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Abstract

Background: Alzheimer’s disease, among other neurodegenerative disorders, spans decades in individuals’ life and
exhibits complex progression, symptoms and pathophysiology. Early diagnosis is essential for disease prevention
and therapeutic intervention. Genetics may help identify individuals at high risk. As thousands of genetic variants
may contribute to the genetic risk of Alzheimer’s disease, the polygenic risk score (PRS) approach has been shown
to be useful for disease risk prediction. The APOE-ε4 allele is a known common variant associated with high risk to
AD, but also associated with earlier onset. Rare variants usually have higher effect sizes than common ones; their
impact may not be well captured by the PRS. Instead of standardised PRS, we propose to calculate the disease
probability as a measure of disease risk that allows comparison between individuals.

Methods: We estimate AD risk as a probability based on PRS and separately accounting for APOE, AD rare variants
and the disease prevalence in age groups. The mathematical framework makes use of genetic variants effect sizes
from summary statistics and AD disease prevalence in age groups.

Results: The AD probability varies with respect to age, APOE status and presence of rare variants. In age group 65+,
the probability of AD grows from 0.03 to 0.18 (without APOE) and 0.07 to 0.7 (APOE e4e4 carriers) as PRS increases.
In 85+, these values are 0.08–0.6 and 0.3–0.85. Presence of rare mutations, e.g. in TREM2, may increase the
probability (in 65+) from 0.02 at the negative tail of the PRS to 0.3.

Conclusions: Our approach accounts for the varying disease prevalence in different genotype and age groups
when modelling the APOE and rare genetic variants risk in addition to PRS. This approach has potential for use in a
clinical setting and can easily be updated for novel rare variants and for other populations or confounding factors
when appropriate genome-wide association data become available.
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Introduction
Genome-wide association studies (GWAS) identified
genetic risk variants of late onset “sporadic” disease
beyond the APOE locus [1–4], followed by exome
chip analyses identifying rare variants with moderate
risk [5–7]. While causal fully penetrant mutations al-
most certainly lead to development of the disease [8],

most of the identified singular nucleotide polymorphism
(SNP) risk alleles have not been proven to be causal but
replicated as carrying an increased disease risk.
The PRSs are designed to aggregate genome-wide

genotype data into a single variable indicating genetic
liability to a disorder or trait. PRS studies often reach
sufficiently high statistical significance to suggest trait
polygenicity and, although the prediction accuracy is
usually insufficient for clinical utility [9], PRS has
been suggested as a useful tool for the selection for
clinical trials of individuals of European ancestry
across different traits [10–13]. The PRS prediction
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accuracy of risk for Alzheimer’s disease (AD) is com-
paratively high, especially when the diagnosis is based
upon pathology confirmed rather than clinical assess-
ment (AUC up to 84%) [14].
Designed to capture the risk of common variants, the

PRS aggregates the effects of known genome-wide asso-
ciated loci [15] and of loci that do not reach genome-
wide statistical significance. However, the PRS may not
well reflect the effect of rare variants in TREM2, PLCG2,
ABI3, SORL1 [5–7] and very rare highly penetrant muta-
tions in APP, PSEN1 and PSEN2 [16], as the cumulation
of many SNPs of small effect sizes tends to mask the
strong effect of a single variant. As LD between rare and
common variants tends to be small—for example, the
maximum r2 between a rare variant with minor allele
frequency (MAF) = 0.01 and a typical common SNP
with MAF = 0.2 is r2 = 0.04 when the rare alleles of both
variants appear on the same haplotype (i.e. D’ = 1)
[17]—rare variants and PRS are likely to be independent.
Variants in the APOE gene highly affect the AD risk

(OR = 3.2, MAF = 0.14) [2]. APOE is also associated
with lower odds of reaching the over 90th percentile age
[18] as it modifies the age at onset; for example, the age
at onset of AD for ε4ε4 carriers is ~ 68 years [19]. Also,
ε4ε4 carriers are more likely to develop other conditions
associated with lower life expectancy such as cardiovas-
cular disease and diabetes [20]. People with AD diag-
nosed in their late 60s live on average 7 years after the
clinical diagnosis, whereas AD diagnosis after age 90 is
associated with an expected survival of only 2.8 years
[21, 22]. Since age is the major confounding factor to
the AD risk, it is difficult to disentangle the ageing and
disease pathogenic components.
There is little research on whether APOE and PRS can

be modelled as independent variables. Leonenko et al.
[23] show that ε4 frequency decreases with age in both
cases and controls, whereas the PRS values are higher in
older AD patients, indicating a negative correlation in
cases, but apparently not in controls. These contravar-
iant effects in cases cancel out when a PRS is formed in-
cluding APOE alongside other SNPs, so subsequent
adjustment for age is ineffective. The use of APOE geno-
types and the PRS (calculated without APOE) as two
separate predictors accounts for this effect and increases
the case/control prediction accuracy but cannot be ex-
tended to disease prediction in age groups with different
disease prevalence. The approach suggested in the
present study accounts both for the age related APOE ef-
fect and different disease prevalence. We propose esti-
mating the disease probability (between 0 and 1) based
on the PRS while accounting separately for high effect
size variants and rare highly penetrant mutations. We
show the utility of our probability calculations in appli-
cation to AD.

Our calculations only require the mean and variance
of PRS in cases and in controls and the disease preva-
lence as reference data, thus avoiding the need to share
background sensitive genetic data. While the PRS from
different studies (with different SNP selection and/or
standardisation) cannot be directly compared, disease
probability, as a general quantity, can be used for com-
parative prioritisation of individuals.

Material and methods
PRS distribution
The PRS aggregates the effects of multiple genetic
markers identified by GWAS. Generally, the PRS is ex-
pected to be higher in cases than in controls, indicating
a higher genetic risk for the disorder, but the difference
in mean PRS between case and control samples may be
small. It is important to note that the PRS calculated for
an individual does not provide an absolute measure of
risk and is meaningless except in relation with the distri-
bution of PRS in cases and non-cases in the underlying
population.
The polygenic risk score for individual j ∈ {1,…,Nind}

is PRS j ¼ 1
Nsnps

PNsnps

i¼1 gijβi , where Nind and Nsnps are the

numbers of individuals and of SNPs contributing to the
PRS, respectively, gij ∈ {0, 1, 2} is the genotype of SNP i
for individual j, and βi is the effect size (logarithm of the
odds ratio or logistic regression coefficient) of SNP i in
an independent GWAS for the disease. The sample
mean and variance are

mðPRSÞ ¼ 1
Nind

XNind

j¼1
PRS j and

varðPRSÞ ¼ 1
Nind

XNind

j¼1
ðPRS j−mðPRSÞÞ2:

ð1Þ

Estimation of PRS distribution parameters for unscreened
controls
Our calculations require the distribution parameters of
the PRS in cases and non-cases (putative non-affected
controls). If the mean m0 and variance σ20 of the PRS dis-
tribution in non-cases are unknown as unscreened
population controls are used, they can be inferred from
the means m1, mp and variances σ2

1, σ
2
p of the PRS distri-

butions in cases and in the population, respectively, and
the disease prevalence K as

m0 ¼ mp−K m1

1−K

and
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σ20 ¼
σ2p−Kσ21
1−K

−
K mp−m1
� �2
1−Kð Þ2

(see Supplemental Note 1 for details).

Estimation of the probability of disease development

By Bayesian inversion, a raw probability P̂ to be affected
by the disease can be inferred from an individual’s PRS
value x and the distribution densities of PRS in cases, p1,
and in controls, p0, as

P̂ xð Þ ¼ K p1 xð Þ
K p1 xð Þ þ 1−Kð Þp0 xð Þ ð2Þ

However, P̂ cannot be directly interpreted as a prob-
ability of disease. Logistic regression from case/control
samples gives the probability of disease in the logistic
model

P xð Þ ¼ 1
1þ e− αþβxð Þ ð3Þ

with coefficients α, β arising as regression parameters
from the maximum likelihood estimate. We use linear
regression with the logit link function, taking as data the
log odds ratio corresponding to (2),

y ¼ log
K p1 xð Þ
1−Kð Þp0 xð Þ ; ð4Þ

at every PRS value x and the joint probability density
of PRS in the population, pp(x) = Kp1(x) + (1 − K)p0(x), as
weight. For normal densities p1 and p0, the coefficients
α, β can be expressed as

α ¼ log
Kσ0

ð1−KÞσ1
þ 1
2
ððr0−1ÞK þ ð1−r1Þð1−KÞÞ−mpβ;

β ¼ m1−m0

σ2p
K 1−Kð Þ r0 þ r1

2
−1

� �
þ K

σ21
σ20

þ 1−Kð Þ σ
2
0

σ2
1

� �

ð5Þ

where r1 ¼ σ20þðm1−m0Þ2
σ21

, r0 ¼ σ21þðm1−m0Þ2
σ20

, mp = Km1 +

(1 − K)m0, and σ2p ¼ K σ21 þ ð1−KÞσ20 þ Kð1−KÞ
ðm1−m0Þ2 (see Supplemental Note 2 for details).
Formulae (5) determine the parameters of the logistic

probability model (3) from the disease prevalence and
the parameters of the distribution of PRS in cases and
non-cases, dispensing with the need to obtain or simu-
late individual genotypes and perform logistic regression
on the resulting PRS. They rely on the assumptions that
the PRS distributions are normal and that the raw prob-
ability (2) represents well the fraction of cases for any
value of PRS. For validation, we compared the outcome

of (5) with the following three procedures of increasing
abstraction, (a) simulation of genotypes in HWE with
given MAF in cases and in non-cases and logistic regres-
sion of the resulting PRS, (b) sampling from normal dis-
tributions for PRS in cases and in non-cases with
parameters m0;m1; σ20; σ

2
1 and logistic regression, (c)

sampling from the population distribution pp and linear
regression of the raw log odds ratio (4).

Inclusion of rare variants in the probability
The effects of rare genetic variants with high (or
medium) disease penetrance may be obscured if mod-
elled as part of PRS including a large number of other
SNPs, and the fraction of correctly identified cases carry-
ing a rare mutation will be small in a sample and have
little influence on the overall prediction accuracy. There-
fore, it seems better to account for them at the level of
the disease probability. Suppose we have the logistic re-
gression model for the probability of disease PPRS in
terms of the PRS by formulae (3) and (5), excluding the
rare variant from the calculation of the PRS. An individ-
ual with PRS value x who carries a rare genetic variant
with intrinsic probability prare to cause the disease has,
assuming the effects of the rare variant and of the poly-
genic risk are independent, the probability of disease

P xð Þ ¼ PPRS xð Þ þ prare 1−PPRS xð Þð Þ ¼ 1þ prare e
− αþβxð Þ

1þ e− αþβxð Þ

where x is the PRS for the individual. For very rare
variant alleles that do not affect the disease prevalence K
in the population, the intrinsic probability can be esti-
mated as

prare ¼
K OR−1ð Þ

K OR−1ð Þ þ 1
;

where OR is the odds ratio (see Supplemental Note 3).
The probability P(x) takes values between prare and 1,
reflecting the liability of the rare variant to cause the dis-
ease even in absence of polygenic risk. In case of several
rare variants with mutually independent effect and in-
trinsic probabilities prare, 1, …, prare, ν, the above formula

can be applied with prare ¼ 1−
Qν
j¼1

ð1−prare; jÞ . However,

due to the assumption of very small allele frequencies, it
is unlikely that an individual would carry more than one
independent rare variant.

Inclusion of APOE
It may be advantageous to treat a high-effect common
variant such as APOE separately from the PRS. The dis-
tributions in cases and non-cases of a PRS formed from
SNPs excluding APOE can be assumed to be approxi-
mately equal for carriers and non-carriers of the APOE
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risk allele. Considering formulae (5), the probability of
disease as a function of PRS will then differ between the
groups only due to the higher disease prevalence in car-
riers of the risk allele. Applying (5) with the disease
prevalence for the different APOE genotypes, separate
probability curves are obtained. The prevalence in differ-
ent genotype groups is not usually directly available but
can be inferred as follows from the overall prevalence K,
the overall allele frequency f and the odds ratio OR for
the variant, under the assumption of HWE both in the
general population and in the subpopulation of non-
cases. This assumption is justified when the disease
prevalence in the population is low (e.g. 2% for AD), but
problematic when it is high [24] (e.g. major depression
30%). The prevalence K0, K1 and K2 for carriers of non-
risk homozygotes, heterozygotes and risk homozygotes,
respectively, can be calculated as

K0 ¼ 1−
1− f −νð Þ2

1−Kð Þ 1− fð Þ2 ;K 1

¼ 1−
1− f −νð Þ νþ f −Kð Þ

1−Kð Þ f 1− fð Þ ;K 2 ¼ 1−
νþ f −Kð Þ2
1−Kð Þ f 2 ;

where

ν ¼ b−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−16ð1−ORÞð1− f ÞK

p
4 ð1−ORÞ with b = 2 (1 + (1 −OR)(K − f))

(see Supplemental Note 4).

Standardisation of the probability curve
PRSs calculated from different sets of SNPs cannot be
directly compared. We therefore standardise the PRS
axis by expressing the PRS in terms of standard devia-
tions difference from the population mean,

xst ¼ x−mp

σp
;

where x is the PRS and xst is the standardised PRS
variable.

Simulated and real data
Firstly, we simulated independent genotypes in a sample
of 10,000 cases and 10,000 controls and used previously
published effect sizes for genome-wide significant SNPs
[2, 15]. We calculated an Oligogenic Risk Score (ORS) in
the simulated sample using only 39 genome-wide signifi-
cant SNPs (Supplementary Table 2, adopted from [15]),
excluding the APOE proxy SNP (rs429358). The PRS
was calculated for 10,039 SNPs, including the above 39
genome-wide significant SNPs and further 10,000 SNPs
pruned for LD with r2 = 0.1 and allele frequencies and
effect sizes taken from (2).
Secondly, to illustrate the probability of disease in the

presence of rare variants, we used effect sizes for rare
variants corresponding to the APP, SORL1, TREM2,

ABI3 and PLCG2 genes [6, 7, 25]. We used the distribu-
tion parameters m0, m1 and σ20 , σ

2
1 for ORS and PRS as

reported in [23] and calculated the disease probabilities
with the suggested formulae. To demonstrate the APOE
modelling with our approach, we also took the distribu-
tion parameters of APOE, ORS and PRS from the real
case/control study [23] (Supplemental Table 1).
The simulations and probability calculations were im-

plemented with R-statistical software. The codes (Simu-
lations.R and Probability.R) can be downloaded from
https://github.com/DRI-Cardiff/AD-probability/.

Results
As the validity of the formulae (5) was established by
simulations (see Supplemental Figure 1), we used formu-
lae (3) and (5) to calculate the probability of disease for
an individual with PRS value x. This probability depends
on the disease prevalence in the population of interest,
e.g. the general population or a specific subpopulation.
The prevalence of AD in the population depends
strongly on age. Recent estimates show a 3%, 17% and
33% prevalence in the 65–74, 75–84 and 85+ age groups,
respectively [26]. For illustration, we calculated the prob-
ability of AD for 2%, 10% and 30% prevalence during
lifetime and in 65+ and 85+ age groups, respectively.
The parameters of the PRS distributions were taken
from a real case/control study [23].
Figure 1 shows the dependency of the AD probability

(y-axis) on standardised PRS (x-axis). The solid thick
line corresponds to PRS.AD, calculated as weighted sum
of APOE and PRS.noAPOE with the relative weight of
APOE not taken directly from combining the corre-
sponding effect sizes as a part of PRS but from bivariate
logistic regression using APOE and PRS.noAPOE as pre-
dictors. The dashed line shows the probability of AD
with PRS calculated in the standard way including all
SNPs weighted with their single-SNP effect sizes. In the
black and blue scenarios (corresponding to the lifetime
and 65+ prevalences), the standard PRS shows clearer
discrimination between low and high probabilities than
APOE alone, somewhat similar to ORS. When the dis-
ease prevalence is high (red scenario), then PRS.AD is
considerably more discriminative than PRS. This dra-
matic difference between PRS.AD and PRS is due to the
fact that the means and variances for the latter are cal-
culated in cases and controls, ignoring the change in
APOE-ε4 allele frequency due to age, whereas PRS.AD
indirectly accounts for it via the interplay of APOE and
PRS.noAPOE.
Figure 2 demonstrates the results of adding independ-

ent rare variant effects in SORL1 and TREM2 to the
probability of the disease in both the general population
(K = 0.02) and in the age group 65+ (K = 0.1). Both
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Fig. 1 Probability of Alzheimer’s disease, ignoring change in APOE-ε4 allele frequency due to age. ORS - Oligogenic Risk Score including SNPs
with a p-value threshold pT ≤ 10-5. PRS - Polygenic Risk Score including SNPs with a p-value threshold pT ≤ 0.1. PRS.AD - PRS calculated as a
weighted sum of PRS.no.APOE, including SNPs with a pT ≤ 0.1 excluding APOE region (CHR19:44.4-46.5), and APOE (ε2 + ε4), where APOE effects
were weighted with effect sizes (B(ε2) = -0.47 and B(ε4) = 1.12) as in Kunkle et al. 2019 [2]

Fig. 2 Combined probability of AD calculated with 2% lifetime prevalence of AD, 10% prevalence of AD in 65+ age group, including probability
due to presence of a rare high-effect variant. The rare variant effect sizes and minor allele frequencies correspond to known variants in SORL1 (OR
= 7.2) [25] and TREM2 (OR = 2.46) [7] genes. In age group 65+ (red) the presence of SORL1 mutations (left) increases the AD probability from ~ 0
to 0.4 when PRS is the lowest and from 0.6 to 0.76 when the PRS is highest (solid line vs dashed line). For TREM2 (right), these values are 0 to
0.13 (low PRS) and 0.6 to 0.66 (high PRS)

Escott-Price and Schmidt Alzheimer's Research & Therapy          (2021) 13:140 Page 5 of 9



graphs show an elevated disease probability (solid lines),
with lower values in the population (black) and higher
values in the 65+ group. Dashed lines show the disease
probability across the range of PRS if individuals have
no rare risk variants. The results for rare variants such
as in genes APP, PSEN1 and PSEN2 [27] are shown in
Supplemental Figure 2.
Finally, Figure 3 shows the probability of disease in

early onset (left) and late onset (right) age groups. As ex-
pected, the late onset group shows elevated AD prob-
ability even if the PRS is low and APOE ε4 carriers show
consistently higher probability than any other genotypes.
The black dashed line shows the disease probability with
PRS when the APOE region is excluded. It is slightly
higher than for APOE-ε4 non-carriers (thin blue line) as
excluding the APOE region removes the information
whether the individuals have lower disease risk due to
absence of ε4 or have protective ε2 alleles.

Discussion
PRS do not directly indicate an individual’s liability to
develop a disease, as they depend on a variety of study
parameters such as the number and selection of SNPs
included in their calculation and are therefore not com-
parable between different studies. For comparability, it is
not sufficient to standardise the PRS against the popula-
tion mean and variance; the difference in PRS means in
cases and in non-cases is also essential for the interpret-
ation of an individual’s PRS. Our proposed calculation of

a probability of disease takes all of these properties of
the PRS into account and provides a unified measure to
assess a PRS value in view of the PRS distribution and
disease prevalence in the population or subpopulation of
interest. Of course, the choice of SNPs included in a
PRS remains decisive for its indicative power.
While the probability curve as a function of standar-

dised PRS can be calculated by logistic regression using
genotyped case/control samples from the population of
interest, we offer a method to achieve the same outcome
using more easily available summary data. The theoret-
ical formula (5) derives the parameters for the logistic
probability function (3) from the disease prevalence and
the PRS distribution parameters (mean and standard de-
viation) in cases and non-cases. This conveniently allows
estimating an individual’s probability of disease from
their PRS value using only a small set of parameters. We
have shown that (5) gives a highly accurate proxy for
case-control sampling of PRS and logistic regression if
either the PRS aggregates a high number of SNPs or very
highly associated SNPs (such as APOE variants for AD)
are excluded from the PRS. If the PRS is calculated from
a small number of SNPs including some that are highly
associated, deviation from normality in the PRS may lead
to some discrepancy, but the formula still gives a close
approximation.
Moreover, the probability of disease framework allows

for separate consideration of high-effect variants. It has
been observed that inclusion of high-effect variants in

Fig. 3 Modelling APOE separately, assuming the same effect of APOE-ε4 (OR ~ 3) in all age groups, and accounting for age related differences in
frequency of APOE-ε4 allele (MAF = 0.18 in 55+ and MAF = 0.05 in 85+). In age group 65+ (left) the presence of APOE-ɛ4 allele increases the AD
probability from 0.01 to 0.07 when PRS is the lowest and from 0.2 to 0.66 when the PRS is highest (top vs bottom lines). For 85+ age group
(right), these values are 0 .06 to 0.3 (low PRS) and 0.65 to 0.92 (high PRS)
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the PRS calculation does not always give optimal results.
The impact of common high-effect variants such as
APOE for AD can vary due to confounders such as age
stratification, so taking a summary effect size from a ref-
erence study may result in a suboptimal PRS; this be-
comes apparent when APOE and PRS are used as
separate predictors in bivariate logistic regression. We
propose including high-effect variants in two different
ways in the calculation of disease probability.
The effect of rare, highly penetrant genetic variants

tends to be masked by more common variants in the
PRS. However, if they do not affect the disease preva-
lence in the population and act independently of the
PRS, we can account for them directly as adding a cer-
tain intrinsic probability for carriers of the risk allele.
The probability curve approaches this intrinsic probabil-
ity for highly negative values of standardised PRS.
Common high-effect variants such as APOE for AD

strongly affect the disease prevalence in the population
and cannot be dealt with as above. Although APOE may
not act independently from other genetic causal variants,
a recent study [28] suggests that it is reasonable to as-
sume that the distribution parameters for the PRS calcu-
lated without APOE are independent of the APOE
genotype. We propose calculating separate probability
curves for each APOE status, based on the disease preva-
lence calculated for each APOE status from the disease
prevalence in the population, the risk allele frequency
and the odds ratio. These data are available and can eas-
ily be further stratified into relevant subpopulations, e.g.
by age for AD.
The disease probability allows comparison of PRS cal-

culated from summary data of different reference studies
and thus has the potential to be used in a clinical con-
text to prioritise individuals for diagnostics and pre-
ventative intervention based on assessed risk of
developing the disease.
There are other factors that can influence the dis-

ease development probability. For example, it has
been reported that AD is more prevalent in women
and PRS effects may also depend on gender [29]. Due
to the lack of information on gender-interactions for
genetic variants, incorporating gender information in
the probability calculations may not be straightfor-
ward at present. However, in view of the emerging
literature it is likely that this information will be
available and reliable in future. It can then be incor-
porated in our calculations, e.g. by selecting the SNPs
for the PRS in males and females separately and/or
changing the disease prevalence not by age only, but
by sex as well. It is possible to include other, non-
genetic predictors. This can be achieved by adjusting
the disease prevalence in different e.g. educational at-
tainment groups.

Our approach can be used for other complex genetic
disorders. For example, schizophrenia is a highly poly-
genic disorder [30] and has an increased burden of rare
variants and CNVs [31]. It is, however, a neurodevelop-
mental disorder, and the disease prevalence does not de-
pend on age. It also does not have strong genetic risk
factors like APOE for AD. Therefore, the most relevant
probability calculation approach for diseases like schizo-
phrenia and depression is a combination of common
and rare variants, while the method shown above for the
inclusion of APOE-like variants is not required.
The proposed method relies on the availability of allele

frequency and genetic effect size estimates derived from
a representative reference population. Expanding this ap-
proach to other populations will be possible when the ef-
fect sizes of SNPs in other populations will be reliably
identified and reported. They can then be used to esti-
mate the disease probability in the relevant population.
As in other complex genetic disorders, the disease risk
estimates rely heavily on the individual SNP risk esti-
mates and disease prevalence, which differ depending on
the demographics, ethnicity and age groups.

Limitation
A limitation of the present study is that it is based on
sound, but theoretical principles, uses SNP and PRS
characteristics from the literature and employs simulated
data for validation. It remains to test and validate the
theory directly in real datasets. Since we are dealing with
rare variants, validation of this approach in real data
with a sufficient level of confidence will require large
population datasets like e.g. the UK BioBank [32]. How-
ever, the UK Biobank is not directly suitable to study
neurodegenerative disorders, as the cohort is relatively
young and only a small proportion of individuals mani-
fest the disease. In addition, it does not provide pheno-
typic variables which are used to assess cognitive decline
in dementia in clinical settings. Publicly available AD-
specific datasets are typically small and not suitable to
extract a reliable number of people carrying rare muta-
tions (e.g. Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (www.loni.ucla.edu/ADNI)). Neverthe-
less, the approach presented here can be used in small
studies focusing on rare and common genetic variants,
for example to identify individuals most at risk of devel-
oping the disease. It can easily and flexibly be updated as
novel rare variants are discovered and as appropriate
GWAS data become available for specific populations.

Conclusions
The proposed method gives an estimate of the probabil-
ity of developing AD based on an individual’s PRS,
APOE genotype and the presence or absence of rare gen-
etic variants associated with AD. The computational
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framework uses as reference data the means and stand-
ard deviations of the PRS employed in cases and in (ei-
ther screened or population) controls and the disease
prevalence. The disease prevalence varies considerably in
different age and APOE genotype groups, and the
present method allows for taking these differences into
account in a natural and transparent way.
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