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Background: Radiomics has shown promise in improving malignancy risk stratification of indeterminate 
pulmonary nodules (IPNs) with many platforms available, but with no head-to-head comparisons. This 
study aimed to evaluate transportability of radiomic models across platforms by comparing performances 
of a commercial radiomic feature extractor (HealthMyne) with an open-source extractor (PyRadiomics) on 
diagnosis of lung cancer in IPNs.
Methods: A commercial radiomic feature extractor was used to segment IPNs from computed tomography 
(CT) scans, and a previously validated radiomic model based on commercial features was used as baseline 
(ComRad). Using same segmentation masks, PyRadiomics, an open-source feature extractor was used to 
build three open-source radiomic models (OpenRad) using different methods: de novo open-source model 
derived using least absolute shrinkage and selection operator (LASSO) for feature selection, selecting open-
source features matched to ComRad features based upon Imaging Biomarker Standardization Initiative (IBSI) 
nomenclature, and selecting open-source features most highly correlated to ComRad features. Radiomic 
models were trained on an internal cohort (n=161) and externally validated on 3 cohorts (n=278). We added 
Mayo clinical risk score to OpenRad and ComRad models, creating integrated clinical radiomic (ClinRad) 
models. All models were compared using area under the curve (AUC) and evaluated for clinical improvement 
using bias-corrected clinical net reclassification indices (cNRIs).
Results: ComRad AUC was 0.76 [95% confidence interval (CI): 0.71–0.82], and OpenRad AUC was 
0.75 (95% CI: 0.69–0.81) for LASSO model, 0.74 (95% CI: 0.68–0.79) for Spearman’s correlation, and 
0.71 (95% CI: 0.65–0.77) for IBSI. Mayo scores were added to OpenRad LASSO model, which performed 
best, forming open-source ClinRad model with AUC of 0.80 (95% CI: 0.74–0.86), identical to commercial 
ClinRad’s AUC. Both ClinRad models showed clinical improvement compared to Mayo alone, with 
commercial ClinRad achieving cNRI of 0.09 (95% CI: 0.02–0.15) for benign and 0.07 (95% CI: 0.00–0.13) 
for malignant, and open-source ClinRad achieving cNRI of 0.09 (95% CI: 0.02–0.15) for benign and 0.06 
(95% CI: 0.00–0.12) for malignant. 
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Introduction

Lung cancer remains the most common and deadliest 
malignancy in the United States (US) and globally with an 
estimated 236,000 new cases and 132,000 annual deaths in 
the US (1). Lung cancer screening has been shown to reduce 
lung cancer mortality but there are a significant number of 
false positive scans (2-4). With the recently updated lung 
cancer screening eligibility guidelines, over 14 million 
individuals in the US are screening eligible and the burden 
of indeterminate pulmonary nodules (IPNs) with unclear 
malignancy potential will continue to increase (5-7).

IPNs are nodules that are up to 30 mm in size without 
features suggestive of benign etiology or metastatic cancer (8).  
In addition to screen detected IPNs, there are also nodules 

found incidentally on computed tomography (CT) 
scans, taken for unrelated indications, with an estimated 
1.57 million nodules identified annually in the US (9). 
Professional societies such as the American College of 
Radiology and British Thoracic Society (BTS) have 
published guidelines for screen and incidentally detected 
lung nodules with recommendations for management 
strategies based on qualitative and quantitative estimates of 
malignancy probability (8,10-13). Using clinical variables 
and radiographic characteristics, nodules’ probability of 
malignancy is estimated by one of the available clinical risk 
calculators, of which the Mayo Clinic model is the most 
widely validated. However, using the clinical risk prediction 
models have shortcomings stemming from inconsistent 
agreement between radiologists’ interpretation of variables 
to patients’ estimates of factors such as family and smoking 
history. Furthermore, patients with nodules in the 
intermediate risk group (10–70% risk of malignancy) are 
associated with a very broad range of risk profiles. Following 
BTS recommendations, patients with intermediate risk 
group IPNs will undergo positron emission tomography 
(PET)/CT imaging, which has significant limitations due to 
suboptimal specificity, or will undergo invasive biopsies on 
an unacceptably high number of benign diagnoses (14-16).

One strategy to address these challenges has been the 
development of CT based imaging biomarkers in radiomics, 
which is a process of extracting and analyzing quantitative 
image features of a nodule otherwise imperceptible to the 
human observer with the goal of better characterizing the 
phenotype of the nodule (17). Numerous radiomic models 
have emerged with a great variability in image or region 
of interest (ROI) acquisition, features extraction, and 
statistical modeling. The most assessable are conventional 
radiomic platforms, which produce quantitative data from 
extraction of radiomic features of a pulmonary nodule. 
The most informative features are then selected to build a 
statistical model to predict the outcome of interest, which 
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is the probability of malignancy in our case. HealthMyne 
(Madison, WI, USA) and PyRadiomics are two of the most 
prominent conventional radiomic platforms; the former is 
a commercial product while the latter is open-source. We 
previously published and validated a radiomic based model 
using HealthMyne features, which were selected by using 
least absolute shrinkage and selection operator (LASSO) 
regression, to diagnose lung cancer in IPNs (18). We set out 
to compare HealthMyne with PyRadiomics, to determine if 
the models derived by using HealthMyne to extract features 
could be transported to features extracted by PyRadiomics. 
A comparison in diagnostic accuracies between the two 
similar platforms is of utmost interest for the better 
understanding and optimization of radiomic feature 
development and selection in addition to reproducibility 
and validation of radiomic research. Furthermore, there 
are many benefits of having a viable open-source radiomic 
platform, such as broader accessibility, lower barriers to 
collaborations and clinical implementation, and higher 
likelihood of permanence. 

While both platforms use multifeatured quantitative 
radiomics models to analyze pulmonary lesions, the 
radiomic features from each platform are developed 
independently. Even nominally identical features from 
the separate platforms can produce differing diagnostic 
accuracy, and significant efforts have been underway to 
standardize features, with image biomarker standardization 
initiative (IBSI) being the most notable (19). We performed 
a prospectively collected and retrospectively blinded study 
evaluating and comparing the diagnostic accuracies of the 
open-source and commercial radiomic platforms. We do 
this by comparing three newly developed open-source 
models to the validated commercial radiomic model. 
We present this article in accordance with the STARD 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-24-281/rc).

Methods

Patient selection 

For this study, we used the same cohort used to train 
and validate the HealthMyne model in our previously 
published work (18), which includes four independent 
case-control patient populations. Prior article dealt with 
the development of the HealthMyne model whereas this 
manuscript deals with the development of new radiomic 
models using PyRadiomics, an open-source radiomic feature 

extractor. The training cohort consisted of patients (N=161) 
from Vanderbilt University Medical Center (VUMC) and 
Tennessee Valley Veterans Affair Hospital who consented 
to research between 2003 and 2017. Independent external 
cohorts include patients from the Detection of Early 
Cancer Among Military Personnel (DECAMP) (N=94, 
2013–2017) from 12 clinical centers (20), University of 
Pittsburgh Medical Center (UPMC) (N=98, 2006–2015), 
and the University of Colorado Denver Hospital and 
Rocky Mountain Regional Veterans Affair Medical Center 
(UC Denver) (N=86, 2010–2018). The subjects included 
in this study were found to have IPNs between 6 and  
30 mm in the largest axial diameter, CT chest scans with  
3 mm and thinner slice thickness, and a definitive diagnosis 
determined by biopsy proven cancer or benign, or 2-year 
longitudinal follow up imaging showing no signs of growth 
for benign nodules. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study was approved by Internal Review Board at Vanderbilt 
University (study #090781) and informed consent was 
obtained from all individual participants. 

Radiomic model

IPNs were identified by a board-certified radiologist and 
then segmented using HealthMyne’s semi-automated 
segmentation tool. The same segmentation masks were then 
used for quantitative feature extraction using each radiomic 
platform’s feature extraction tools. For HealthMyne, the 
commercial platform, we used our previously published and 
validated model (ComRad) which was developed by using 
LASSO regression method with L1 penalty to select for 
the most informative features when training on the VUMC 
cohort (18).

Using features from PyRadiomics, the open-source 
platform, we developed three methodologically different 
radiomic (OpenRad) models. First, we selected open-
source features independently from commercial features 
by dimension reduction through the same LASSO 
regression method as was used to create the ComRad 
model. The other two model building approaches were 
based on finding open-source platform features that most 
closely resemble to the features from our model from the 
published, commercial platform feature model (ComRad). 
The first of these approaches tried to match open-source 
to those ComRad features based upon nomenclature 
standards. When there were no exact matches based on 
IBSI standards, the most closely related features based on 
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nomenclature were selected by expert opinion. Experts 
included three methodological experts as well as three 
lung cancer clinical specialists, whom all have extensive 
experiences in developing radiomic models. They all met 
during roundtable discussions to reach consensus regarding 
the selection of OpenRad features that did not have a direct 
nominal match with ComRad features, which consisted of 
3 of the 11 total OpenRad features selected. The second 
method matched features solely on those with the highest 
Spearman’s correlation (Figures S1-S6 for models’ feature 
selection). 

Statistical analysis 

The three OpenRad models were all first trained on the 
VUMC cohort and then tested on the three external cohorts. 
The diagnostic accuracy of the risk prediction models was 
assessed by evaluating area under the curve (AUC) of the 
receiver operator characteristic (ROC) with 95% confidence 
interval (CI) for each radiomic platform. We also compared 
the three OpenRad models with ComRad by performing 
McNemar’s test at Youden’s cutoff in the validation cohorts. 
We also directly compared AUCs of models by bootstrap. 
Once we found the most comparable and best performing 
OpenRad model, we combined Mayo model scores to each 
of the radiomic models making integrated clinical radiomic 
(ClinRad) models. The Mayo model scores are based on 
patient age, smoking history, history of extra-thoracic cancer 
equal or greater than 5 years prior, nodule size, nodule 
location, and spiculation.

We then pooled the four cohorts (N=439) and fit the 
models and adjusted the prevalence of disease to 0.33 
using Bayes offset. This value was chosen because of 
model’s intended use is in a population with an estimated 
prevalence of cancer at 33% in the real-world setting. We 
obtained AUCs of the ClinRad models on the full cohort. 
We then internally cross-validated the discrimination 
and calibration performance of each model by using 200 
repeated 3-fold splitting (2/3rd of the combined cohort as 
the training set and 1/3rd of cohort as a test set). For each of 
the 200 repetitions, the radiomic based model and baseline 
Mayo were fitted to the training set and then calibrated to 
prevalence of 0.33. For each split, 500 bootstrap sampling 
of size 100 from 1/3 of cohort, each with approximately 
0.33 prevalence, were taken from the test set to evaluate 
the models’ likely performance on test sample of nodules 
representing a similar patient population (Figures S1-S6 for 
model coefficients).

Reclassification 

Mayo risk scores less than 0.1 considered to be low risk 
and above 0.7 considered high risk, and 0.1–0.7 to be 
intermediate risk for probability of cancer in accordance 
with the BTS guidelines. We used the Mayo model risk 
classification as a baseline estimate reference. Patients were 
then placed in “posttest” risk classification using the same 
cutoffs and their integrated model risk score. The bias-
corrected clinical net reclassification index (cNRI) was then 
calculated for malignant cases and benign control subjects 
separately by comparing the integrated model (radiomic + 
Mayo) with the baseline Mayo classifications (21). This 
method allows for the utility evaluation of our model on 
the reclassifying IPNs into either high risk or low risk 
categories compared to Mayo model. The 95% CI of 
cNRIs for benign and malignant IPNs were estimated using  
200 repeated 3-fold splitting samples of the data. 

Results

A schema of the study approach is presented in Figure 1. 

Study population

Four cohorts were assembled from VUMC and the 
Tennessee Valley VA healthcare Nashville Campus with 161 
patients, UPMC with 98, the DECAMP consortium with 
94 patients, and UC Denver with 86. The VUMC cohort 
had the highest percentage of malignancy with 71% of 
cohort, while the external cohorts had malignancy ranging 
from 41–55%. Majority of IPNs (67.7%) from cohorts were 
stratified into the intermediate risk group based on Mayo 
score (Table 1).

Radiomic model diagnostic accuracy 

The commercial platform derived radiomic model 
(ComRad) is a previously validated and published model 
based on 10 features selected using the LASSO method. A 
similar LASSO approach was used to select for 12 features 
to build the open-source platform model (OpenRad). 
IBSI OpenRad model was developed by choosing 
features equivalent to the ComRad features based on 
IBSI nomenclature standards resulted in the inclusion of  
11 features. Lastly, we built a Spearman’s OpenRad model 
with 10 features by selecting open-source features with the 
highest Spearman’s correlation coefficient with ComRad 

https://cdn.amegroups.cn/static/public/TLCR-24-281-Supplementary.pdf
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features. 
ComRad achieved an AUC of 0.76 (95% CI: 0.71–0.82). 

OpenRad had an AUC of 0.75 (95% CI: 0.69–0.81) for 
LASSO model, 0.71 (95% CI: 0.65–0.77) for IBSI feature 
model, and 0.74 (95% CI: 0.68–0.79) for Spearman’s 
correlation model (Figure 2A). Direct comparison of models’ 
AUC values using bootstrap method showed a significant 
difference between the ComRad and OpenRad IBSI model 
(P=0.048). We were not able to show a significant difference 
between ComRad with OpenRad Spearman’s model using 
direct comparison (P=0.157).

We also compared the three OpenRad models with 
ComRad model by performing McNemar’s test at Youden’s 
cutoff on the test cohort. This allows for the comparison 
of the different models at their optimal cutoffs, instead of 
the clinically relevant threshold of 0.1 and 0.7 per BTS 
for the construction of AUC values. Using McNemar’s 
test, comparisons of models differed significantly in their 
classifications between OpenRad Spearman’s model and 
ComRad model (P=0.003) as well as OpenRad LASSO vs. 

ComRad (P=0.017). 
Mayo scores were added to OpenRad LASSO model, 

which was the OpenRad model that had the highest AUC, 
forming an open-source integrated clinical radiomics 
model (ClinRad). Similarly, the Mayo scores were added to 
ComRad, forming a commercial-based integrated ClinRad 
model. All four cohorts were combined and AUCs were 
estimated for the integrated models, resulting in AUCs of 
0.80 (95% CI: 0.74–0.86) for open-source ClinRad model 
and 0.80 (95% CI: 0.74–0.86) for commercial ClinRad 
model (Figure 2B). 

Calibration of prevalence adjusted model 

Using the combined cohort, the models were recalibrated 
to the clinically relevant prevalence of 33%. The 
commercial model was appropriately fitted to the 
population with a slope of 1.023 (mean of 200 repeated 
3-fold cross validation samples, 95% CI: 0.64–1.51) with 
an intercept of −0.007 (95% CI: −0.37 to 0.44). The 

Figure 1 Overview of the study design. (A) Nodules were segmented using the commercial platform. (B) The segmented ROI was then 
imported into both the commercial and the open-source platform to calculate the radiomic features. (C) The previously derived model using 
LASSO to select features extracted using the commercial platform was used to calculate a pCA. (D) Three methods were used to calculate 
a pCA using features extracted using the Open-Source platform. (a) Features were matched based upon nomenclature: the closest named 
OS feature was used in place of the commercial feature, for example, “Size” would be used in place of “Length”. (b) Features were matched 
based upon correlation.  For example, L3_Dist would be used in place of “Length” due to the high spearman’s rho. (c) A model was derived 
from the open-source features de novo, using the same LASSO procedure used in (C). ROI, region of interest; pCA, probability of cancer; 
LASSO, least absolute shrinkage and selection operator; OS, overall survival.
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Table 1 Patient cohort characteristics

Characteristics

VUMC (N=161) UPMC (N=98) DECAMP (N=94) Denver (N=86)

Benign  
(n=46)

Cancer  
(n=115)

Benign  
(n=58)

Cancer  
(n=40)

Benign  
(n=47)

Cancer  
(n=47)

Benign  
(n=39)

Cancer  
(n=47)

Age, years 63 [55–69] 70 [63–76] 68 [64–74] 68 [62–75] 64 [61–71] 68 [63–73] 66 [62–72] 66 [63–70]

Current/former smoker 39 (84.8) 109 (94.8) 58 (100.0) 40 (100.0) 47 (100.0) 47 (100.0) 30 (76.9) 38 (80.9)

Pack-years 28 [11–49] 45 [30–71] 47 [36–69] 40 [31–58] 40 [30–54] 45 [36–60] 32 [1–50] 39 [16–53]

Previous cancer 11 (23.9) 43 (37.4) 2 (3.4) 0 22 (46.8) 22 (46.8) 5 (12.8) 6 (12.8)

Located in upper lobe 21 (45.7) 67 (58.3) 25 (43.1) 29 (72.5) 28 (59.6) 26 (55.3) 23 (59.0) 37 (78.7)

Size, mm 13  
[8.1–18.8]

20  
[14.5–23.1]

11.2  
[7.8–13.5]

20.3  
[15.9–25.8]

11  
[8–14]

15  
[11.2–19.5]

13.1  
[11.1–18.7]

19.1  
[14.8–23.9]

Spiculated 12 (26.1) 48 (41.7) 2 (3.4) 11 (27.5) 25 (53.2) 21 (44.7) 8 (20.5) 18 (38.3)

Sex, male 27 (58.7) 67 (58.3) 36 (62.1) 21 (52.5) 35 (74.5) 37 (78.7) 26 (66.7) 32 (68.1)

BMI, kg/m2 28 [23–33] 27 [23–31] 29 [26–32] 27 [23–30] 25 [22–28] 26 [23–30] 28 [26–32] 28 [24–31]

Mayo model risk 28.4  
[15.3–45.9]

63.3  
[37.4–79.7]

16  
[10–32]

51  
[32–74]

42  
[25–69]

51  
[35–72]

27  
[17–54]

51  
[25–77]

High risk: >70% 5 (10.9) 43 (37.4) 0 12 (30.0) 12 (25.5) 13 (27.7) 3 (7.7) 14 (29.8)

Intermediate risk: 10–70% 32 (69.6) 69 (60.0) 43 (74.1) 27 (67.5) 33 (70.2) 34 (72.3) 30 (76.9) 29 (61.7)

Low risk: <10% 9 (19.6) 3 (2.6) 15 (25.9) 1 (2.5) 2 (4.3) 0 6 (15.4) 4 (8.5)

Data are expressed as median [interquartile range] or number (percentage). BMI, body mass index; DECAMP, Detection of Early Lung 
Cancer Among Military Personnel; Denver, University of Colorado Denver; UPMC, University of Pittsburgh Medical Center; VUMC, 
Vanderbilt University Medical Center.

Figure 2 ROC curve of ComRad model with three OpenRad models (A) and of Mayo Clinical model alone with the Commercial and Open-
Source ClinRad models (B). Numbers indicate area under the curve with the range of the 95% confidence interval in parentheses. ComRad, 
proprietary radiomic model; OpenRad, open-source radiomic model; ClinRad, integrated Mayo clinical model score with radiomic model. 
ROC, receiver operating characteristic; AUC, area under the curve; IBSI, Imaging Biomarker Standardization Initiative; LASSO, least 
absolute shrinkage and selection operator; CI, confidence interval.
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open-source model was also appropriately fitted to the 
population with a slope of 1.023 (mean of 200 repeated 
3-fold cross validation samples, 95% CI: 0.61–1.57) with 
an intercept of −0.005 (95% CI: −0.37 to 0.45). 

Reclassification of prevalence adjusted model

Using categories defined by decision thresholds of 0.1 and 
0.7 in accordance with BTS guidance, nodules were deemed 
reclassified if their radiomic based model score put them in 
a different risk group than the Mayo model. We observed 
cNRI bias-corrected cNRI of 0.09 (0.02–0.15) for benign 
controls and cNRI of 0.07 (0.00–0.13) for malignancy cases 
using commercial ClinRad model compared to Mayo. We 
saw similar improvements for open-source ClinRad model 
with cNRI of 0.09 (0.02–0.15) for benign controls and 
cNRI of 0.06 (0.00–0.12) for malignancy cases (Table 2). 
The baseline Mayo clinic model is calibrated to the training 
set, then adjusted to a prevalence of cancer of 0.33. All 
values reported as mean (95% CI) of the test set in the 200 
repeated threefold splitting procedures.

Discussion

Radiomics has shown promise to impact clinical care by 
correctly distinguishing patients with malignant nodules 
from those with benign process, potentially improving 
outcomes by speeding time to diagnosis and treatment for 
cancer and reducing overtreatment for benign nodules. 
Many radiomic models for IPN diagnosis have been 
published (18,22-25), but radiomics has yet to become 
routinely used clinically. One chief reason for this is the 
lack of generalizability and/or transportability of radiomic 
models. An abundance of radiomics tools, platforms, 
and approaches positively serves science by enabling 
rapid advancement and model development but serves 
as a hindrance when a radiomic model derived using one 

tool in a specific study population cannot be replicated 
using a different tool in a different population. For these 
reasons, our own work has evaluated the transportability of 
radiomics, specifically: can a radiomic model derived using 
radiomic features (such as size, shape, density, and texture) 
extracted from a CT scan using one platform transport to 
nominally equivalent features extracted from a different 
radiomic analysis platform?

Different radiomic platforms may have different methods 
calculating the same “feature”, so this approach would be 
impractical. However, much work has been done through 
the IBSI to standardize how many commonly used features 
are calculated (19). Despite great success in harmonization 
of how features are calculated, not all platforms have 
implemented these recommendations. Additionally, image-
preprocessing steps can change the method by which a ROI 
is presented to the algorithm for feature extraction. Lastly, 
while the formula for calculating a specific feature may be 
standardized, the method the ROI is presented to it can 
differ. For example, as shown in Figure 3, the grey level 
distance zone matrix (GLDZM) features can be calculated 
on each 2D slice within the ROI, then the resulting 
GLDZM features can be averaged to arrive at an aggregate 
value. Or, as shown in Figure 3B, the intensity values for 
each slice can be averaged, then the GLDZM can be 
calculated on the “average” slice. Lastly, the GLDZM can 
be calculated on the volume, but this can introduce artifacts 
based upon variable slice thicknesses. Taken together, while 
the IBSI has shown correlation between features calculated 
across radiomic platforms, the impact of all these variable 
factors on the practical outcome of specific radiomic-based 
prediction models has not been evaluated.

We evaluated this approach by testing the how 
well a previously published radiomic model based 
upon 10 radiomic features  from the commercia l 
HealthMyne platform can be transported to the open-
source PyRadiomics feature extractor. We selected for 

Table 2 Comparison of commercial ClinRad model (Mayo + commercial radiomic model from LASSO feature selection) versus open-source 
ClinRad (Mayo + open-source radiomic model with LASSO feature selection)

Performance metrics
Commercial clinical radiomics model  

(Mayo + radiomics)
Open-source clinical radiomics model  

(Mayo + radiomics)

AUC (95% CI) 0.80 (0.74–0.86) 0.80 (0.74–0.86)

cNRI cancer (95% CI) 0.07 (0.00–0.13) 0.06 (0.00–0.12)

cNRI benign (95% CI) 0.09 (0.02–0.15) 0.09 (0.02–0.15)

AUC, area under the curve; CI, confidence interval; cNRI, bias-corrected clinical net reclassification index; Mayo, Mayo model; LASSO, 
least absolute shrinkage and selection operator.
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PyRadiomics features to include in our model that could 
be considered equivalent to HealthMyne features based on 
IBSI nomenclature standardization recommendations as 
well as Spearman’s rank correlation. We found that using 
both methods to form models with ostensibly the same set 
of features resulted in divergent diagnostic performances 
and IPN risk stratifications. It was only when we developed 
an independent model using LASSO regression and 

allowing for full flexibility in feature selection to maximize 
prediction accuracy did the diagnostic performance between 
the two platforms mirror one another. These findings 
demonstrate the failure of direct transportability between 
radiomic feature extractor platforms due to the variability in 
features; however, equivalent outcomes can be achieved by 
building independent models using methods that maximizes 
diagnostic performances. 

Figure 3 Example of preprocessing steps that can affect final feature value. While the function to calculate a specific radiomic feature may 
be identical between programs, the steps prior to calculation may be different. For example, the GLDZM based features may be calculated 
by either: (A) calculating the GLDZM on each slice of the CT, then averaging the results (weighted by total ROI size in each slice or not);  
(B) Averaging the slices (weighted or not) then computing the GLDZM on the “average slice”, or (C) by calculating the GLDZM on the 
three-dimensional volume of the ROI. Calculating over the volume will introduce further artifacts based upon slice thickness. GLDZM, 
grey level distance zone matrix; CI, computed tomography; ROI, region of interest.
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Furthermore, our findings also support the open-source 
radiomic platform as a viable tool for radiomics analysis of 
IPNs. The lower cost associated with open-source platforms 
allows for more equitable access and collaborative efforts 
that may accelerate the development of radiomics. There is 
also security in the sustainability of open-source platforms 
that will not be threatened by financial insolvency, which is 
a reality that commercial radiomic platforms face. 

Our study had a number of limitations. The cohorts 
included are mostly from large academic medical 
centers with referrals from surrounding communities, 
suggesting higher cancer prevalence than seen in the IPN 
population, thus limiting generalizability. Our cohorts also 
demonstrated a higher percentage of malignancy than the 
desired intended use prevalence of 33% malignant IPNs 
used for our prediction model. This was adjusted with 
statistical bootstrap methods, but results may differ in a 
local, unique population. Furthermore, while we were able 
to observe different AUC values by each model, many of the 
models’ CIs overlap, which, as methodologist have pointed 
out, do not mean the models are equivalent (26). However, 
when performing direct comparison of the different 
models using bootstrap method, we were only able to find a 
significant difference between ComRad and OpenRad IBSI 
models’ AUCs. The direct comparisons of the other models’ 
AUCs did not show significant differences. That being said, 
testing the difference between AUCs, like all hypothesis 
testing methods, depends on other factors beyond the test 
itself, such as sample size and variance. Lastly, CT chest 
scans, especially for incidentally found nodules, can have a 
significant amount of variation in slice thickness, contrast, 
and quality. These factors can limit the generalizability of 
our study. Furthermore, a significant limiting component 
in radiomics generally and a cause of variability across 
readers and cohorts is method of segmentation. There are 
manual, semi-automated, and fully automated segmentation 
tools available, with less automated methods having more 
likelihood of inter and intra user variability. We accounted 
for this in our study by using the same segmentations, 
created using HealthMyne’s semi-automated segmenter, 
for feature extraction by both platforms. Both HealthMyne 
and PyRadiomics are traditional radiomic platforms and 
differ from the fully automated Optellum (Lung Cancer 
Prediction Convolutional Neural Network model). 
Optellum offers some benefits to traditional radiomics by 
reportedly having slightly higher diagnostic accuracies, 
less onerous process with no need of manual segmentation, 
and greater reproducibility. Future research should 

directly compare the respective diagnostic accuracies and 
efficiencies of fully automated platforms such as Optellum 
to traditional, open-source platforms.

Conclusions

Our study contributes to the growing body of evidence 
demonstrating the utility of radiomics, including an 
open-source platform, for improving lung malignancy 
risk stratification. Furthermore, we revealed that the 
transportability of radiomic models across platforms 
directly does not conserve performance, but radiomic 
platforms can provide equivalent results when building  
de novo models. Efforts to improve transportability between 
radiomic platforms is paramount for direct comparison 
of model diagnostic performances, which is necessary for 
finding the best models and improving upon them for 
clinical implementation ultimately. Furthermore, additional 
work is necessary to evaluate how specific platform features, 
segmentation tools and techniques, image quality, and 
nodule characteristics contribute to diagnostic accuracy of 
radiomic tools. 
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