/µ∞
1 µ2/µ∞

2 H/H∞ Iγ/I∞
γ Gβ/G∞

β

1 3.1466 × 10−4 0.0 0.4971 0.5124 1.4712 3.8892 0.2549
2 2.9672 × 10−4 0.0 0.7578 0.1790 0.6036 0.9385 0.5566
3 3.1991 × 10−4 0.0 0.1335 0.8419 1.2566 0.0 0.6851
4 2.9706 × 10−4 0.0 0.4137 5.7720 1.4630 0.0 2.5629
5 3.5741 × 10−4 0.0 0.4587 2.2979 1.1835 0.4084 0.3457

3.2. Sensitivity Analysis

We perform sensitivity analysis of the non-dimensionalized system with parameters derived from
patient data through steady-state assumptions. Table 2 contains the steady-state values used for each
cluster, and Appendix B shows the parameter derivation and non-dimensionalization in detail. It is worth
pointing out that there might be a variation in the calculated parameters due to differences between
patients and possible alterations in assumptions of Appendix B. In order to account for those possible
variations, sensitivity analysis is performed on dimension-less system of equations (see Section 2.2). We
use cancer cells, total cell density and minimal eigenvalue of the Jacobian of the ODE system as the
variables of interest in the sensitivity analysis. Minimal eigenvalue of the Jacobian serves as a measure of
how fast the system converges to the steady-state. Figure 4A shows the four most sensitive parameters for
each cluster. Additionally, to evaluate the effect of immune microenvironment on cancer, we look at the
sensitivity of cancer cells and total cell density excluding the parameters appearing in the equations for
cancer and necrotic cells. The resulting data denoted as “Immune sensitivity” are given in Figure 4B.

Across all clusters, the most sensitive parameters are cancer proliferation and death rates directly
present in the cancer Equation (13). From the third column in Figure 4A, we conclude that for all clusters,
increased cancer proliferation coefficients correspond to faster convergence to the steady-state, while
increased cancer death rates lead to a slower convergence. When considering immune sensitivity presented
on Figure 4B, in clusters 1, 2, 3 and 5, the most sensitive immune parameters are those corresponding to
the activation and decay rates of macrophages, with only sensitivity levels being different between clusters
and variables. In clusters 1 and 2, which include tumors with a smaller density of naive macrophages than
activated macrophages, an increase in decay rate of macrophages causes a decrease in the density of cancer
cells and total cell density. On the other hand, an increase in any of the activation rates for macrophages
causes an increase in both quantities of interest. However, for clusters 3 and 5, which include tumors with
a higher density of naive macrophages than activated macrophages, the effects are reversed. Interestingly,
for cluster 3, the increase in macrophage activation rate results in both lower cancer cell density and total
cell density, with latter sensitivity being noticeably smaller by absolute value. On the other hand, for
cluster 5 the increase in macrophage activation rate results in lower cancer cell density, but higher total cell
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density. This can be explained by a significant increase in immune cell density, which for cluster 5 is even
higher than the corresponding decrease in cancer cell density. All these results demonstrate that at the
steady-state, tumor-associated macrophages could have different effects on different clusters of patients
depending on their immune profile.
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Figure 4. Sensitivity analysis. The first, second and third columns of (A) respectively present the results of
non-dimensional sensitivity of cancer cell density, total cell density and minimal eigenvalue of the Jacobian
of the system at the steady-state. Minimal eigenvalue is used as a measure of how fast the system converges
to the steady-state. (B) The sensitive parameters related to immune cells. Each row of plots shows the most
sensitive parameters for each cluster of patients.

The outlying cluster 4, which consists of tumors with a significantly small density of naive
macrophages compared to the other clusters, is less sensitive to the activation rates of macrophages.
The most sensitive immune parameters for cancer cell density are those related to the activation and
degradation of regulatory T-cells. The results indicate that increased regulatory response activation rate
corresponds to an increase in the cancer cell density, while an increase in T-reg cell degradation rate results
in a decrease in cancer cell density, demonstrating that for this cluster of patients regulatory T-cells have
mostly negative effects. Importantly, the most sensitive parameter for the total cell density is still the decay
rate of macrophages, and macrophages still have a negative effect, i.e., the faster decay of macrophages
leads to the smaller tumors in the steady-state.

3.3. Dynamic of Tumor Microenvironment

We investigate the dynamics of each variable, with parameters derived for each cluster based on
steady-state assumptions (see Table 2 for steady-state values and Tables A1–A3 for parameter values) and
initial conditions of patients with the smallest tumor (see Table 3). Figures 5 and 6 show the dynamics of
cell densities and cytokines expressions respectively. We investigate the effect of variations in parameters’
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values on the dynamics of the tumor by varying the most sensitive parameters by 10% in both the positive
and negative directions. These variations are shown as shaded regions on each of the graphs.

Figure 5. Cells’ dynamics in colonic tumors. Time evolution of cells’ density (cell/cm3) for each cell type
in the model and total cell density. Different colors represent the models derived for different clusters of
patients and shaded regions represent the 10% variation in the most sensitive parameters.

Figure 6. Cytokines’ dynamics in colonic tumors. Time evolution of RNA-seq expression rate of cytokines.
Different colors represent the models derived from different clusters of patients and shaded regions
represent the 10% variation in the most sensitive parameters.

For most clusters, cancer cells grow as helper T-cells, cytotoxic cells (cytotoxic T-cells and NK cells),
dendritic cells and macrophages increase in density over time, while naive T-cells, regulatory T-cells and
naive dendritic cells decrease in density. The increase in cytotoxic cells along with tumor progression is
somewhat contradicting to the finding in [102,103] that colon primary tumor growth is associated with
decreased cytotoxic T-cells density. However, there is no correlation between tumor size and cytotoxic
cells in the TCGA data of colonic primary tumors. Moreover, it is important to note that in our model
cancer cells’ growth is multiple times faster than the rate of change of any immune cells (Figure 5).
Thus, even though cytotoxic cells density grows over time, the tumor is growing at a much faster rate.
Since tumor cells activate dendritic cells which then activate cytotoxic cells, it is reasonable to see some
growth of cytotoxic cells when tumor cells density increases rapidly.

Clusters 2 and 4 have the highest cancer cell density at steady-state and also the highest growth rate
of cancer cells. Cluster 2’s cancer cells start out with the lowest growth rate, but at around 1800 days grow
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significantly faster and end up growing the fastest among all clusters. Cluster 2 has the highest density
of helper T-cells and cytotoxic cells, both in the early stages of cancer development and at steady-state,
as well as the highest growth rate of these cells. However, cluster 2 has rather low density and low growth
rate of macrophages.

Cluster 4, having the largest density of activated macrophages and a significantly small density of
naive macrophages (Figure 2B), first demonstrates average cancer growth rate, but then increases and has
one of the two highest cancer cell densities at the steady-state (Figure 5). Similar to cluster 2, cluster 4 has
high density of cytotoxic cells (CD8 T-cells and NK cells) initially and at steady-state. Both clusters 2 and 4
have a low growth rate of macrophages and a high density of dendritic cells, compared to other clusters.
Immune cell dynamics of clusters 2 and 4 demonstrate that a high density of cytotoxic cells and dendritic
cells, along with a low growth rate of macrophages, correlates with a high growth rate of cancer cells.

However, unlike cluster 2, cluster 4 has a low growth rate of cytotoxic cells and helper T-cells, and a
low density of helper T-cells overall. Though both clusters 2 and 4 have a low growth rate of macrophages,
cluster 4 has the highest density of macrophages among all clusters, while cluster 2 has the second lowest
macrophages density. Regulatory T-cells also behave very differently between cluster 2 and cluster 4.
Cluster 2 has high density and high decline rate of regulatory T-cells over time, but cluster 4 has both low
density and low decline rate of this cell. These observations suggest that cell densities alone cannot predict
cancer progression and there are no specific biomarkers that are sufficient to model tumor growth. Instead,
a time series immune interaction network with tumor cells can be useful in modeling cancer development.

Cluster 5, with the density of activated macrophages being slightly less than naive macrophages
(Figure 2B), has the lowest cancer cell density at steady-state and the lowest cancer cell growth of all
clusters (Figure 5). This cluster has the lowest growth rate and density at initial condition and steady-state
of naive dendritic cells, activated dendritic cells and cytotoxic cells, except for cytotoxic cells density at
steady-state (second lowest). It also has the highest growth rate of macrophages among the five clusters.
This observation might imply that slow tumor growth is associated with low density and growth rate of
naive and activated dendritic cells, cytotoxic cells and high growth rate of macrophages.

Cluster 1, which is characterized by the second largest population of macrophages and helper T-cells,
demonstrates that dendritic cells alone cannot be chosen as a marker of cancer progression, as it has
the second highest dendritic cell population, but only the third highest cancer cell population at the
steady-state, being surpassed by cluster 2.

Cluster 3, being a clear outlier in the immune dynamics, has near zero density of naive dendritic
cells. This alone prevents it from creating significant variations in the immune response during the cancer
progression. It is interesting to note, that while almost unchecked by immune responses, this cluster
initially demonstrates noticeably highest cancer growth rate, but results in the second lowest cancer density
at the steady-state.

Tumor cytokines’ dynamics (Figure 6) indicate that as the tumor grows, HMGB1, IFN-γ and µ1 (IL-6,
IL-17, IL-21, IL-22) increase in density, but TGF-β and µ2 (IL-10, CCL20) stay relatively constant. Clusters
2 and 4, which have the highest cancer cell growth rate among all clusters, show different cytokines’
behaviors throughout time. At steady-state, cluster 4 has significantly lower densities of all cytokines in
our model than cluster 2, despite the fact that they have the same cancer cell density then. Cluster 4 also
has a much lower growth rate of µ1, HMGB1 and IFN-γ compared to cluster 2. Clusters 1 and 5 have more
similar growth rates of these cytokines as cluster 2, even though they have rather different tumor growth
rates from cluster 2. Thus, the density or growth of any specific cytokine is not an adequate predictor of
tumor progression, and we need the full interaction network to effectively model the cancer cell growth.

Additionally within each cluster, we look at the dynamics of cancer and total cell density with
different initial conditions, each derived from a different patient in that cluster. See Appendix C, and
specifically Figures A2–A6, for more details on different initial conditions and resulting dynamics. This
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result indicates that even within the same cluster, different initial immune profiles may cause dramatic
differences in the cancer progression rate. Additionally, while the dynamics of cancer cell density remains
monotone across all patients, we observe oscillatory behavior in the total cell density. This can be explained
by a temporary surge of immune cell density at the early stages of cancer, which also appears to correlate
with slower cancer progression rate. The only cluster which does not exhibit this oscillatory behavior is
cluster 3. As mentioned before, due to lack of naive dendritic cells, cluster 3 does not show significant
immune cell density variations, which are the source of oscillatory behavior for other clusters.

4. Discussion

Although there are many mathematical models for cancer [34–43,104–124], one of the outstanding
challenges in mathematical modeling of cancers is the existence of many unknown parameters and the
limited number of data sets. For this reason, the approach of many of these mathematical models is to
assume some values for parameters, use estimated parameters from other diseases, or vary the parameters
and initial conditions within biologically-feasible values in order to investigate their effects on the results.
Here, we choose some of the parameter values based on biological studies and the rest by utilizing patients’
gene expression data. New advances in tumor deconvolution techniques help us to utilize cancer patients’
data in order to develop a data driven mathematical model of tumor growth. Using tumor deconvolution
methods, we estimate the relative abundance of various cell types from gene expression profiles of tumors.
The machine learning algorithm of K-means clustering indicates the existence of five distinct groups
of colon cancers based on their immune patterns. The comparison of tumor behaviors in these groups
suggests that the dynamics of tumors strongly depends on their immune structure.

While it would be ideal to use time course gene expression data of colon cancer patients in our
framework, the availability of these time series data sets is limited. In order to combat this limitation,
clustering was used to group patients with similar immune patterns and treat each group as time course
data based on the size of tumor, which means the data points with small tumor density are considered
data from early stages (initial conditions) and the data points with large tumor density are considered
data from late stages (steady-state values). We assume a large tumor in a cluster that is in the steady-state
is an evolution of a small tumor in the same cluster, because when a small tumor in a cluster (e.g., 1)
evolves to a large tumor in another cluster (e.g., 3), its dynamics will quickly converge to the dynamics
of a small tumor in the cluster of the steady-state tumor (e.g., 3) (Figure A1). We then follow a common
approach of mathematical biology models that use assumptions on the steady-state values of the system
to estimate parameters of the model [125,126]. Note that we use patient data to estimate the steady-state
values of each cluster, and we then estimate parameters based on the values at the steady-state. Due to the
non-dimensionalization process, the relative dynamics of the system are independent of the data scaling
and only depend on relative values for patients.

The parameter values have been estimated based on the assumption that the largest tumors are near
the steady-state, because the large tumors do not have much space to grow. Figure 3F shows that the ratio
of cancer cells over total immune cells increases when the size of tumors increases. This may suggest
that small tumors have a broader potential for decision making and more options to evolve than large
tumors. We also investigate the dynamics of all tumors with a size “below average” as initial condition.
The resulting dynamics (Figures A2–A6) show that when the size of initial tumors increases, the time to
reach the steady-state decreases. This observation is also in support of the steady-state assumption.

To evaluate the effect of each parameter value on the results, we perform a comprehensive sensitivity
analysis, which covers a range of parameter values. For all parameters that have not been determined
using biological literature, we estimate 5 different values for each parameter in each cluster. We find the
most sensitive parameters by applying a gradient based sensitivity analysis method on the dimension-less
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system of equations. Note, although we used completely different values for some of the parameters
for each cluster, our sensitivity analysis shows that a similar set of parameters are the most sensitive
parameters for all clusters. This demonstrates that while many parameters are unknown, the evolution of
tumors is not sensitive to many of these parameters (Figure 4). For those sensitive parameters, we show
how their variations would affect the results of the model (Figures 5 and 6).

The mathematical model shows a unique pattern of tumor growth in each cluster based on their
immune infiltration. For example, the model indicates that a high density of cytotoxic T-cells and dendritic
cells and a low growth rate of macrophages are associated with a high growth rate of cancer cells (observed
in clusters 2 and 4, Figures 4 and 5), while a low density and growth rate of naive and active dendritic cells
and cytotoxic T-cells and a high growth rate of macrophages correlate with slow tumor growth (observed
in cluster 5, Figures 4 and 5). Clinical information provided for patients in the clusters also supports the
results of the dynamical model. Cluster 4, which has the highest percentage of patients with tumors at the
time of last follow up (Figure 3C) has poor outcome compared to other clusters, while cluster 5, which
has the highest percentages of tumor-free and alive patients (Figure 3A,C) has better outcome than the
other clusters.

Importantly, our results imply that macrophages’ activation rates have different effects in different
clusters. A high activation rate of macrophages leads to a high density of cancer cells in clusters 1 and 2
(Figure 4), in which there are more activated than naive macrophages. This result is in agreement with
an observation of [127], which indicates a high CD206/CD68 ratio is significantly associated with poor
outcome. Note, CD206 is the marker for M2 macrophages and CD68 is expressed at high levels on M0
cells [128]. However, the activation rates of macrophages are negatively correlated with tumor growth in
clusters 3 and 5 (Figure 4), in which they are more naive than activated macrophages. This is consistent
with the observation that a high level of macrophages is associated with a favorable outcome of colon
cancer patients in [102,129]. The study in [102] also shows that a high level of regulatory T-cells is related
to poor prognosis of patients, which supports our results that regulatory T-cells decrease in density as
cancer cells increase in density. Another similar finding between [102] and our study is that the density of
dendritic cells increases along with tumor progression (Figure 5).

There is a significant body of research analyzing statistical and mathematical relations of particular
components of tumor microenvironment and the disease progression and outcome for subsequent
establishment of prognostic biomarkers [130–139]. Our result demonstrates that the dynamics of cancer
development cannot be captured by one specific biomarker, but can rather be characterized by complex
time-dependent interactions between many components of the immune system and tumor tissue. It is
important to further develop and analyze these tumor–immune cell interactions and how they affect
different possibilities of treatment.

It is important to point out that, similar to many other mathematical models of biological processes,
this model has some limitations that arise from the lack of time course data sets. Specifically, we make the
assumption that the largest tumors in each cluster are the evolution of the smallest ones. Importantly, as
we mentioned above, some of the predictions of the model match with biological observations. However,
these facts do not provide a complete validation for the model, and the model should be validated on
a separate time course data. We hope that this work encourages scientists to collect time course data.
Although this work has some limitations, it provides important insights and an opportunity for scientists
to improve the mathematical model of colonic tumors and/or validate the model if they have more data
or insights.

One way forward is the design of patient-specific models [140–143]. These models can utilize the
tumor immune microenvironment deconvolution and clustering methods for available patient data as
detailed in this paper. New prognosis can be built based on established dynamics from patients with
similar immune characteristics. To better match the dynamics of the model to real patient data, various
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parameter fitting algorithms can be utilized [144–147]. Another possible improvement is a transition to
a partial differential equations model [148] to analyze spatial properties of tumor development as well
as temporal.
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Appendix A. ODE System and Analysis

Combining Equations (1)–(14), we obtain the following system

d [TN ]

dt
=ATN −

(
λThD [D] + λTh M [M] + λThµ1 [µ1]

)
[TN ]−

(
λTCTh [Th] + λTC D [D]

)
[TN ]

https://github.com/ShahriyariLab/TumorDecon
https://github.com/ShahriyariLab/Data-driven-mathematical-model-for-colon-cancer
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−
(

λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[
Gβ

])
[TN ]− δTN [TN ] (A1)

d [Th]

dt
=
(
λThD [D] + λTh M [M] + λThµ1 [µ1]

)
[TN ]−

(
δThµ2 [µ2] + δThTr [Tr] + δTh

)
[Th] (A2)

d [TC]

dt
=
(
λTCTh [Th] + λTC D [D]

)
[TN ]−

(
δTCµ2 [µ2] + δTCTr [Tr] + δTC

)
[TC] (A3)

d [Tr]

dt
=
(

λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[
Gβ

])
[TN ]−

(
δTrµ1 [µ1] + δTr

)
[Tr] (A4)

d [DN ]

dt
=ADN − (λDH [H] + λDC [C]) [DN ]− (δDH [H] + δD) [DN ] (A5)

d [D]

dt
= (λDH [H] + λDC [C]) [DN ]− (δDH [H] + δDC [C] + δD) [D] (A6)

d [M]

dt
=
(

λMµ2 [µ2] + λMIγ [Iγ] + λMTh [Th]
)
(M0 − [M])− δM [M] (A7)

d [C]
dt

=
(
λC + λCµ1 [µ1]

)
[C]
(

1− [C]
C0

)
−
(

δCGβ

[
Gβ

]
+ δCIγ [Iγ] + δCTC [TC] + δC

)
[C] (A8)

d [N]

dt
=αNC

(
δCGβ

[
Gβ

]
+ δCIγ [Iγ] + δCTC [TC] + δC

)
[C]− δN [N] (A9)

d [H]

dt
=λHN [N] + λHM [M] + λHTh [Th] + λHTC [TC] + λHTr [Tr]− δH [H] (A10)

d [µ1]

dt
=λµ1Th [Th] + λµ1 M [M] + λµ1D [D]− δµ1 [µ1] (A11)

d [µ2]

dt
=λµ2 M [M] + λµ2D [D] + λµ2Tr [Tr]− δµ2 [µ2] (A12)

d [Iγ]

dt
=λIγTh [Th] + λIγTC [TC] + λIγ M [M]− δIγ [Iγ] (A13)

d
[
Gβ

]
dt

=λGβ M [M] + λGβTr [Tr]− δGβ

[
Gβ

]
(A14)

The system has 14 variables and 59 different parameters. The λ parameters correspond to proliferation,
activation and production rates, δ parameters correspond to degradation and cell death rates and four
parameters: ATN and ADN respectively are the production rates of naive T-cells and dendritic cells, M0

and C0 are the total density of macrophages (naive and activated together) and cancer cells maximum
capacity, respectively.

Appendix A.1. Positivity

To prove that the system with positive coefficients and positive initial conditions has positive solution,
let us consider the set of integrating factors, one for each variable:

ηTN (t) = exp
t∫

0

((
λThD + λTcD

)
[D] + λTh M [M] + λThµ1 [µ1] +

+
(
λTcTh + λTrTh

)
[Th] + λTrµ2 [µ2] + λTrGβ

[
Gβ

]
+ δTN

)
ds,

ηTh (t) = exp
t∫

0

(
δThµ2 [µ2] + δThTr [Tr] + δTh

)
ds,

ηTC (t) = exp
t∫

0

(
δTCµ2 [µ2] + δTCTr [Tr] + δTC

)
ds,
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ηTr (t) = exp
t∫

0

(
δTrµ1 [µ1] + δTr

)
ds,

ηDN (t) = exp
t∫

0

(λDH [H] + λDC [C] + δDH [H] + δD) ds,

ηD (t) = exp
t∫

0

(δDH [H] + δDC [C] + δD) ds,

ηM (t) = exp
t∫

0

(
λMµ2 [µ2] + λMIγ [Iγ] + λMTh [Th] + δM

)
ds,

ηC (t) = exp
t∫

0

(
δCGβ

[
Gβ

]
+ δCIγ [Iγ] + δCTC [TC] + δC −

(
λC + λCµ1 [µ1]

) (
1− [C]

C0

))
ds,

ηN (t) = exp (δNt) , ηH (t) = exp (δHt) , ηµ1 (t) = exp
(
δµ1 t

)
,

ηµ2 (t) = exp
(
δµ2 t

)
, ηIγ (t) = exp

(
δIγ t
)

, ηGβ
(t) = exp

(
δGβ

t
)

These integrating factors will not allow us to derive explicit solution as some of them are defined
through the unknown variables. It is important to note that the factors are strictly positive and allow us to
rewrite the system as

d
(
[TN ] ηTN

)
dt

=ATN ηTN

d
(
[Th] ηTh

)
dt

=
(
λThD [D] + λTh M [M] + λThµ1 [µ1]

)
[TN ] ηTh

d
(
[TC] ηTC

)
dt

=
(
λTCTh [Th] + λTC D [D]

)
[TN ] ηTC

d ([Tr] ηTr )

dt
=
(

λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[
Gβ

])
[TN ] ηTr

d
(
[DN ] ηDN

)
dt

=ADN ηDN

d ([D] ηD)

dt
= (λDH [H] + λDC [C]) [DN ] ηD

d ([M] ηM)

dt
=
(

λMµ2 [µ2] + λMIγ [Iγ] + λMTh [Th]
)

M0ηM

d ([C] ηC)

dt
=0

d ([N] ηN)

dt
=αNC

(
δCGβ

[
Gβ

]
+ δCIγ [Iγ] + δCTC [TC] + δC

)
[C] ηN

d ([H] ηH)

dt
=
(
λHN [N] + λHM [M] + λHTh [Th] + λHTC [TC] + λHTr [Tr]

)
ηH

d
(
[µ1] ηµ1

)
dt

=
(
λµ1Th [Th] + λµ1 M [M] + λµ1D [D]

)
ηµ1

d
(
[µ2] ηµ2

)
dt

=
(
λµ2 M [M] + λµ2D [D] + λµ2Tr [Tr]

)
ηµ2
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d
(
[Iγ] ηIγ

)
dt

=
(

λIγTh [Th] + λIγTC [TC] + λIγ M [M]
)

ηIγ

d
([

Gβ

]
ηGβ

)
dt

=
(

λGβ M [M] + λGβTr [Tr]
)

ηGβ

We see that the right-hand side of each equation in this system is non-negative, which means that the
variable-factor product is non-decreasing, and thus if positive initially remains positive at all times.

Appendix A.2. Boundedness

Let us show that all positive solutions are bounded for positive time t. We split the equations into
groups by cell types. It is important to note, that we are not trying to derive the sharp bounds, just show
that the bounds exist.

Appendix A.2.1. T-Cells

Adding Equations (A1)–(A4), we get

d ([TN ] + [Th] + [TC] + [Tr])

dt
=ATN − δTN [TN ]−

(
δThµ2 [µ2] + δThTr [Tr] + δTh

)
[Th]

−
(
δTCµ2 [µ2] + δTCTr [Tr] + δTC

)
[TC]−

(
δTrµ1 [µ1] + δTr

)
[Tr]

≤ATN − ([TN ] + [Th] + [TC] + [Tr])min
(
δTN , δTh , δTC , δTr

)
.

Integrating this inequality, we obtain

([TN ] + [Th] + [TC] + [Tr]) ≤
ATN

min
(
δTN , δTh , δTC , δTr

) (1− e−min
(

δTN ,δTh
,δTC ,δTr

)
t
)

+ ([TN ] (0) + [Th] (0) + [TC] (0) + [Tr] (0)) e−min
(

δTN ,δTh
,δTC ,δTr

)
t.

The right-hand side function is bounded, and since we have proven that each cell density is positive,
all T-cells have to remain bounded.

Appendix A.2.2. Dendritic Cells

Let us add Equations (A5) and (A6) to obtain

d ([DN ] + [D])

dt
= ADN − (δDH [H] + δD) ([DN ] + [D])− δDC [C] [D] ≤ ADN − δD ([DN ] + [D]) .

Integrating, we get

([DN ] + [D]) ≤ ADN

δD

(
1− e−δDt

)
+ ([DN ] (0) + [D] (0)) e−δDt.

Since the right-hand side is bounded and each variable is positive, this proves that each variable
is bounded.
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Appendix A.2.3. Macrophages

Let us rewrite Equation (A7) as

d ([M]−M0)

dt
−
(

λMµ2 [µ2] + λMIγ [Iγ] + λMTh [Th]
)
(M0 − [M]) = −δM [M] ≤ 0.

Integrating (with implicit dependence on variables [µ2], [Iγ], and [Th]) results in

[M] ≤ M0 − (M0 − [M] (0)) exp
(
−
∫ t

0

(
λMµ2 [µ2] (s) + λMIγ [Iγ] (s) + λMTh [Th] (s)

)
ds
)

.

The right-hand side function is bounded for positive [µ2], [Iγ] and [Th], and thus proves the bound
on [M].

Appendix A.2.4. Cancer Cells

Rewriting the Equation (A8) as

d ([C]− C0)

dt
−
(
λC + λCµ1 [µ1]

)
[C]

C0
(C0 − [C]) =

(
δCGβ

[
Gβ

]
+ δCIγ [Iγ] + δCTC [TC] + δC

)
[C] ≤ 0

we integrate with implicit dependence on both [C] and [µ1] to obtain

[C] ≤ C0 − (C0 − [C] (0)) exp

(
−
∫ t

0

(
λC + λCµ1 [µ1] (s)

)
[C] (s)

C0
ds

)
.

Since [C] and [µ1] are proven to remain positive, the right-hand side is bounded, hence [C] is bounded.

Appendix A.2.5. Interferon-γ and TGF-β

Here we show the bound on [Iγ] and
[
Gβ

]
as we need them to prove the bound on [N].

Remark A1. Alternatively we could show a bound on [µ1] and subsequent bound on [N] + [C].
Observe that on the right-hand sides of Equations (A13) and (A14), the positive terms are already proven to be

bounded:

λIγTh [Th] + λIγTC [TC] + λIγ M [M] ≤ λmax
Iγ

,

λGβ M [M] + λGβTr [Tr] ≤ λmax
Gβ

.

Then combining these with Equations (A13) and (A14) we get the following differential inequalities:

d [Iγ]

dt
≤ λmax

Iγ
− δIγ [Iγ] ,

d
[
Gβ

]
dt

≤ λmax
Gβ
− δGβ

[
Gβ

]
.

Integrating, we get

[Iγ] ≤
λmax

Iγ

δIγ

(
1− e−δIγ t

)
+ [Iγ] (0) e−δIγ t,

[
Gβ

]
≤

λmax
Gβ

δGβ

(
1− e

−δGβ
t)

+
[
Gβ

]
(0) e

−δGβ
t
,
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which proves the bound.

Appendix A.2.6. Necrotic Cells

Now we notice that for Equation (A9) all the components of the positive term are already proven to
remain bounded

αNC

(
δCGβ

[
Gβ

]
+ δCIγ [Iγ] + δCTC [TC] + δC

)
[C] ≤ λmax

N ,

which results in the differential inequality

d [N]

dt
≤ λmax

N − δN [N] ,

subsequently resulting after integration in the following bound:

[N] ≤ λmax
N
δN

(
1− e−δN t

)
+ [N] (0) e−δN t.

Appendix A.2.7. Remaining Cytokines

With the bound on necrotic cells we have proven boundedness for all the positive components of the
right-hand sides of the Equations (A10)–(A12):

λHN [N] + λHM [M] + λHTh [Th] + λHTC [TC] + λHTr [Tr] ≤ λmax
H ,

λµ1Th [Th] + λµ1 M [M] + λµ1D [D] ≤ λmax
µ1

,

λµ2 M [M] + λµ2D [D] + λµ2Tr [Tr] ≤ λmax
µ2

.

Thus, the following differential inequalities are valid:

d [H]

dt
≤ λmax

H − δH [H] ,

d [µ1]

dt
≤ λmax

µ1
− δµ1 [µ1] ,

d [µ2]

dt
≤ λmax

µ2
− δµ2 [µ2] .

Integrating, we obtain

[H] ≤ λmax
H
δH

(
1− e−δH t

)
+ [H] (0) e−δH t,

[µ1] ≤
λmax

µ1

δµ1

(
1− e−δµ1 t

)
+ [µ1] (0) e−δµ1 t,

[µ2] ≤
λmax

µ2

δµ2

(
1− e−δµ2 t

)
+ [µ2] (0) e−δµ2 t.

Thus, [H], [µ1] and [µ2] are bounded for positive t.
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Appendix B. Derivation of the Sample Parameter Set

Appendix B.1. Steady-State and Additional Assumptions

We derive the sample parameter set under the assumption of specific values of steady-state for
each variable:

T∞
N , T∞

h , T∞
C , T∞

r , D∞
N , D∞, M∞, C∞, N∞, H∞, µ∞

1 , µ∞
2 , I∞

γ , G∞
β .

Then, Equations (A1)–(A14) provide us with 14 restrictions on parameters. Since the number
of unknown parameters is larger than the number of equations at the steady-state, we make further
assumptions about some of parameters in order to have the same number of independent equations as the
number of unknown parameters and to be able to uniquely determine the values. We assume, given cancer
cell and macrophage capacities, C0 and M0, as well as necrosis coefficient αNC = 3/4. Additionally, from
the available research [126,130,149–157] we adopt the natural decay/death/degradation rates. For some of
the specimen, considering a specimen X, we will estimate death rate δX using published measurements of
half-life tX

1/2 using the following formula δX = ln 2/tX
1/2. Let us look at these in detail. According to [154],

the half life of naive T-cells and memory T-cells range between 1–8 years and 1–12 months, respectively.
We take the half-life of TN to be 2 years, respectively to δTN = 9.4951× 10−4. Half-lives of CD8+ and
CD4+ T-cells are estimated at 41 h and 3 days correspondingly [150]. This results in δTh = δTr = 0.231
and δTC = 0.406. Ref. [149] estimates half life of mature DC to be 2–3 days. Taking 2.5 days, we obtain
δD = 0.277. The half-life of intestinal macrophages is approximately 4–6 weeks [158]. We consider a
value δM = 0.02 from supplementary information of [151], closely corresponding to 5-week half-life.
For µ1 we assume 15.5 h half-life of IL-6 [153], resulting in δµ1 = 1.07. For µ2, we consider 2.7 to 4.5 h
half-life of human IL-10 [155]. For the average 3.6 h the resulting decay rate is δµ2 = 4.62. For HMGB1, we
take half-life of 17 min [152] resulting in δH = 58.7. For IFN-γ, we assume half-life of 30 min [157] and
corresponding rate δIγ = 33.27. Lastly, for TGF-β, the estimated half-life is about 2 min [156] resulting in
the rate δGβ

= 499. To summarize, here are the death rates used in our computations:

δTN =9.4951× 10−4, δTh =0.231, δTC =0.406, δTr =0.231, (A15)

δD =0.277, δM =0.02, δH =58.7, δIγ =33.27, (A16)

δGβ
=499, δµ1 =1.07, δµ2 =4.62. (A17)

As a last step, we impose heuristic assumptions on activation, inhibition and production rates. Let us
look at these in detail.

First, we consider the results in [159] suggesting that range of colon cancer doubling time is between
92.4 and 1032.2 days. This range of doubling rates should include the effects of immune microenvironment.
Thus, let us consider the doubling rate to be the difference between proliferation rate and death rate. Faster
doubling rate includes both innate cancer proliferation and proliferation caused by µ1 family of cytokines,
while death rate being only innate. This results in

ln 2
92.4

≈ 7.5× 10−3 =
(
λC + λCµ1 µmean

1
)
− δC. (A18)

On the other hand, for the slower doubling rate we only consider innate cancer proliferation, while
death rate includes effects of all anti-cancer agents, i.e.,

ln 2
1032.2

≈ 6.7152× 10−4 = λC −
(

δCGβ
Gmean

β + δCIγ
Imean
γ + δCTC Tmean

C + δC

)
. (A19)
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Here we consider µmean
1 , Tmean

C , Imean
γ and Gmean

β to be average values of the corresponding variable
across all patients.

Further assumptions are based on maximal observable quantities for all the variable across all patients:

Tmax
N , Tmax

h , Tmax
C , Tmax

r , Dmax
N , Dmax, Mmax, Cmax, Nmax, Hmax, µmax

1 , µmax
2 , Imax

γ , Gmax
β .

See Appendix C for more details on patient data and specific values.
We assume that most of T-helper cells are activated by antigen-presenting dendritic cells, so we take

λThDDmax = 200λTh M Mmax = 200λThµ1 µmax
1 . (A20)

We also assume that inhibition of T-helper cells by µ2 family of cytokines and by Treg cells are each
20 times more effective than the natural degradation:

δThµ2 µmax
2 = δThTr Tmax

r = 20δTh . (A21)

For cytotoxic T-cells, we assume that activation by T-helper cells is twice as effective as activation by
Dendritic cells

λTCTh Tmax
h = 2λTC DDmax, (A22)

and same as for T-helper cells inhibition of cytotoxic T-cells by µ2 family of cytokines and by Treg cells are
each 20 times more effective than the natural degradation:

δTCµ2 µmax
2 = δTCTr Tmax

r = 20δTC . (A23)

Next assumption is that activation of Treg cells by T-helper cells is four times larger than activation
by µ2 family of cytokines and by TGF-β:

λTrTh Tmax
h = 4λTrGβ

Gmax
β , λTrµ2 µmax

2 = λTrGβ
Gmax

β , (A24)

while inhibition of Treg cells by µ1 family of cytokines is 20 times larger than their natural degradation rate:

δTrµ1 µmax
1 = 20δTr . (A25)

We impose that activation of dendritic cells by HMGB1 is twice more effective than activation by
cancer cells, inhibition of dendritic cells by HMGB1 is twice less effective than inhibiiton by cancer cells,
and cumulative inhibition of dendritic cells by HMGB1 and cancer cells is equivalent to the natural
degradation rate of dendritic cells:

λDH Hmax = 2λDCCmax, δDH Hmax =
1
2

δDCCmax, δDH Hmax + δDCCmax = δD. (A26)

For macrophages, we assume that most macrophages are activated by T-helper cells, thus

λMTh Tmax
h = 10λMµ2 µmax

2 = 10λMIγ Imax
γ . (A27)

Next, we look at the cancer death rates. We assume TGF-β and IFN-γ are equally effective in killing
cancer cells, but cytotoxic T-cells to be twice more effective, so

δCGβ
Gmax

β = δCIγ
Imax
γ =

1
2

δCTC Tmax
C . (A28)
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We also assume that at its extreme value, TGF-β kills cancer cells 10 times faster than innate death
rate of cancer cells:

δCGβ
Gmax

β = 10δC. (A29)

Next, let us list assumptions on production rates of cytokines per cell:

λµ1 M =4λµ1Th = 8λµ1D, λµ2D =λµ2 M = λµ2Tr , λHN =10λHM = 20λHTh ,

λHTh =λHTC = λHTr , λIγTc =4λIγTh = 20λIγ M, λGβ M =λGβTr . (A30)

Altogether these assumptions are sufficient to derive a sample parameter set.

Appendix B.2. Non-Dimensionalization

For more stable numerical simulations and to avoid scale dependence in the sensitivity analysis,
we introduce non-dimensional variables. For each variable [X] with steady-state X∞ we introduce
non-dimensional

[
X
]
= [X] /X∞. Then for all the non-dimensional variables, steady-state will be equal

to 1. As a result of the dramatic difference between timescales in different equations (related to natural
decay rate), we make a choice to not scale time. Then we can rewrite the system as

d
[
TN
]

dt
=ATN − αTN Th

(
λThD

[
D
]
+ λTh M

[
M
]
+ λThµ1 [µ1]

) [
TN
]

− αTN TC

(
λTCTh

[
Th
]
+ λTC D

[
D
]) [

TN
]

− αTN Tr

(
λTrTh

[
Th
]
+ λTrµ2 [µ2] + λTrGβ

[
Gβ

]) [
TN
]
− δTN

[
TN
]

(A31)

d
[
Th
]

dt
=
(
λThD

[
D
]
+ λTh M

[
M
]
+ λThµ1 [µ1]

) [
TN
]
−
(
δThµ2 [µ2] + δThTr

[
Tr
]
+ δTh

) [
Th
]

(A32)

d
[
TC
]

dt
=
(
λTCTh

[
Th
]
+ λTC D

[
D
]) [

TN
]
−
(
δTCµ2 [µ2] + δTCTr

[
Tr
]
+ δTC

) [
TC
]

(A33)

d
[
Tr
]

dt
=
(

λTrTh

[
Th
]
+ λTrµ2 [µ2] + λTrGβ

[
Gβ

]) [
TN
]
−
(
δTrµ1 [µ1] + δTr

) [
Tr
]

(A34)

d
[
DN
]

dt
=ADN − αDN D

(
λDH

[
H
]
+ λDC

[
C
]) [

DN
]
−
(
δDH

[
H
]
+ δD

) [
DN
]

(A35)

d
[
D
]

dt
=
(
λDH

[
H
]
+ λDC

[
C
]) [

DN
]
−
(
δDH

[
H
]
+ δDC

[
C
]
+ δD

) [
D
]

(A36)

d
[
M
]

dt
=
(

λMµ2 [µ2] + λMIγ

[
Iγ

]
+ λMTh

[
Th
]) (

M0 −
[
M
])
− δM

[
M
]

(A37)

d
[
C
]

dt
=
(
λC + λCµ1 [µ1]

) [
C
] (

1−
[
C
]

C0

)
−
(

δCGβ

[
Gβ

]
+ δCIγ

[
Iγ

]
+ δCTC

[
TC
]
+ δC

) [
C
]

(A38)

d
[
N
]

dt
=αNC

(
δCGβ

[
Gβ

]
+ δCIγ

[
Iγ

]
+ δCTC

[
TC
]
+ δC

) [
C
]
− δN

[
N
]

(A39)

d
[
H
]

dt
=λHN

[
N
]
+ λHM

[
M
]
+ λHTh

[
Th
]
+ λHTC

[
TC
]
+ λHTr

[
Tr
]
− δH

[
H
]

(A40)

d [µ1]

dt
=λµ1Th

[
Th
]
+ λµ1 M

[
M
]
+ λµ1D

[
D
]
− δµ1 [µ1] (A41)

d [µ2]

dt
=λµ2 M

[
M
]
+ λµ2D

[
D
]
+ λµ2Tr

[
Tr
]
− δµ2 [µ2] (A42)

d
[
Iγ

]
dt

=λIγTh

[
Th
]
+ λIγTC

[
TC
]
+ λIγ M

[
M
]
− δIγ

[
Iγ

]
(A43)
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d
[
Gβ

]
dt

=λGβ M
[
M
]
+ λGβTr

[
Tr
]
− δGβ

[
Gβ

]
(A44)

where the nondimensional parameters can be expressed as follows:

ATN =
ATN

T∞
N

, αTN Th =
T∞

h
T∞

N
, αTN TC =

T∞
C

T∞
N

, αTN Tr =
T∞

r
T∞

N
,

ADN =
ADN

D∞
N

, αDN D =
D∞

D∞
N

, M0 =
M0

M∞ , C0 =
C0

C∞ ,

αNC =αNC
C∞

N∞ , λThD =
λThDD∞T∞

N
T∞

h
, λTh M =

λTh M M∞T∞
N

T∞
h

, λThµ1 =
λThµ1 µ∞

1 T∞
N

T∞
h

,

λTCTh =
λTCTh T∞

h T∞
N

T∞
C

, λTC D =
λTC DD∞T∞

N
T∞

C
, λTrTh =

λTrTh T∞
h T∞

N
T∞

r
, λTrµ2 =

λTrµ2 µ∞
2 T∞

N
T∞

r
,

λTrGβ
=

λTrGβ
G∞

β T∞
N

T∞
r

, λDH =
λDH H∞D∞

N
D∞ , λDC =

λDHC∞D∞
N

D∞ , λMµ2 =λMµ2 µ∞
2 ,

λMIγ =λMIγ I∞
γ , λMTh =λMTh T∞

h , λCµ1 =λCµ1 µ∞
1 , λHN =

λHN N∞

H∞ ,

λHM =
λHM M∞

H∞ , λHTh =
λHTh T∞

h
H∞ , λHTC =

λHTC T∞
C

H∞ , λHTr =
λHTr T∞

r
H∞ ,

λµ1Th =
λµ1Th T∞

h
µ∞

1
, λµ1 M =

λµ1 M M∞

µ∞
1

, λµ1D =
λµ1DD∞

µ∞
1

, λµ2 M =
λµ2 M M∞

µ∞
2

,

λµ2D =
λµ2DD∞

µ∞
2

, λµ2Tr =
λµ2Tr T∞

r

µ∞
2

, λIγTh =
λIγTh T∞

h
I∞
γ

, λIγTC =
λIγTC T∞

C
I∞
γ

,

λIγ M =
λIγ M M∞

I∞
γ

, λGβ M =
λGβ M M∞

G∞
β

, λGβTr =
λGβTr T∞

r

G∞
β

, δThµ2 =δThµ2 µ∞
2 ,

δThTr =δThTr T∞
r , δTCµ2 =δTCµ2 µ∞

2 , δTCTr =δTCTr T∞
r , δTrµ1 =δTrµ1 µ∞

1 ,

δDH =δDH H∞, δDC =δDCC∞, δCGβ
=δCGβ

G∞
β , δCIγ

=δCIγ
I∞
γ ,

δCTC =δCTC T∞
C .

Cancer proliferation rate λC and all the innate degradation/death rates remain unscaled.
Then the equations for doubling rate (A18) and (A19) become(

λC + λThµ1

µmean
1
µ∞

1

)
− δC = 7.5× 10−3,

λC −
(

δCGβ

Gmean
β

G∞
β

+ δCIγ

Imean
γ

I∞
γ

+ δCTC

Tmean
C
T∞

C
+ δC

)
= 6.7152× 10−4,

and the system of restrictions (A20)–(A30) in dimensionless form can be rewritten as

λThD
Dmax

D∞ =200λTh M
Mmax

M∞ = 200λThµ1

µmax
1
µ∞

1
, δThµ2

µmax
2
µ∞

2
=δThTr

Tmax
r
T∞

r
= 20δTh ,

λTCTh

Tmax
h
T∞

h
=2λTC D

Dmax

D∞ , δTCµ2

µmax
2
µ∞

2
=δTCTr

Tmax
r
T∞

r
= 20δTC ,

λTrTh

Tmax
h
T∞

h
=4λTrGβ

Gmax
β

G∞
β

, λTrµ2

µmax
2
µ∞

2
=λTrGβ

Gmax
β

G∞
β

,
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δTrµ1

µmax
1
µ∞

1
=20δTr , λDH

Hmax

H∞ =2λDC
Cmax

C∞ ,

δDH
Hmax

H∞ =
1
2

δDC
Cmax

C∞ =
1
3

δD, λMTh

Tmax
h
T∞

h
=10λMµ2

µmax
2
µ∞

2
= 10λMIγ

Imax
γ

I∞
γ

,

δCGβ

Gmax
β

G∞
β

=10δC δCGβ

Gmax
β

G∞
β

=δCIγ

Imax
γ

I∞
γ

=
1
2

δCTC

Tmax
C
T∞

C
,

λµ1 M

M∞ =4
λµ1Th

T∞
h

= 8
λµ1D

D∞ ,
λµ2D

D∞ =
λµ2 M

M∞ =
λµ2Tr

T∞
r

,

λHN
N∞ =10

λHM
M∞ = 20

λHTh

T∞
h

,
λHTh

T∞
h

=
λHTC

T∞
C

=
λHTr

T∞
r

,

λIγTC

T∞
C

=4
λIγTh

T∞
h

= 20
λIγ M

M∞ ,
λGβ M

M∞ =
λGβTr

T∞
r

.

These 29 restriction, together with 14 equations from requiring the steady-state of (A31)–(A44), and
11 given decay rates (A15)–(A17), scaling coefficients

αTN Th =
T∞

h
T∞

N
, αTN TC =

T∞
C

T∞
N

, αTN Tr =
T∞

r
T∞

N
, αDN D =

D∞

D∞
N

, αNC =αNC
C∞

N∞ ,

and given αNC, C0 and M0 are enough to derive all 63 non-dimensional coefficients of (A31)–(A44) from

T∞
N , T∞

h , T∞
C , T∞

r , D∞
N , D∞, M∞, C∞, N∞, H∞, µ∞

1 , µ∞
2 , I∞

γ , G∞
β .

Appendix B.3. Parameter Values

Here we detail all the parameter values derived and used in this paper. We divide them
into three groups: innate degradation rates derived or adopted from prior research (see Table A1),
scaling-dependent parameters (see Table A2) and scaling-independent parameters (those not affected by
non-dimensionalization, see Table A3). It should be emphasized that for analyzing the dynamics of the
tumor based on the estimated parameters, we should consider possible variations in the assumptions of
Appendix B.1 as well as variations between patients. We have tried to take into account these variations by
performing sensitivity analysis and clustering patients based on their immune variations.

The scaling-independent parameters parameters include innate cancer proliferation rate λC, innate
cancer death rate (including natural death and necrosis) δC and necrotic cell degradation rate δN . As a result
that these parameters were not affected by non-dimensionalization procedure, as they are determined they
remain independent of the scaling constant αdim, and depend solely on the derivation assumptions and
patient data (thus different between clusters).

The scaling dependent parameters in their dimensional form in addition to derivation assumptions
and patient data would also depend on the scaling constant αdim. Thus, we prefer to list their more
objective non-dimensional values. As a result that non-dimensionalization was done without time scaling,
the dimension of most of these parameters is day−1. Exceptions are αNC, M0, C0, αTN Th , αTN TC , αTN Tr ,
αDN D, these are fully non-dimensional.
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Table A1. Prescribed parameters and their references. Innate degradation and death rates (in day−1)
derived or adopted from given references.

Parameter δTN δTh δTC δTr δD δM δµ1 δµ2 δH δIγ
δGβ

Value 9.4951 × 10−4 0.231 0.406 0.231 0.277 0.02 1.07 4.62 58.7 33.27 499.0

Reference [154] [150] [150] [150] [149] [151,158] [153] [155] [152] [157] [156]

Table A2. Scaling-dependent parameters. Non-dimensional values of scaling-dependent parameters
(in day−1, because the time was not scaled) for each cluster derived from the steady-state assumptions and
patient data.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

λTh D 2.1399 2.7619 2.3163 1.7613 2.0179
λTh M 3.9171 × 10−2 4.3371 × 10−2 7.8933 × 10−2 3.4235 × 10−2 1.1462 × 10−1

λThµ1 1.1871 × 10−2 1.9332 × 10−2 5.0516 × 10−2 6.6146 × 10−3 2.6083 × 10−2

λTC Th 3.2503 4.4295 3.6087 2.3377 3.5400
λTC D 6.0053 × 10−1 5.3505 × 10−1 6.8998 × 10−1 8.2970 × 10−1 2.5392 × 10−1

λTr Th 8.2898 × 10−1 8.9260 × 10−1 7.1048 × 10−1 6.6821 × 10−1 6.4634 × 10−1

λTrµ2 5.1120 × 10−2 4.3090 × 10−2 1.4558 × 10−1 1.9891 × 10−2 2.6898 × 10−2

λTr Gβ
6.4120 × 10−2 6.1990 × 10−2 2.4271 × 10−1 4.1296 × 10−2 8.4474 × 10−2

λDH 2.6134 × 10−1 2.5410 × 10−1 2.6749 × 10−1 2.0531 × 10−1 2.5253 × 10−1

λDC 1.0129 × 10−1 1.0998 × 10−1 9.6275 × 10−2 1.4619 × 10−1 9.9406 × 10−2

λMµ2 6.0389 × 10−4 4.0918 × 10−4 4.0357 × 10−4 1.0688 × 10−3 2.2488 × 10−4

λMIγ
5.4536 × 10−4 4.4647 × 10−4 3.5449 × 10−5 5.5129 × 10−4 2.4891 × 10−4

λMTh 2.4482 × 10−2 2.1190 × 10−2 4.9239 × 10−3 8.9758 × 10−2 1.3509 × 10−2

λCµ1 3.6453 × 10−3 5.6528 × 10−3 1.3143 × 10−3 2.5321 × 10−3 2.5536 × 10−3

αNC 1.5 1.5 1.5 1.5 1.5
λµ1Th 9.5154 × 10−2 1.5848 × 10−1 5.1746 × 10−2 4.8884 × 10−2 8.0520 × 10−2

λµ1 M 9.6867 × 10−1 9.0479 × 10−1 1.0148 1.0150 9.8745 × 10−1

λµ1D 6.1798 × 10−3 6.7287 × 10−3 3.4777 × 10−3 6.0984 × 10−3 2.0302 × 10−3

λµ2 M 3.6856 3.1869 3.2127 3.7737 3.7140
λµ2D 1.8810 × 10−1 1.8960 × 10−1 8.8081 × 10−2 1.8139 × 10−1 6.1088 × 10−2

λµ2Tr 7.4634 × 10−1 1.2435 1.3192 6.6490 × 10−1 8.4487 × 10−1

λHN 5.6645 × 10 5.6824 × 10 5.7494 × 10 5.6720 × 10 5.6504 × 10
λHM 1.4603 1.0096 8.6817 × 10−1 1.5130 1.6271
λHTh 2.8689 × 10−1 3.5366 × 10−1 8.8539 × 10−2 1.4573 × 10−1 2.6536 × 10−1

λHTC 1.5995 × 10−1 3.1527 × 10−1 7.1133 × 10−2 1.8821 × 10−1 1.1817 × 10−1

λHTr 1.4786 × 10−1 1.9697 × 10−1 1.7824 × 10−1 1.3328 × 10−1 1.8507 × 10−1

λIγTh 8.8980 6.8580 6.4053 4.6181 9.8011
λIγTC 1.9843 × 10 2.4454 × 10 2.0584 × 10 2.3857 × 10 1.7459 × 10
λIγ M 4.5290 1.9577 6.2806 4.7945 6.0098
λGβ M 4.1497 × 102 3.5894 × 102 3.5375 × 102 4.2425 × 102 4.0652 × 102

λGβTr 8.4033 × 10 1.4006 × 102 1.4525 × 102 7.4749 × 10 9.2476 × 10
δThµ2 4.2911 × 10−1 4.3775 × 10−1 4.2642 × 10−1 1.1131 × 10−1 2.3641 × 10−1

δThTr 1.5309 2.1559 1.7884 1.4599 1.6912
δTCµ2 7.5419 × 10−1 7.6938 × 10−1 7.4947 × 10−1 1.9563 × 10−1 4.1550 × 10−1

δTC Tr 2.6906 3.7891 3.1432 2.5658 2.9724
δTrµ1 7.1322 × 10−1 7.6668 × 10−1 8.6777 × 10−1 4.9839 × 10−1 5.2671 × 10−1

δDH 3.3577 × 10−2 3.1883 × 10−2 3.5563 × 10−2 1.9360 × 10−2 2.9105 × 10−2

δDC 5.2053 × 10−2 5.5200 × 10−2 5.1199 × 10−2 5.5139 × 10−2 4.5828 × 10−2

δCGβ
9.1600 × 10−4 7.1011 × 10−4 1.8590 × 10−3 3.9506 × 10−4 1.3131 × 10−3

δCIγ
6.5951 × 10−4 5.3859 × 10−4 9.7944 × 10−5 9.8156 × 10−5 4.6278 × 10−4

δCTC 2.1270 × 10−3 2.9365 × 10−3 1.4085 × 10−3 2.6597 × 10−3 1.4414 × 10−3

ATN 1.5006 4.1268 1.2183 1.1785 1.6150
ADn 1.0264 2.1172 3.5941 × 102 1.8353 1.1435
M0 1.7803 1.9072 4.7293 1.2189 2.4303
C0 2.0 2.0 2.0 2.0 2.0
αTN Th 3.1084 × 10−1 5.2856 × 10−1 1.5008 × 10−1 1.7950 × 10−1 3.6879 × 10−1

αTN TC 1.7330 × 10−1 4.7118 × 10−1 1.2057 × 10−1 2.3182 × 10−1 1.6423 × 10−1

αTN Tr 1.6020 × 10−1 2.9438 × 10−1 3.0212 × 10−1 1.6417 × 10−1 2.5720 × 10−1

αDN D 1.9739 4.9667 9.8717 × 102 4.3783 2.3796
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Table A3. Scaling-independent parameters. Values of scaling-independent parameters (in day−1) for each
cluster derived from the steady-state assumptions and patient data.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

λC 5.3323 × 10−3 3.7596 × 10−3 7.8327 × 10−3 5.3535 × 10−3 5.5150 × 10−3

δC 7.8626 × 10−4 5.2094 × 10−4 1.2081 × 10−3 7.8983 × 10−4 8.1708 × 10−4

δN 6.7332 × 10−3 7.0593 × 10−3 6.8602 × 10−3 5.9142 × 10−3 6.0514 × 10−3

Appendix C. Patient Data and Initial Conditions

Here we describe the processing of the data to be used for parameter estimation and initial conditions.
The clustered deconvolution data, described in Section 2.3, and original TCGA data are used to calculate
the immune variables as described in Table A4.

Table A4. Patient data correspondence with variables. Correspondence between the system variables
and the source data from TCGA and deconvolution results.

Variable Data Used

TN T cells CD4 naive, T cells CD4 memory resting, NK cells resting
Th T cells CD4 memory activated, T cells follicular helper
TC T cells CD8, NK cells activated
Tr T cells regulatory (Tregs)
DN Dendritic cells resting
D Dendritic cells activated
M Macrophages M1, Macrophages M2
M0 Monocytes, Macrophages M0, Macrophages M1, Macrophages M2
µ1 IL6, IL17A, IL17B, IL17C, IL17D, IL17F, IL21, IL22
µ2 CCL20, IL10
H HMGB1
Iγ IFNG
Gβ TGFB1, TGFB1I1, TGFB2, TGFB3, TGFBI
size(P) multiply_dimensions
Total_Immune_Density TN , Th, TC, Tr, DN , D, M0

For variables related to immune cells, we substitute zero values with 10% of the smallest positive cell
density for numerical stability.

We estimate the relative amount of cancer cells and necrotic cells as follows: we start by assuming
that on average across all patients the ratio of immune cells:cancer cells:necrotic cells will be approximately
0.4:0.4:0.2 with variability between clusters based on tumor size. For patient P, we consider tumor size
(size(P)) to be the product of the longest dimension and the shortest dimension. We assume total cell
density at the steady-state to be proportional to this product as

Total_Cell_DensityP = αdim
size(P)

1
K ∑all P size(P)

.

Tumor deconvolution data only provide us with ratios of immune cells relative to each other. Thus,
to properly adjust the scaling, we take each immune cell value from deconvolution multiplied by 0.4αdim,
and consider 0.4αdim ∑ (Immune cell ratios) as total immune density and

C =
2
3
(Total_Cell_Density− Total_Immune_Density) , N = 0.5C. (A45)
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Next, for each cluster, we divide patients into three groups according to their their tumor size: above
average, below average and no data. Resulting patient numbers of each group are given in Table A5.
We use the means from the group “above average” as steady-state assumptions given in Table 2.

Table A5. Distribution of patients according to their tumor size. Evaluated relative to the average tumor
size within each cluster.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Total patients 114 47 29 40 98
Above average 36 15 7 17 36
Below average 48 20 12 23 44
No data 30 12 10 0 18

The data in the “below average” group as evaluated by (A45) may contain negative values for cancer
and necrotic cells. The data in “no data” group have no values for cancer and necrotic cells. Thus, we
substitute all non-positive and absent cancer values with 10% of the smallest positive cancer density
value. We substitute all non-positive and absent necrotic cell values with zero. These changes violate the
0.4:0.4:0.2 ratio of immune cells:cancer cells:necrotic cells, and the updated ratio is 0.4475:0.3684:0.1841.

The steady-state assumptions (see Appendix B) are partially based on maximum values of each
variable in the ODE system (A1)–(A14) across all patients, as well as mean value of variables TC, µ1, Iγ

and Gβ across all patients. The corresponding values are given in Table A6.

Table A6. Maximum and mean variable values for parameter estimation. Maximum and mean cell
densities in cells/cm3 and cytokine expression levels across all patients used in Appendix B to derive
parameter sets for time-dependent solutions.

Tmax
N Tmax

h Tmax
C Tmax

r Dmax
N Dmax

2.6731 × 104 1.2311 × 104 1.9107 × 104 7.2102 × 103 3.4173 × 103 4.3275 × 103

Mmax Cmax Nmax µmax
1 µmax

2 Hmax

2.3160 × 104 3.2472 × 105 1.6236 × 105 1.0577 × 103 1.3983 × 104 2.4697 × 104

Imax
γ Gmax

β TC
mean µmean

1 Imean
γ Gmean

β

1.0221 × 102 1.6341 × 105 2.9203 × 103 1.3232 × 102 6.6035 2.0018 × 104

In each cluster, a patient with the smallest known tumor size is used as initial condition (given in
Table 3) for the dynamics computations presented in Figures 5 and 6. However, it is interesting to look
at the dynamics of one cluster with initial conditions from another. Figure A1 shows the dynamics of
each cluster with every initial condition from all clusters. It demonstrates that the curves originating from
different initial conditions quickly converge to the same dynamics, more influenced by the parameters and
not the initial conditions. Additionally, any patient in the “below average” group can be reasonably used
as initial condition. The resulting dynamics is given by cluster on Figures A2–A6. The colors on the plot
correspond to tumor size categories introduced on Figure 3F. These results suggest that the differences in
the dynamics within the same cluster are mostly due to the variations in the initial tumor size.
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Figure A1. Cross-cluster dynamics. (A) Dynamics with parameters from cluster 1 and initial conditions
from all clusters. (B) Dynamics with parameters from cluster 2 and initial conditions from all clusters.
(C) Dynamics with parameters from cluster 3 and initial conditions from all clusters. (D) Dynamics with
parameters from cluster 4 and initial conditions from all clusters. (E) Dynamics with parameters from
cluster 5 and initial conditions from all clusters. (F) Initial dynamics with parameters from cluster 5 and
initial conditions from all clusters on a time interval [0, 300].

Figure A2. Different initial conditions for cluster 1. Based on patients in the “below average” category.
Colors correspond to tumor size categories introduced in Figure 3F.
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Figure A3. Different initial conditions for cluster 2. Based on patients in the “below average” category.
Colors correspond to tumor size categories introduced in Figure 3F.

Figure A4. Different initial conditions for cluster 3. Based on patients in the “below average” category.
Colors correspond to tumor size categories introduced in Figure 3F.
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Figure A5. Different initial conditions for cluster 4. Based on patients in the “below average” category.
Colors correspond to tumor size categories introduced in Figure 3F.

Figure A6. Different initial conditions for cluster 5. Based on patients in the “below average” category.
Colors correspond to tumor size categories introduced in Figure 3F.
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