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Interleukin-6 (IL-6) is a pleiotropic cytokine that not only regulates the immune and 
inflammatory response but also affects hematopoiesis, metabolism, and organ devel-
opment. IL-6 can simultaneously elicit distinct or even contradictory physiopathological 
processes, which is likely discriminated by the cascades of signaling pathway, termed 
classic and trans-signaling. Besides playing several important physiological roles, 
dysregulated IL-6 has been demonstrated to underlie a number of autoimmune and 
inflammatory diseases, metabolic abnormalities, and malignancies. This review provides 
an overview of basic concept of IL-6 signaling pathway as well as the interplay between 
IL-6 and renal-resident cells, including podocytes, mesangial cells, endothelial cells, 
and tubular epithelial cells. Additionally, we summarize the roles of IL-6 in several renal 
diseases, such as IgA nephropathy, lupus nephritis, diabetic nephropathy, acute kidney 
injury, and chronic kidney disease.

Keywords: iL-6 classic signaling, iL-6 trans-signaling, podocyte, mesangial cells, endothelial cells, tubular 
epithelial cells, renal disease

iNTRODUCTiON

Interleukin-6 (IL-6) was discovered in 1986 as a B cell stimulatory factor initiating IgG production 
(1). Later, it was demonstrated to be a multifunctional cytokine that regulates numerous biological 
processes including the organ development, acute-phase responses, inflammation, and immune 
responses (2).

Up to date, ten IL-6 family cytokines have been identified: IL-6, oncostatin M (OSM), leukemia 
inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotropin-1 (CT-1), cardiotrophin-
like cytokine (CLC), neuropoietin (NP), IL-11, IL-27, and IL-31 (3–5). All these cytokines share the 
membrane glycoprotein gp130 as a common receptor and signal transducer subunit in their receptor 
complexes except IL-31. The formation of the signal-transducing complex of each cytokine depends 
on specific ligand and receptor association. IL-6 and IL-11 bind to the specific membrane-bound 
α chain of IL-6 receptor (IL-6R) or IL-11R, respectively, and then connect to gp130, leading to 
the homodimerization of gp130. CLC, CT-1, OSM interact with gp130/LIFR or gp130/OSMR and 
then form heterodimeric receptor complexes to conduct signal. For IL-31, it utilizes the IL-31R and 
OSMR as signal-transducing receptor, and it is the only cytokine of IL-6 family that does not need 
gp130 for signal transmission [Figure S1 in Supplementary Material quoted from Garbers et al. (6)].

The IL-6 family cytokines show diverse physiological and pathological functions. Some of their 
functions are overlapping such as both IL-6 and IL-11 participate in promoting the synthesis of 
acute-phase protein in hepatocytes (7–9), and IL-11, IL-6, OSM as well as CT-1 are all involved in the 
bone metabolism by stimulating osteoclast formation (10, 11). However, more frequently, individual 
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IL-6 family members have distinct functions by the respective 
specific receptors that may not present simultaneously or spatially 
restricted. IL-6 is the one that has been studied most, and we will 
mainly focused on it in this review.

CLASSiC AND TRANS-SiGNALiNG 
PATHwAY OF iL-6

On target cells, IL-6 first binds to the α-chain of non-signaling 
membrane-bound IL-6R (mbIL-6R, also named CD126 or gp80); 
subsequently, this complex connects to two molecules of gp130 
and initiates signal transduction. JAK/STAT3 and SHP2/Gab/
MAPK are the two major pathways involved in gp130 signal-
ing which is activated via the YxxQ motif and Y759 of gp130, 
respectively (5, 12–14).

It is worthwhile to note that only a few cell types, such as 
macrophages, neutrophils, CD4+ T-cells, podocytes, and hepato-
cytes, express IL-6R on the cell surface, and therefore can directly 
respond to IL-6 (15, 16).

Soluble receptors have been identified for many cytokines 
and are pivotal regulators by acting as agonists or antagonists 
of cytokine signaling and inflammatory events. For example, 
the soluble receptors of TNF-α and IL-1α act as antagonists by 
neutralizing and inhibiting the activity of their ligands (17–19). 
A soluble form of the IL-6R (sIL-6R) has been detected in body 
fluids such as blood and urine (20). sIL-6R binds to IL-6 with 
comparable affinity as the mbIL-6R (21); consequently, the com-
plex of IL-6/sIL-6R can activate gp130, a membrane protein is 
ubiquitously expressed (22–25). Activation of gp130 via the IL-6/
sIL-6R complex is termed IL-6 trans-signaling pathway, whereas 
activation of gp130 via the mbIL-6R is named IL-6 classic sign-
aling pathway (23, 26–28). IL-6 trans-signaling represents an 
alternative to classic IL-6 signaling and permits IL-6 to modulate 
a broad spectrum of target cells [Figure S2 in Supplementary 
Material, quoted from Ref. (29)].

Due to the ubiquitous expression of gp130 and the extensive 
involvement of IL-6 trans-signaling pathway in diverse physio logic 
and pathologic processes, to get a comprehensive understanding 
of the generation of sIL-6R is critical. In humans, the sIL-6R is 
generated via two distinct mechanisms. The first one implicates 
proteolytic cleavage of the mbIL-6R and relies on a metallopro-
tease activity, and the second mechanism is by the translation of 
a differentially spliced IL-6R mRNA lacking the transmembrane 
and cytosolic domains (30–32). It is believed that the generation 
of the sIL-6R is mainly regulated by metalloprotease cleavage 
rather than via differential mRNA splicing (33). In the mouse, 
only shedding via enzymatic digestion but no differential splicing 
of the IL-6R mRNA was observed (30). The shedding of the IL-6R 
is catalyzed by Zn2+-metalloproteases of the ADAM (a disinteg-
rin and metalloprotease) family (34, 35), among which ADAM10 
and ADAM17 are the most related enzymes that driving IL-6R 
proteolysis. It is documented that ADAM10 mediates the slow 
constitutive IL-6R cleavage, while ADAM17 is account for rapid 
IL-6R shedding upon diverse stimulations (36). Many factors 
can activate ADAM17, such as pro-inflammatory cytokines (IL-
1β and TNF-α), bacterial toxins, cellular cholesterol depletion, 
PKC agonist, proteasome inhibitor, DNA damage, and so on (34, 

36–40). Therefore, modulation of ADAM17 activity is essential 
for the IL-6 trans-signaling conduction.

Soluble form of gp130 (sgp130) is found naturally produced 
and it is detected in the circulation at relatively high concentra-
tion (100–400 ng/ml in human plasma) (4, 41–44). Unlike sIL-
6R, sgp130 is predominantly generated by alternative splicing 
rather than proteolysis (45). Since sgp130 can interact with the  
IL-6/sIL-6R complex, it acts as a specific inhibitor of IL-6 
trans-signaling pathway (46, 47), whereas it does not affect 
mbIL-6R-mediated classic signaling. Notably, sgp130 is specific 
for the IL-6/sIL-6R complex due to signaling of other IL-6 family 
cytokines like LIF and OSM were blocked at 100–1,000-folds 
higher concentrations and CNTF and IL-27 signaling were not 
affected at all (46, 48, 49). Experimentally, sgp130 can be utilized 
as molecular tool to discriminate between IL-6 classic signaling 
and trans-signaling because it competitively inhibits trans-
signaling without affecting classic signaling.

Global IL-6 signaling can be halted by IL-6 or IL-6R neutral-
izing antibodies. In parallel experiments, IL-6 trans-signaling can 
be inhibited with the sgp130Fc protein, which could be provided 
by either injection of the recombinant protein or generation by 
sgp130Fc transgenic mice. Moreover, IL-6 trans-signaling can be 
also activated with hyper-IL-6 (recombinant soluble IL-6/sIL-6R 
fusion protein). The experimental design using these approaches 
could elucidate whether the IL-6-gp130-initiated effect is medi-
ated by IL-6 classic or trans-signaling pathway (23, 50).

The property of IL-6 during inflammation process is 
complicated, in addition to its well-known pro-inflammatory 
properties, it also elicits anti-inflammatory effects under 
certain situations. Usually, it is believed that IL-6 classic signal-
ing is anti-inflammatory whereas the trans-signaling is pro-
inflammatory (51). In detail, IL-6 classic signaling is implicated 
in the synthesis of acute-phase proteins in hepatocyte, which have 
anti-inflammatory properties and are indispensable for immune 
defense (52). Whereas, in various inflammation and autoimmune 
diseases, as well as inflammation-associated cancer, IL-6 trans-
signaling is pro-inflammatory and blockade of it is sufficient to 
alleviate the inflammatory reaction (53–61). But the controversy 
is existed. Several investigations showed that abrogating IL-6 
trans-signaling cannot provide protective effects (28), even 
unexpectedly attenuated the recovery processes of the disease 
under certain conditions. For example, IL-6 trans-signaling is 
critical to regulate the transition from neutrophil to monocyte 
and prevent excessive tissue damage (62). Therefore, it appears in 
different diseases that the pathogenetic roles of IL-6 classic and 
trans-signaling are distinct.

iL-6 AND iMMUNe AND iNFLAMMATORY 
CeLLS

T Lymphocytes
Growing data conclusively confirmed that IL-6 is involved in the 
regulation of T  cell differentiation between two critical CD4+ 
T cell populations: regulatory T (Treg) cells and T helper 17 (Th17) 
cells. Specifically, IL-6 triggers the differentiation of Th17  cells 
together with TGF-β by enhancing RORγt expression (63–66), 
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TAbLe 1 | effect of iL-6 on kidney cells.

Type of cells Production of iL-6 expression of mbiL-6R expression of gp130 effect of iL-6

Podocyte Yes Yes Yes Promotes proliferation; affects the differentiation, cell cyclea

Mesangial cell Yes No Yes Enhances proliferation, matrix accumulation; increases 
MCP-1 synthesis and releaseb

Endothelial cell Yes No Yes Induces vasoconstriction and endothelial dysfunction; 
increases ROS productionc

Tubular epithelial cell Yes No or weak Yes Stimulates tubular atrophy; increases collagen I generation; 
accelerates tubulointerstitial fibrosisd

aMoutabarrik et al. (15); Feng et al. (89); Lu et al. (90); Dai et al. (91).
bColetta et al. (87); Gohda et al. (92); Lu and Zhou (93).
cWassmann et al. (94); Schrader et al. (95).
dRanganathan et al. (96); Kielar et al. (97); Harcourt et al. (98).
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while it dampens the generation of Treg cells via STAT3 (67–70). 
Th17 cells secrete a number of pro-inflammatory cytokines, such 
as IL-17, and initiate various inflammatory responses. Meanwhile, 
diminished Treg further worsen the situation.

Besides that, it is well documented that IL-6 signaling pro-
motes T cells proliferation and resists its apoptosis by producing 
IL-2 and activating STAT3 (53, 71, 72), and it also activates Th2 
cytokine generation through the transcription factor C/EBP (73). 
Furthermore, follicular helper T  cells (TFH), a newly identified 
CD4+ T helper subpopulation, which is differentiated from naive 
CD4+ T cells in the presence of IL-6, and is a strong inducer for 
B cell activation (74).

Therefore, IL-6 is clearly implicated in CD4+ T cells differen-
tiation and expansion and plays a key role in the T-cell-mediated 
immune response. Additionally, IL-6 is indirectly involved in 
B cell-induced inflammation via TFH. Targeting IL-6 signaling is 
promising for the treatment of autoimmune and inflammatory 
Diseases.

Monocyte and Macrophage
It is well known that IL-6 modulates monocytes differentiation 
between macrophages and dendritic cells (DCs). Macrophages 
play an essential role in inflammatory response by secreting 
cytokines, chemokines, and matrix metalloproteinases. Local 
macrophages are differentiated from peripheral blood, with the 
exposure of GM-CSF, and IL-4 peripheral blood monocytes 
differentiate into DCs, whereas the additional IL-6 switches the 
differentiation of monocytes from DCs to macrophages. This 
switch is caused by IL-6-mediated upregulation of M-CSF recep-
tors on monocytes (75, 76). However, this effect is not seen with 
the addition of other IL-6 family members, including IL-11, LIF, 
and OSM (77).

Interleukin-6 can trigger myeloid leukemia cell to express 
complement receptors and Fc receptors along with F4/80 (a 
marker for mature macrophages) (78–80). In addition, IL-6 
stimulates various macrophages typical gene expression, includ-
ing early response genes c-Jun, Jun B, Jun D, JAK3, Egr-1, and late 
response genes, such as lysozyme and ferritin light-chain (78, 80). 
Consistently, upon IL-6 stimulation, monocytic cells upregulate 
MCP-1 mRNA and protein, a chemokine more strongly expressed 
in macrophages rather than monocytes (81).

Moreover, gp130 and downstream STAT3 activation are 
required for IL-6-induced macrophage differentiation, because 

gp130 mutation and dominant-negative form of STAT3 can block 
it (82, 83). Thus, IL-6-mediated gp130-JAK/STAT3 signaling 
drives macrophage differentiation from monocyte.

In contrast to abundant evidence in vitro, there is little data 
confirmed that IL-6 plays a role in macrophage differentiation 
in vivo. Macrophages from IL-6-deficient and wild-type mice are 
similar, except for the decreased capability to defend microor-
ganism (84–86). Hence, other factors compensating for IL-6 may 
induce macrophage differentiation. So IL-6 appears to be suf-
ficient, but not necessary for macrophage differentiation in vivo.

Local Generation and Signaling  
of iL-6 in Kidney
Emerging data showed that local activation of IL-6 classic and 
trans-signaling pathway is implicated in renal autoimmune and 
inflammatory diseases. Kidney resident cells, including podo-
cytes, endothelial cells, mesangial cells, and tubular epithelial cells 
(TECs) can secrete IL-6 under certain milieu. Podocyte is the only 
resident cell that expresses IL-6R, while others do not express 
IL-6R and not employ classic IL-6 signaling (87, 88) (Table 1).

iL-6 and Podocytes
Podocyte is a well-known source of IL-6, under serum-deprived 
condition, there is no detectable IL-6 in the supernate of cultured 
podocytes, but with the exposure to pro-inflammatory media-
tors, such as LPS, TNF-α, and IL-1β, IL-6 was detected and its 
concentration was increased in a dose- and time-dependent man-
ner (99–102). It was reported that dexamethasone and vitamin D 
can suppress IL-6 expression, which partially accounts for their 
anti-inflammation effects (103–105). Interestingly, podocyte is 
one of the limited number of cells that can express IL-6R and its 
abundance was also upregulated by pro-inflammatory stimula-
tion. However, the soluble form of IL-6R (sIL-6R) was not identi-
fied in the culture supernatants collected from unstimulated or 
cytokine-stimulated cells. As we mentioned before, ADAM10 and 
ADAM17 are the key enzymes cleaving mbIL-6R and generating 
sIL-6R, thus maybe upregulation of ADAM activity could induce 
sIL-6R production; however, it requires further investigation. In 
addition, IL-6 promotes podocyte proliferation in an autocrine 
fashion (15).

Besides pro-inflammatory factors, high glucose also increased 
IL-6 secretion and triggered IL-6 signal transduction in podocytes 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Su et al. IL-6 in Kidney Diseases

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 405

which was abrogated by IL-6-neutralizing antibody or IL-6 
siRNA (100). The author suggested that blocking IL-6 and its 
downstream mediators such as IL-6R and gp130 may attenuate 
the progression of diabetic nephropathy (DN).

More recently, Abkhezr (106) observed that upon 100  nM 
angiotensin II (Ang II) exposure for 6–24 h, the STAT3 was phos-
phorylated via gp130-mediated signaling in podocytes; however, 
it seems not by classic IL-6 pathway. Intriguingly, these effects 
were abrogated by TRPC6 gene depletion as well as by inhibitors 
of the Ca2+-dependent downstream enzymes calcineurin and 
Ca2+-calmodulin-dependent protein kinase II (CaMKII). It is well 
known that the STAT3 activity is positively correlated with glo-
merular cell proliferation in glomerular disease (107). Conditional 
deletion of STAT3 in podocyte ameliorated the glomerular and 
tubulointerstitial insults in several animal models (89–91). Taken 
together, it is suggested that IL-6 trans-signaling initiated by  
Ang II could activate STAT3 in podocytes in a TRPC6-dependent 
manner which consequently affect the differentiation, cell cycle, 
and other physiopathologic processes of podocytes.

Notably, apart from above detrimental role in glomerular 
diseases, soluble IL-6 generated by podocytes also has anti-
inflammation function which was demonstrated in co-culture 
system of podocytes and endothelial cells. Specifically, TNF-α 
stimulated podocyte to secrete IL-6 which upregulated the 
expression of suppressor of cytokine signaling 3 in glomerular 
endothelium and elicited the immunosuppressive action of IL-6, 
consequently reduced the recruitment of neutrophils to endothe-
lium (108); however, this issue remains debatable.

Collectively, podocyte is a vigorous origin of IL-6, the local 
excessive expression of IL-6, and its receptor may actively involve 
in the process of diverse glomerular diseases in an autocrine and/
or paracrine fashion. However, its detailed roles in the develop-
ment and resolution of the insults require further investigation. 
The discrepancy between reports may explain by the different 
experiment setting and different downstream signal pathway 
involved. Debate about IL-6 function also exists in other inflam-
matory diseases, as data propose that it serves as a marker rather 
than a mediator of inflammation (109).

iL-6 and Mesangial Cells
Under certain  situation, mesangial cells also can secrete IL-6 
and activate inflammatory cells which play an essential role in 
immune and metabolism-mediated injury of kidney (110–112). 
As we know, mesangial cells only express the gp130 and not the 
IL-6R. Exposure to IL-6 and sIL-6R together strongly promoted 
mesangial cells to synthesize and release monocyte chemoattract-
ant protein 1 and subsequently enhance monocyte recruitment 
(87). Whereas IL-6 or sIL-6R alone was ineffective to induce 
cytokine or chemokine secrete from mesangial cells.

Additionally, IL-6 involves in pathological abnormalities of 
mesangium by enhancing its proliferation, matrix accumulation, 
and sclerosis (92, 93).

iL-6 and endothelial Cells
Inflammatory stimuli, specifically, IL-1, LPS, TNFα, and IL-4 
are the common inducers for endothelial cells to generate IL-6. 

IL-6 promotes Ang II type 1 receptor (ATR1) gene expression 
and leads to Ang II-induced vasoconstriction and ROS produc-
tion which ultimately results in endothelial dysfunction (94). 
Consistently, IL-6 deficiency mice are protected against Ang II- 
mediated endothelial dysfunction (95).

Endothelial cell does not express transmembrane IL-6R, thus 
IL-6 merely via trans-signaling pathway regulates endothelial 
function (113). Interplay between IL-6 and endothelial cells 
modulates leukocytes recruitment and chemokine secretion. IL-6 
knockout mice showed reduced leukocyte aggregation at inflam-
matory sites, which is associated with diminished endothelial 
surface adhesion molecules expression and chemokines produc-
tion (114).

iL-6 and Tubular epithelial Cells
Numerous systemic or local insults, including hypoxemia, 
nephrotoxin, oxidized lipid, advanced glycation end products, 
immune complexes, cytokines, and chemokines, could initiate 
TEC to synthesize and secrete IL-6. For example, anti-dsDNA 
antibodies can induce IL-6 de novo synthesis in proximal TEC. 
Interesting, for IL-6 secretion, TEC is more sensitive to anti-
dsDNA antibodies compared to mesangial cells (115). Notably, 
glomerular injury is a potent inducer for IL-6 generation in TEC 
which presents one aspect of glomeruli-tubules cross talk.

It is shown that IL-6 can trigger proximal TEC to generate 
the collagen I and accelerate tubulointerstitial fibrosis, which was 
associated with enhanced STAT3 phosphorylation. Suppression 
of IL-6 expression in the TEC hampered the interstitial fibrosis 
and tubular atrophy whereas chronic administration of IL-6 
enhanced the fibrotic process (96). Although many studies favor 
that IL-6 contributes to acute and chronic kidney injury and 
fibrosis, opposing opinions still exist (97, 98).

iL-6 and Renal Disease
IL-6 and IgA Nephropathy (IgAN)
Local deposited high-molecular polymeric IgA1 can pro-
mote mesan  gial cells proliferation and secretion of the pro- 
inflammatory cytokine IL-6 (111, 116, 117). Moreover, MAPK/
ERK signaling, apparently relying on AT1R activation, is impli-
cated in mesangial cells IL-6 secretion. Because losartan, an AT1R 
blocker can block MAPK/ERK signaling and IL-6 production 
from mesangial cells. Thus, utilizing RAS blockers to treat IgAN 
is rationale and promising (118). Upon complement system 
is activated by immune complex, sublytic C5b-9 can stimulate 
IL-6 and TGF-β1 secretion in mesangial cells in a p300-C/
EBPβ-dependent manner which was demonstrated in mesangio-
proliferative glomerulonephritis (MPG) model. In parallel, the 
Th17-associated cytokines in serum and urine were elevated and 
correlated with renal pathological change. Additionally, locally, 
blockage of IL-6 generation by p300 and C/EBPβ gene silence 
protected MPG model from renal injury, including the reduced 
Th17 cytokines, ameliorated mesangial cells proliferation, ECM 
accumulation, and diminished proteinuria (119). Therefore, in 
IgAN, immune complex and complement component both can 
stimulate mesangial cell to secrete IL-6 and ensuing itself prolif-
eration and inflammatory cell recruitment.
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IL-6 and Lupus Nephritis (LN)
In systemic lupus erythematosus (SLE) patients and mice, the 
concentration of IL-6 is elevated in serum, urine, and glomeruli, 
which positively associated with disease activity (120–126). 
B lymphocytes of SLE subjects spontaneously produced anti-
dsDNA autoantibody which was halted by IL-6 inhibition 
meanwhile it was regained with exogenous supply of IL-6 (120). 
As we know, CD5 is a suppressor of B cell receptor signaling and 
negatively regulated B cells activity, meantime IL-6 can dampen 
CD5 expression via DNA methylation and consequently initiate 
the activation and expansion of autoreactive B cell lineage (127).

Interleukin-6 gene polymorphism (IL-6 174G>C) on the 
promoter region was found to convey the susceptibility of SLE in 
certain ethnical groups, such as in Caucasians. However, it is not 
identified in Asian population (128–130).

Besides its systemic effects, IL-6 was proved to have a strong 
correlation with the activity of LN. It was shown that elevated 
urinary IL-6 excretion was associated with a higher activity 
of LN (131, 132). In addition, local IL-6 expression within the 
glomeruli and tubules was evidently increased in LN (133). 
In SLE animal model, IL-6-deficient MRL-Faslpr mice were 
resistant to immune- and inflammatory-mediated tissue injury 
accompanying with delayed onset of proteinuria and hematuria. 
The lack of IL-6 led to marked reduction of macrophages, CD4+ 
and CD8+T  lymphocytes infiltrates in the kidney, a reduction 
of IgG deposition, and C3 fixation in kidney (122). In another 
lupus-prone mice, Lyn−/− mice, inhibition of IL-6 trans-signaling 
by sgp130Fc exerted relatively little effect on abnormal immune 
processes along with unchanged pathogenic autoantibodies and 
renal immune complexes deposition, whereas sgp130Fc indeed 
ameliorated glomerulonephritis and preserved renal function 
by hampering complement fixation, leukocytes infiltration, and 
macrophage expansion in this model (134).

Collectively, IL-6 is a vigorous player in LN and will be a 
promising therapeutic target.

IL-6 and DN
High IL-6 level was identified in early stage of type 1 diabetes 
proposing IL-6 is involved in islet cells impairment. Additionally, 
an IL-6-inducible autoimmunity-related gene (HIP/PAP) was 
found to be expressed in the pancreas in patients with type-1 
diabetes further indicating a potential correlation between IL-6 
and autoimmune diabetes (135). In type 2 diabetes, IL-6 level was 
increased and associated with atherosclerosis development (136). 
In vitro IL-6 induced insulin resistance which support its role in 
type 2 diabetes occurrence (137, 138).

Chronic inflammatory process participates in the development 
of microvascular complications of diabetes. DN patients showed 
an elevated serum level of inflammatory cytokines, including 
IL-6, which positively correlated with the extent of proteinuria 
(139, 140). Meantime, hyperglycemia can trigger podocytes, 
mesangial cells, interstitial tissue, and tubules to generate IL-6 
which contribute to local and systemic inflammatory process in 
DN (110, 141).

Apart from its involvement in LN, IL-6 gene polymorphism 
also conveys the susceptibility to cancer (142), lipid metabolic 
abnormalities, and inflammatory disorders (143). Recently, it was 

found that IL-6 gene 174G>C polymorphism is an independent 
risk factor for DN in Turkish and Greek type 2 diabetic mellitus 
patients (144, 145). Therefore, it again suggested that IL-6 is a 
cardinal player in DN.

IL-6 and Acute Kidney Injury (AKI)
Recent studies have shown a close correlation between IL-6 
expression and AKI. In ischemic AKI animal model, it was found 
that IL-6 transcription and signaling are elevated locally and 
systemically after 60  min bilateral kidney ischemia. This find-
ing indicated that IL-6 signaling connected local and systemic 
inflammation and can be employed as a biomarker and therapeu-
tic target in ischemic AKI (146).

Similarly, in nephrotoxin-induced AKI, IL-6 expression was 
dramatically enhanced in kidney (113-fold), predominantly in 
renal TECs, and strongly correlated with the damage of kidney. 
While IL-6 deficiency attenuated neutrophil accumulation and 
caused mice relatively resistant to the insult. Moreover, neutro-
phil depletion in wild-type mice markedly reduced nephrotoxin-
induced injury as well. Thus, IL-6-mediated neutrophil activation 
is one of the central mechanisms for AKI. Intriguingly, stimula-
tion of IL-6 trans-signaling significantly mitigated renal damage 
and preserved renal function via underlying anti-oxidative 
stress mechanism (88). The similar observation was reported in 
ischemia-reperfusion-induced AKI model which proposed that 
IL-6 trans-signaling may play a protective role by promoting 
repair process (147, 148).

IL-6 and Chronic Kidney Disease (CKD)
The elevated plasma IL-6 level is commonly observed in CKD 
patients (149), which is largely caused by the increased genera-
tion resulting from oxidative stress, chronic inflammation, and 
fluid overload. Meanwhile, the reduced clearance of IL-6 due to 
the impaired renal function also contributes to its accumulation. 
In the end stage renal disease (ESRD) patients, the therapeutic 
hemodialysis and peritoneal dialysis per  se further stimulate 
inflammatory responses and increase IL-6 production (150, 151).

Interleukin-6 accelerates the progression of CKD not only by 
aggravating kidney injury as described above but also by initiating 
its complications, especially the chronic vascular disease (CVD). 
It is demonstrated that IL-6 initiates the endothelial injury mainly 
via reducing endothelial nitric oxide synthase (eNOS) and adi-
ponectin (an anti-atherogenic adipokine) expression (152), and 
the injection of recombinant IL-6 exacerbates atherosclerosis 
(153); these findings suggest that IL-6 also contributes to the 
increased incidence of CVD in CKD patients.

Taken together, elevated IL-6 level is not only a consequence 
of CKD, more importantly, it also acts as a trigger for the progres-
sion of CKD and its related complications.

CONCLUSiON AND PeRSPeCTive

In brief, IL-6 could be produced by renal resident cells, includ-
ing podocytes, mesangial cells, endothelial cells, and TECs. 
Meantime, all these cells, as well as immune and inflammatory 
cells will actively respond to IL-6 via classic or/and trans-
signaling pathway. It has already been evidently elucidated that 
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IL-6 participates in renal instinct cell injury and repair process, 
as well as a variety of immune, metabolic, ischemic, and toxemic-
mediated renal diseases.

More importantly, IL-6R-neutralizing mAb tocilizumab 
(Actemra) has already been approved for treatment in patients 
with certain autoimmune diseases, such as rheumatoid arthritis 
in more than 100 countries, including European Union, United 
State, Brazil, and India. And in Japan, it was authorized to be used 
in patients with juvenile idiopathic arthritis and Castleman’s dis-
ease (154). Several second generation of IL-6 inhibitors, including 
anti-IL-6 antibodies, is under development.

Intriguingly, recently it was found that cardiotrophin-like 
cytokine-1 (CLC-1), a member of the IL-6 family and transmit-
ting signal via gp130, is almost probable permeability factor of 
FSGS. Strikingly, the concentration of CLC-1 is up to 100 times 
higher in the circulation of FSGS patients compared to normal 
subjects (155). In vitro CLC-1 can mimic the effects of plasma 
from FSGS patients on albumin permeability, and it reduces 
nephrin expression in glomeruli and cultured podocytes which 
can be prevented by CLC-1 monoclonal antibody.

Thus, further investigation of IL-6 and its family members as 
well as its signaling pathway are imperative for getting a full view 
of kidney disease and developing more effective drugs.
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