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Abstract

Ground subsidence and surface cracks caused by coal mining are typical man-made geo-

logical hazards that can severely damage the ecological environment and buildings. In

China, within the theme of sustained and stable development, accurate assessment of min-

ing-related building damage is paramount in order to address the contradiction between

coal mining enterprises and building owners. Previous research in China focused mainly on

the mining areas of plains, and only a few studies have considered building damage caused

by intensive mining in mountainous areas. First, based on field investigation, this study

located ground surface cracks and assessed the damage to buildings in the village of

Nanyetou in Shanxi Province (China) attributable to the exploitation of the 15110 working

face of the Baiyangling coal mine. Second, based on the mining subsidence law and bound-

ary angle, the surface influenced boundary caused by underground mining was determined.

However, as the existing subsidence theory cannot adequately explain the phenomenon of

building damage, the damage was investigated from the perspective of slope stability analy-

sis, and the slope safety factor before and after working face mining were calculated using

the Janbu method. The analytical results showed that slope instability due to a decrease of

the safety factor because of the coal mining activity was the principal reason for damage to

the village buildings, a finding that was confirmed by field survey and InSAR monitoring dis-

placement. The results of this study could provide guidance and reference for the assess-

ment of building damage caused by underground mining in mountain areas.

Introduction

Chinese state-owned key coal mines statistical data show that about 8.76 billion tons of coal

deposits are located under buildings and about 60% of these are located under village areas [1].

With increasing shortages of coal resources, in order to maintain normal operation, various

mining enterprises have been exploiting coal deposits under such village areas. Large-scale
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exploitation of underground coal resources will inevitably lead to uneven subsidence and dis-

placement of the ground surface, resulting in different degrees of damage to surface buildings.

However, many other factors unrelated to mining can also cause damage to buildings, which

can lead to disputes between mining enterprises and building owners. Such conflicts are espe-

cially intense in areas with more complex natural conditions, where mining operations are

conducted near buildings. Therefore, within the theme of sustainable and stable development,

accurate technical assessment of mining-related building damage has become necessity.

Much research has been conducted globally on the building damage caused by mining

activities. With consideration of the diversity and uncertainty of the factors that cause building

damage, Malinowska proposed a fuzzy reasoning method for the assessment of damage to

buildings affected by mining [2]. An earlier study by Malinowska and Hejmanowski employed

GIS analysis methods to assess the damaging effect of underground mining on buildings in

Poland [3]. Saeidi et al. focused on the application and comparison of different methods with a

case study; and their research results show that, the Dzegeniuk method [4] is more realistic in

comparison of the other empirical methods [5]. The InSAR technique also has been used in

assessing the mining-induced damage to structures in mining subsidence regions [6, 7]. Yang

et al. analysed the influence of mining on buildings under various topographic conditions,

including areas of plains, hills, and mountains [8]. Other studies have proposed assessment

models that utilise and compare various methods for delineating mining damage boundaries

[9, 10]. Tan and Deng summarised the typical methods used for the technical assessment of

building damage caused by mining exploitation [11]. Similarly, Cui et al. [12] and Xu et al.

[13] conducted important research on mining damage assessment methods.

Previous research on mining-related damage produced significant results, but most of the

results have been based solely on the prediction of mining subsidence. However, because of

the complexities of mining subsidence, a reliable prediction of the mining induced subsidence

is still a challenge [14]. The main reason is the existence of numerous interrelated factors, such

as the rock masses characteristics, the ground surface topography, the natural precipitation,

the method of excavation, which making the subsidence analysis becomes more complex [15].

Furthermore, such building damage assessment work concentrated primarily on the influenc-

ing factors, evaluation indicators, and methods of assessing building damage, whereas the

effects of mining subsidence-induced secondary disasters have not been considered, for exam-

ple, the mining-induced reduction of slope stability could lead to slope creep, resulting in

building damage. Particularly in mountainous areas, the limitations of conventional subsi-

dence prediction models make it difficult to determine the boundary of mining influence accu-

rately. Previous studies have rarely addressed these aspects.

In this study, we considered a village in Shanxi Province (China) as a case study for con-

ducting research on the technical assessment of mining-related building damage. The funda-

mental theory of mining subsidence cannot adequately explain the extent of the observed

building damage. Therefore, we analysed the effect of slope stability on building damage and

obtained conclusions consistent with field survey results. The results revealed the cause of

building damage in the mountainous region, and could constitute important reference mate-

rial for future work on the technical assessment of mining-related damage.

Study area and field survey

Study area

The study area (37˚20’–37˚43’N, 113˚20’–114˚08’E) is located in Xiyang County of Shanxi

Province (China). It lies within the Taihang Mountain range, which has a typical rocky

landscape.

Mining subsidence theory and slope stability analysis
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The fully mechanised longwall 15110 of the Baiyangling coal mine, which belongs to the

Guotou Xiyang Energy Co., Ltd., has an inclined working face of 225 m and a 2420 m panel.

The thickness, depth, and inclination of the coal seam are 4.5 m, 350–550 m, and 5˚–7˚,

respectively. After commencing operation in February 2017, it has produced an average daily

recovery rate of 3.5 m d−1. The mining operations of the 15112 and 15116 longwalls, located

within the study area, began in October 2012 and August 2015, respectively; however, during

the periods of their operation, no building damage was reported by the local villagers.

The village of Nanyetou is located to the southeast of the Baiyangling coal mine, about 310

m from the boundary of exploitation of longwall 15110. Their relative positions are shown in

Fig 1. The buildings in this area mainly consist of step-stone cave homes, single-storey brick

and tile structures, and a few brick and mortar houses constructed during the 1960s and 1970s.

In March 2017, many villagers reported cracking and tilting of the buildings located on the

southern side of the village, as shown in Fig 2.

Fig 1. Location of the study area.

https://doi.org/10.1371/journal.pone.0210021.g001
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To facilitate mediation in the dispute between the mine operators and the villagers, a task

force began the work of the technical assessment of the damage. The main tasks involved sur-

veying the building damage in the field, followed by grading and assessment of the causes of

the damage.

Field survey methodology

The field survey was divided into two parts: (1) investigation of the extent of building damage and

(2) measurement of the surface cracks. The method of investigation of the extent of building dam-

age involved on-site recording of the name(s) of the resident(s) of each building and the details of

the damage condition, including the location, shape, number, and width of any cracks and the

amount and direction of tilt of any walls. The planimetric locations of surface cracks were estab-

lished and numbered using GPS, and their widths were measured using a steel tape.

Investigation results and analysis. The on-site investigation involved 275 residents and

more than 800 buildings. Based on the building damage grading principles of ‘The Regulation

for Leaving Coal Pillars and Coal Mining Coal under Buildings, Water Bodies, Railways, and

the Main Roadways’ [16], we graded the level of damage of the surveyed buildings (Table 1).

Fig 1 shows the distribution of buildings with various grades of damage.

Fig 2. Examples of damage to village buildings. (A) Wall cracks. (B) Surface cracks. (C) Wall tilt. (D) Wall bulges.

https://doi.org/10.1371/journal.pone.0210021.g002
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It can be seen from Fig 1 that most of the damage to the buildings on the northern side of

the village falls within grades I and II, while on the southern side, further from the boundary of

mining influence, some of the damage reaches grades III and IV.

Analysis of effects of longwall mining

The ground surface displacement caused by underground mining has an impact on the build-

ings located within the area of influence. Therefore, the primary task in a technical assessment

of mining damage is to determine the boundary of influence following longwall mining

activity.

Mining subsidence law and prediction

Because of mining activities, the original balance of rock stress within the study region had

changed. The rock strata had been subjected to continuous movement, deformation, and dis-

continuous damage, resulting in stress redistribution and a new equilibrium [17]. When the

area of the underground mining activities reaches a certain extent, the influence of the mining

spreads to the ground surface, leading to subsidence, displacement, and deformation, as

shown in Fig 3. The range and degree of ground surface deformations are comprehensively

affected by various factors, such as mining depth, mining area, mining method, and geological

condition [1].

Although the process of mining-related subsidence is complex, the value and spatial distri-

bution of ground surface displacement and deformation have certain regularities: surface sub-

sidence at the top of the exploitation area is the largest, and the value of subsidence from the

centre to the edge of the subsidence basin gradually decreases; the spatial distribution of

ground surface subsidence is shown by the red curve in Fig 3. Furthermore, ground subsidence

and deformation can be calculated using the corresponding method when the underground

mining area and geological mining conditions are determined. The stochastic medium model,

proposed by Litwiniszyn [18] and generalised by Liu and Liao [19], is one of the most widely

used and most well-developed methods. A large number of production practices have demon-

strated that the method can achieve a calculation accuracy of 90% relative to the actual defor-

mation observed in mining subsidence areas. Based on this model, in a two-dimensional

plane, the surface vertical deformation value We(x) caused by the mining element can be

expressed as follows:

WeðxÞ ¼
1

r
e� p

x2

r2 ð1Þ

Table 1. Cross-reference table of grade of damage to surface buildings and ground deformation.

Damage

grade

Description of damaged buildings Ground deformation value

Horizontal deformation (mm

m−1)

Curvature (10−3

m−1)

Incline (mm

m−1)

I Cracks in walls of masonry buildings <4 mm in width and total width of

multiple cracks <10 mm

�2.0 �0.2 �3.0

II Cracks in walls of masonry buildings <15 mm in width and total width of

multiple cracks <30 mm

�4.0 �0.4 �6.0

III Cracks in walls of masonry buildings <30 mm in width and total width of

multiple cracks <50 mm

�6.0 �0.6 �10.0

IV Cracks in walls of masonry buildings�30 mm in width and total width of

multiple cracks�50 mm

>6.0 >0.6 >10.0

https://doi.org/10.1371/journal.pone.0210021.t001
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where r = H/tan β denotes the major influence radius, H is the mining depth, and β is the min-

ing influence angle; x refers to the horizontal coordinate of the mining element.

However, surface deformation is a three-dimensional problem; specifically, the subsidence

value at an arbitrary surface point A(x, y) is the result of the combined effect from two direc-

tions: the strike direction (x axis) and the tendency direction (y axis) of the coal seam. In three

dimensions, the final subsidence value WA(x, y) can be expressed as

WAðx; yÞ ¼Wmax

ZZ

F

f ðx; yÞdF ð2Þ

where f(x, y) is the space probability density function, F represents the area of underground

coal mining, and Wmax = mqcosα denotes the maximum subsidence value; q is the subsidence

coefficient, m and α represent the average thickness and dip angle of the mined coal seam,

respectively.

As shown in Fig 4, φ is the included angle between the calculated direction and the positive

direction of the x-axis in the anticlockwise direction. Assuming that the strike and tendency

mining lengths of the rectangular working face are l and L, respectively, the length of the

mined portion of the working face are x2[0,l] and y2[0,L]. Taking into account the indepen-

dence of the probability in the x and y directions, and taking the lower-left corner of the

Fig 3. Schematic of ground surface deformation curve and boundary angle.

https://doi.org/10.1371/journal.pone.0210021.g003
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working face as the origin of the coordinate system, Eq (2) can be expressed as

WAðx; yÞ ¼Wmax

ZZ

F

f ðxÞf ðyÞdxdy ¼
Wmax

r0
2

Z l� x

� x
e� pð

x
r0
Þ2dx

Z L� y

� y
e
� pð

y
r1ð2Þ
Þ2

dy ð3Þ

where r0 is the major influence radius along the strike direction of the coal seam, and r1(2) is

the major influence radius along the tendency of the coal seam in the upward (downward)

direction.

Eq (3) is the expression for the final subsidence value at an arbitrary surface point induced

by underground coal mining. Based on these theories, members of our project team developed

software for subsidence predictions based on the AutoCAD platform [20].

In this study, ground subsidence was calculated using the stochastic medium model, for

which the predicted parameters (mining thickness: 4500 mm, subsidence coefficient: 0.83,

Fig 4. 3D coordinate system based on the stochastic medium model.

https://doi.org/10.1371/journal.pone.0210021.g004
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tangent of main influence: 2.10, greatest subsidence angle: 90˚, and displacement factor: 0.22)

were derived from ‘The Regulation for Leaving Coal Pillars and Coal Mining Coal under

Buildings, Water Bodies, Railways, and the Main Roadways’. The calculated contour lines of

surface subsidence and the most external influence boundary (the surface subsidence 10mm

contour line) are shown by the green line in Fig 1.

The calculated results showed that obvious subsidence occurred on the ground surface

because of the mining of underground working surfaces, and that the maximum subsidence

reached 3700 mm. The calculated results also indicated theoretically that the outer boundary

affected by underground mining would not spread to the village of Nanyetou. However, it is

known that the conventional method for the prediction of mining subsidence converges too

quickly above the boundary, which makes the resulting range of influence becoming small [11].

It also has limitations in the prediction of subsidence in mountainous areas. Therefore, we used

the boundary angle calculation method to determine the boundary of mining influence.

Determination of longwall mining influence boundary

Assuming that accurate geological data are obtainable, the boundary of longwall mining influ-

ence also can be determined based on the boundary angle [1, 17]. The boundary angle is the

angle between a line drawn from a border point of the surface movement basin bedding plane

to the border of extraction and a horizontal line at the coal pillar side, under the condition of

full subsidence or almost full subsidence [17], as shown in Fig 3.

In accordance with the surface movement parameter table in ‘The Regulation for Leaving

Coal Pillars and Coal Mining Coal under Buildings, Water Bodies, Railways, and the Main

Roadways’, we selected 65˚ as the boundary angle for the study area [16]. Based on the mining

elevations and topography in different locations of longwall 15110 and of previously exploited

longwalls 15112 and 15116, we calculated the location of the boundary of mining influence,

shown by the red line in Fig 1.

Analysis and discussion

It can be inferred from Fig 1 that the boundary of mining influence, determined based on the

boundary angle, affected only some of the buildings and facilities located in the northern part

of the village area. In theory, this means there could be no possibility of damage resulting

directly from mining activities to buildings located on the southern side of the village. This

contradicts the findings of the on-site investigation.

The study village is located at the foot of a slope in a mountainous area that has a 5-m-thick

surface layer of yellowish-brown clay on top of the bedrock. The stress direction of the surface

soil layer in the area after exploitation is shown Fig 5.

Based on the field survey results, it was determined that surface cracks emerged following

the longwall mining activity. Fig 5 shows that surface cracks ① and ② are located in the min-

ing-induced tensile zone, where unevenly distributed movement of the surface soil in the

direction of the goaf led to the emergence of surface cracks. Surface crack ③ is located outside

the boundary of influence. Taking into account the stress direction analysis (Fig 5), it was con-

sidered that this crack was caused by the downward force of the soil moving under its own

weight along the bedrock. Therefore, the two types of surface cracks have different causes and

different characteristics.

Based on the differences in the locations of the surface cracks and on the analysis of their

development, we can infer that the damage to the buildings on the southern side of the village

was related to the reduction in slope stability due to the emergence of mining-related cracks,

which caused slow slippage.

Mining subsidence theory and slope stability analysis
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Slope stability analysis

The slope safety factor is used as the basis for evaluating slope stability. Based on the “Techni-

cal Code for Building Slope Engineering”, the slope stability conditions are divided into four

categories: stable, mostly stable, slightly unstable, and unstable [21]. The corresponding rela-

tionship between the slope condition and the factor of slope safety is shown in Table 2.

Slope stability analysis methods

Slope stability is a core issue in geotechnical engineering. However, following nearly a century

of development, theoretical research has gradually improved understanding of this issue. At

Fig 5. Diagram of surface soil layer stress direction.

https://doi.org/10.1371/journal.pone.0210021.g005

Table 2. Slope stability condition categories.

Factor of safety F < 1.00 1.00� F < 1.05 1.05� F < Fst F� Fst

Slope stability condition unstable slightly unstable mostly stable stable

https://doi.org/10.1371/journal.pone.0210021.t002
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present, the quantitative methods available for slope stability analysis include limit equilib-

rium, reliability analysis, and numerical simulation analysis [22–24]. Among these, the limit

equilibrium method, which uses a factor of safety to evaluate slope stability quantitatively, rep-

resents the conventional approach used widely in engineering. The most commonly used limit

equilibrium methods include the Fellenius method [25], Bishop method [26], Janbu method

[27], Sarma method [28], and imbalanced thrust force method [29]. The Janbu method, which

is able to satisfy all of the stress equilibrium conditions and to simulate any slip surface shape,

is the method most widely used. Therefore, the Janbu method was used in this study to calcu-

late slope stability [30, 31].

The basic principles of the Janbu method are as shown in Fig 6. For any arbitrary soil slice i
within any slip surface, the following is assumed: the tangential force Ti on the slip surface is

equal to the shear strength τfi of the soil on the slip surface; and the point of application of the

bilateral normal force E of the soil slip is located at a height of 1/3 above the soil slice.

Based on the vertical equilibrium conditions of a single slice, the following can be obtained:

Nicosai ¼Wi þ DXi � Tfisinai: ð4Þ

Further, based on the horizontal static equilibrium conditions of a single slice, the following

can be obtained:

DEi ¼ ðWi þ DXiÞtanai � Tfisecai: ð5Þ

The moment equilibrium at the slice action point can be obtained, while ignoring the higher-

order terms:

Xi ¼ � Ei tanati þ hti DEi=bi: ð6Þ

At the same time, for the entire slope
Pn

1
Ei ¼ 0, we can obtain the following:

Pn
1
ðWi þ DXiÞ tanai �

Pn
1
Tfisecai ¼ 0: ð7Þ

Based on the definition of safety factor and the Mohr–Coulomb failure criterion, we have:

Tfi ¼ ðcibi þ ðWi þ DXiÞ tanφiÞ=ðFsmai
Þ; ð8Þ

where mai
¼ cosaið1þ tanφitanai=FsÞ.

Fig 6. Basic principles of the Janbu slice method.

https://doi.org/10.1371/journal.pone.0210021.g006
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After combining Eqs (7) and (8), we obtain the following:

Fs ¼
P cibi þ ðWi þ DXiÞtanφi

mai

=
P
ðWi þ DXiÞsinai: ð9Þ

Eq (9) is the slope stability equation of the Janbu method.

Calculation of original slope safety factor

In order to analyse the influence of mining on slope stability, we selected lines A–A’, B–B’, and

C–C’ (Fig 1) as the original terrain sections based on the building damage conditions in differ-

ent areas of the village. Using the equations in the previous section, we calculated the safety

factor of original slope (Table 3). The critical slip surface locations at each cross section are

shown in Fig 7. The critical slip surface locations of A–A’, B–B’, and C–C’, as measured from

points A, B, and C, are at distances of 755–847, 841–913, and 682–749 m, respectively.

It is evident from Fig 7 that the critical slip surface of the original surface slope is located

very close to or is within the village area. The calculated surface slope safety factor presented in

Table 3 show that all slopes, without the influence of mining, are categorised as either stable or

mostly stable and that the ground structures are not damaged because of slope slip.

Influence of longwall mining on slope stability

Mining-induced slope instability analysis. The main impacts that mining has on

slope stability include changes in slope, cracking, and other similar types of damage. When

cracks reach certain depths, rainwater seepage can fill them up, which intensifies crack

propagation further and reduces slope stability. Previous studies have shown that the slope

safety factor decreases with crack expansion and the increase of the depth of the water filling

the crack.

The field survey results of this study identified the occurrence of mining-induced cracking

near the village, with specific locations shown in Fig 1. Besides, in some of the cave homes

located close to the slope side, water seepage through the walls was prominent. Therefore, the

slope safety factor would be expected to decrease because of the emergence of surface cracks,

and rainwater would inevitably seep into the cracks and penetrate the slope. The impact of

rainwater penetration is considered in relation to the following two aspects: ① In the zone of

mining-induced slope surface deformation, rainwater infiltration leads to a decrease of the

strength parameters of the potential failure surface. Assuming a 10% reduction of soil parame-

ters and unchanged bedrock parameters, we calculated the slope safety factor following long-

wall mining activity. ② The slope safety factor decreases when the cracks are full of rainwater.

Based on the field survey, we used a single crack (depth: 3 m, width: 0.1 m) in the simulation

to calculate the slope safety factor following longwall mining activity.

Calculation of the slope safety factor following longwall mining activity. Using the

Janbu method described in the previous section, we calculated the decrease in the strength

parameters of a failure surface caused by rainwater and the change in the slope safety factor fol-

lowing crack water infiltration (Table 4).

It is evident from Table 4 that mining-induced surface cracks caused a decrease in the safety

factor of the original slope. The decrease in the safety factor of the critical slip surface of the A–

Table 3. The safety factor of original slope.

Cross section A–A’ B–B’ C–C’

Factor of safety 1.169 1.168 1.110

https://doi.org/10.1371/journal.pone.0210021.t003
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A’, B–B’, and C–C’ cross sections was about 16%, 10%, and 2%, respectively; after the change,

the slope conditions were categorised as unstable, slightly unstable, and mostly stable,

respectively.

Fig 7. Diagrams of critical slip surface locations at each cross section.

https://doi.org/10.1371/journal.pone.0210021.g007

Table 4. Change in slope safety factor following longwall mining activity.

Cross section Slope safety factor

Original Following mining activity Change

A–A’ 1.169 0.986 15.7%#

B–B’ 1.168 1.049 10.1%#

C–C’ 1.110 1.085 1.4%#

https://doi.org/10.1371/journal.pone.0210021.t004
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Based on the obtained results, it is determined that a risk of instability exists in the critical

slip surface of the A–A’ and B–B’ cross sections, where landslides due to creep-induced crack

instability could occur.

Analysis and discussion

It is evident from Fig 7 that the critical slip surface of the A–A’ cross section is located on the

western side of the village boundary. The slip surface in this area presses on the local buildings

causing exterior tiles or even entire walls of some of the buildings to tilt. Buildings located

within courtyards and close to the slope side were found most affected. The critical slip surface

of the B–B’ cross section is located within the village. Non-uniform slope slippage causes some

ground surface cracking, which leads to cracking of some buildings. The above analysis is con-

sistent with the actual results of the field survey.

Analysis of displacements monitored by InSAR

In order to verify the results of the slope stability analysis, the conventional D-InSAR tech-

nique was used to monitor the surface deformation during the 15110 working face mining

(February 17 to March 27, 2017), the mining area are shown by the red line in Fig 1. The SAR

data used in this analysis comprised Sentinel-1A images acquired on February 11 and March

31, 2017. The deformation monitoring results are shown in Fig 8.

According to the monitored ground surface displacement results, the following two features

were confirmed. ① Mining of the 15110 working face caused obvious ground deformation,

and the range of subsidence monitored by the InSAR technique was in good agreement with

the mining influence boundary defined in section 3.1. ② Outside the mining influence bound-

ary, near the middle and southern parts of the village, obvious deformation phenomena on the

surface validated the slope instability analysed in the previous section.

Discussion and conclusions

Discussion

Northern area building damage factor analysis. Some of the buildings on the northern

side of the village are located within the boundaries of influence of longwalls 15112 and 15116.

The influence boundaries were determined using the boundary angle calculation method. The

calculation results showed that the largest surface deformation in this area was <4 mm m−1.

This means that local buildings could have incurred some mining-related damage, but theoret-

ically, the extent of the damage should not reach grade III. Conversely, the slope stability calcu-

lation results showed that exploitation of the two longwalls should not have caused any change

in the slope stability of this area; thus, mining activity should not have increased the level of

damage caused to the buildings. Consequently, the buildings in this area would be expected to

be influenced directly only by the longwall mining and their damage grade should be I–II.

The field survey confirmed the existence of only minor cracks in the buildings located in

the northern part of the village, consistent with the above analysis.

Southern area building damage factor analysis. The analysis in 3th section showed that

the southern side of the village is not located within the boundary of influence of longwall

15110, as determined using the boundary angle calculation method. Therefore, under normal

topographic conditions, this area would not be influenced directly by the exploitation and the

buildings should not show any serious damage. This is contradictory to the results of the field

survey. However, the analysis in 4th section indicated that surface cracking induced by long-

wall mining leads to a decrease in the slope safety factor. Therefore, the change in the slope
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stability condition is the principal reason for the damage caused to the buildings on the south-

ern side of the village. The building damage in this area was discovered in March 2017, which

coincides with the exploitation of longwall 15110 (February 2017). Therefore, although the

buildings in this area were not affected directly by the longwall mining, the decrease in slope

stability due to the mining activity caused slope creep, which was the direct cause of building

damage.

Research significance and limitations. This study focused on technical assessment of

mining damage based on two aspects: mining subsidence theory and slope stability analysis.

As the basic theory of mining subsidence cannot adequately explain the degree of damage to

ground structures, this study investigated and analysed the reasons for damage caused to

buildings in a village in a mountainous mining area. The results of the analysis were consistent

with the findings of a field survey conducted. The results of this study provide guidance

and reference for future work on the technical assessment of mining-related damage in

Fig 8. Monitored ground surface displacement using the conventional D-InSAR technique.

https://doi.org/10.1371/journal.pone.0210021.g008
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mountainous areas. However, this study explored building damage solely in terms of slope sta-

bility, without consideration of other geological and natural factors. Therefore, further

research on the technical assessment of mining-related damage in mountainous areas and in

areas with complex geological conditions is needed.

Conclusions

This study investigated surface cracks and building damage associated with mining activity in

a mountainous area of China. Based on mining subsidence theory and slope stability analysis,

it was determined that increasing slope instability (reflected in a decrease of the slope safety

factor), which was attributable to the mining activity, was the principal reason for the damage

caused to the buildings in the study area. On the other hand, the actual surface displacements

obtained with InSAR technique also verified the existence of the slope slip phenomenon. The

analysis results show that mining-induced surface deformation mining would not directly

cause damage to buildings, but the occurrence of surface cracks due to underground mining

could lead to slope instability, resulting in building damage. This finding established that the

effects of mining activity could be transmitted beyond the boundary of influence, determined

by conventional subsidence models. The novelty of this study is investigation of surface cracks

and building damage associated with mining activity in a mountainous area of China based on

mining subsidence theory and slope stability analysis, instead of the basic theory of mining

subsidence (which cannot adequately explain the degree of damage to ground structures). The

research results not only provide a reference for mining face design (especially in mountainous

areas), but they can also facilitate early warning of building damage.

Supporting information

S1 Appendix. URL of Sentinel-1A and POD precise orbit ephemerides.

(ZIP)

S2 Appendix. Information of cross section.

(ZIP)

Acknowledgments

The authors are grateful to anonymous reviewers for their valuable suggestions.

Author Contributions

Data curation: Dawei Zhou, Jinyun Wang, Zhixin Duan, Zixiang Yu.

Funding acquisition: Xinpeng Diao.

Methodology: Xinpeng Diao, Kan Wu.

References
1. He GQ, Yang L, Ling GD, Jia FC, Hong D. Mining Subsidence Theory. 1st ed. Xuzhou: China Univer-

sity of Mining and Technology Press; 1991.

2. Malinowska A. A fuzzy inference-based approach for building damage risk assessment on mining ter-

rains. Engineering Structures. 2011; 33(1): 163–170.

3. Malinowska A, Hejmanowski R. Building damage risk assessment on mining terrains in Poland with

GIS application. International Journal of Rock Mechanics and Mining Sciences. 2010; 47(2): 238–245.

(https://doi.org/10.1016/j.ijrmms.2009.09.009)

Mining subsidence theory and slope stability analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0210021 February 6, 2019 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210021.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210021.s002
https://doi.org/10.1016/j.ijrmms.2009.09.009
https://doi.org/10.1371/journal.pone.0210021


4. Dzegniuk B, Hejmanowski R, Sroka A. Evaluation of the damage hazard to building objects on the min-

ing areas considering the deformation course in time. In: Proceedings of 10th international congress of

the international society for mine surveying. 1997. (https://doi.org/10.13140/2.1.3356.3520)

5. Saeidi A, Deck O, Verdel T. Comparison of building damage assessment methods for risk analysis in

mining subsidence regions. Geotechnical & Geological Engineering. 2013; 31(4): 1073–1088.

6. Diao XP, Bai ZH, Wu K, Zhou DW, Li ZL. Assessment of mining-induced damage to structures using

InSAR time series analysis: a case study of Jiulong Mine, China. Environmental Earth Sciences. 2018;

77(5):166. (https://doi.org/10.1007/s12665-018-7353-2)

7. Yang ZF, Li ZW, Zhu JJ, Preusse A, Hu J, Feng GC, et al. An InSAR-based temporal probability integral

method and its application for predicting mining-induced dynamic deformations and assessing progres-

sive damage to surface buildings. IEEE Journal of Selected Topics in Applied Earth Observations &

Remote Sensing. 2018; 11(2):1–13.

8. Yang L, Yu GM, Wang XC, Li YP. Influence of terrain condition on mining buildings. Mine Survey. 1994;

1: 40–44. (In Chinese)

9. Deng WN, Zhang HX, Xu NZ. Multi-method comparison evaluation mode of mining damage influence

range and its application. Coal Mining Technology. 2013; 18(2):105–107. (In Chinese)

10. Zhang HX. Evaluation and prevention of mining subsidence in coal mines. Coal Mining Technology.

2015; 20(3):1–2. (In Chinese)

11. Tan ZX, Deng KZ. Identification method of coal mining damage technology. Safety in Coal Mines. 2006;

37(5): 29–31. (In Chinese)

12. Cui XM, Peng XZ, Liu WL, Li F, Zhang HJ. Application of seismic data acquisition in the mining damage

duty dividing. Journal of Hebei Institute of Architectural Science and Technology. 2006; 23(2):63–65.

(In Chinese)

13. Xu NZ, Gao C, Liu G, Sun WM. Study of surface movement deformation critical value of house damage

in mining influence area. Coal Mining Technology. 2017; 22(4):65–69. (In Chinese)

14. Salmi EF, Nazem M, Karakus M. The effect of rock mass gradual deterioration on the mechanism of

post-mining subsidence over shallow abandoned coal mines. International Journal of Rock Mechanics

and Mining Sciences. 2017; 91:59–71.

15. Salmi EF, Nazem M, Karakus M. Numerical analysis of a large landslide induced by coal mining subsi-

dence. Engineering Geology. 2017; 217:141–152.

16. State Administration of Work Safety, Nation Coal Mine State Administration, National Energy Adminis-

tration, and National Railway Administration of the People’s Republic of China. The Regulation for Leav-

ing Coal Pillars and Coal Mining Coal under Buildings, Water Bodies, Railways, and the Main

Roadways. Beijing: China Coal Industry Press; 2017. (In Chinese)

17. Deng KZ, Tan ZX, Jiang Y, Dai HY, Shi Y, Xu LJ. Deformation Monitoring and Mining Subsidence Engi-

neering. 1st ed. Xuzhou: China University of Mining and Technology Press; 2014. (In Chinese)

18. Litwiniszyn J. The Theories and Model Research of Movements of Ground Masses. In: Proceedings of

European Congress Ground Movement. 1957. p. 203–209.

19. Liu BC, Liao GH. General Regulations of Ground Surface Movement in Coal Mine. 1st ed. Beijing:

China Industry Press; 1991. (In Chinese)

20. Li L, Wu K, Zhou DW. AutoCAD-Based Prediction of 3D Dynamic Ground Movement for Underground

Coal Mining. International Journal of Rock Mechanics and Mining Sciences. 2014; 71:194–203.

21. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Adminis-

tration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Technical

Code for Building Slope Engineering. Beijing: China Architecture & Building Press; 2013. (In Chinese)

22. Li XS, Li YJ, Wang ML. FLAC3D Numerical Analysis of Pressure Movement Laws of Underground

Phosphate Mining. Metal Mine. 2013; 11: 14–16+20. (In Chinese)

23. Yasitli NE, Unver B. 3D numerical modeling of longwall mining with top-coal caving. International Jour-

nal of Rock Mechanics and Mining Sciences. 2005; 42(2):219–235. (https://doi.org/10.1016/j.ijrmms.

2004.08.007)

24. Wang T, Zhao XY, Hu WR, Chen JH, Cheng L, Zhao LZ, et al. Investigation of mine pressure and defor-

mation due to phosphate ore body excavation based on Hoek-Brown model. Journal of Unconventional

Oil and Gas Resources. 2016; 15:158–164.(https://doi.org/10.1016/j.juogr.2016.08.001)

25. Fellenius W. Calculation of stability of earth dam. In: Transactions 2nd Congress Large Dams; Wash-

ington. 1936. P. 445–462.

26. Bishop A. The use of the slip circle in stability analysis of slope. Géotechnique. 1955; 5(1):7–17.
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