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In this paper, a conformal absorber metasurface has been designed and used

for reducing the specific absorption rate (SAR) of an implantable antenna. SAR

reduction of implantable antennas is one of the significant design aspects

to be considered for their use in modern-day healthcare applications. The

introduction of the absorber metasurface restricts the back radiation of the

antenna to control the SAR value. This technique decreases the maximum

SAR value by 24% and also reduces the average SAR distribution significantly

without a�ecting the desired antenna gain. A reduction in SAR value indicates

the decrease in radiation absorption by human tissue, and thus, decreases

the possibility of health hazards due to EM radiation. Later, this antenna-

absorber system is designed as a capsule module for increased mobility and

less-invasiveness. The redundancy of invasive surgery increases acceptance of

the capsule module designs of implantable antennas and devices for various

biomedical usages. In vitro testing of the fabricated prototype has been carried

out inside a multi-layer porcine slab to verify the e�ectiveness of this unique

SAR reduction technique.

KEYWORDS

absorber metasurface, biomedical application, capsule antenna module, conformal

metasurface, SAR reduction

Introduction

Biomedical implants revolutionize the approach of the modern-day healthcare

industry by continuous and accurate monitoring of patients’ conditions. The implantable

antennas are largely sought for as transceiver units to communicate wirelessly with and

between these implants. These antennas come with the perils of electromagnetic (EM)

radiation hazards over the human body (1), as the human patients are under constant

exposure to EM radiation. Human tissues, being susceptible to EM radiation, are prone

to numerous health hazards, such as childhood leukemia, brain tumor, albumin leakage

through blood-brain barrier, etc. (2). Though no direct correlation has been achieved in

the investigations carried out earlier, it is alarming that after a certain safety limit the EM

radiation exposure can become problematic for human reproduction, memory as well as

general tissues (3, 4).
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Specific absorption rate (SAR) is the estimation of EM

absorption by a unit mass of the human body. An excessive SAR

value indicates greater amount of absorption by human tissue

and hence more significant damage might be done to the human

under consideration (5). Various studies indicate the increase

in heat and temperature in the human body due to significant

exposure to EM radiation. In (6), a computational framework

has been discussed for studying thermoregulatory human

models subjected to EM radiation under adverse environmental

conditions and various types of clothing. Heat deposition is

one of the known and proven effects of EM radiation and the

longer duration of EM exposure, resulting in localized heating,

is injurious to human tissues (7). To minimize these damages a

few different approaches have already been reported. A detailed

study on thermal cooling mechanisms has been carried out in

(8). However, the work has been concluded with a good amount

of dependency on the ambient temperature and external factors.

In (9), a radiation reduction technique has been proposed to

decrease the SAR value by limiting the antenna operation in half

duplex mode. This obviously decreases the efficient working of

the antenna.

Due to the above limitations, some direct methods of

SAR reduction have been analyzed over the years. Amongst

the techniques, electromagnetic shielding is widely used for

wearable antennas (10). Recently, periodic structures have been

used for SAR reduction of wearable antennas. An electronic

band gap (EBG) structure has been operated as an in-phase

reflector to reduce the SAR (11). However, the approach with a

periodic structure has been largely limited to wearable antennas.

Hence, the massive challenge to reduce SAR for implantable

antennas remains the same.

SAR reduction of the implantable antenna is far more

essential as the entire antenna is placed inside human tissue and

internal human organs are in direct exposure to the antenna

radiation. In a recent approach to reduce the SAR in implantable

antenna, we had proposed a technique using a ferrite superstrate

to reduce the discontinuities in near E-field and hence reduce

the SAR (12). Though effective, this technique is comprised of

a ferrite superstrate which is not biocompatible and not suitable

for implanting inside the human body. A viable alternative to

reduced SAR can be the introduction of a suitable periodic

structure, as periodic structures are already been used for

implantable antennas for gain enhancement (13).

In another aspect, placement of the implantable antenna

along with other implant electronics requires excessive planning

and attention. Keeping in mind the complexity and delicate

nature of the human structure, an implantable antenna must

be flexible, compact, and bio-compatible. Capsule-shaped

antennas, being the solution to all the design challenges

mentioned above, are widely used for digestive and ingestible

monitoring systems (14). This less invasive alternative to the

conventional implants and implantable antennas is the best

suitable for the implantable scenarios, as it does not require any

human surgery in the process. In (15), capsule antenna has been

designed along with an RFID sensormodule.Whereas, a wireless

capsule endoscopy system has been designed and reported in

(16). In another literature (17), a capsule antenna structure has

been reported to analyze radio channel characteristics between

an on-body antenna and a capsule endoscope inside the human

intestine. A very recent approach to designing miniaturized

antenna sensors for a capsule endoscopic module has been

reported in (18). In the literature (19), a miniaturized antenna

has been designed as a cylindrical capsule module for use in

wireless cardiac pacemaker systems. However, to date, research

communities are striving continuously toward achieving an

effective technique to decrease the SAR in an implantable

antenna. Keeping that need in mind, a novel SAR reduction

technique, using the absorber property of metasurfaces, for

implantable capsule antenna has been proposed and analyzed

in this paper. SAR is the property of the human tissue mainly

and not solely of an antenna, achieving reduced SAR for an

implantable antenna may arises a paradoxical situation, which is

discussed in section Antenna SAR reduction of this manuscript.

Absorber metasurfaces are engineered periodic structures,

used for EM radiation absorption. A bianisotropic (20)

metasurface has been designed and discussed in this paper

to utilize the property of its magneto-electric coupling. With

this property, the metasurface acts as an absorber (21) as

well as prevents antenna gain reduction by stopping field

scattering (22). Based on these properties we have proposed a

technique, for the first time, to reduce the capsule implantable

antenna SAR toward human deep tissues significantly without

affecting the antenna performance. Polylactic acid (PLA),

commonly known as bioplastic (23), has been employed as a

substrate base for the implantable antenna and the periodic

structure due to its bio-compatible and flexible nature. The

periodic structure proposed in this paper acts as an absorber

metasurface and is placed below the printed dipole antenna

to absorb the back radiation. This unused back radiation

generally increases the SAR immensely without contributing

to the desired body area network (BAN) communication.

Simulated results have been verified for in vitro conditions.

Finally, we have incorporated the capsule-shaped design to

make the antenna system more suitable for implantable

applications as well as various ingestible practices. This capsule

antenna design will be beneficial for batch production of

the antenna and amalgamation of the antenna with other

implantablemedical devices (IMDs). The final antenna-absorber

capsule module has been investigated inside a multilayer

porcine slab.

Major contributions to this work can be

summarized below,

• A novel topology creates a breakthrough for SAR

reduction of an implantable antenna without affecting

other antenna performance.
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FIGURE 1

Proposed unit cell for absorber metasurface: (A) design top view and (B) S parameters.

• A new bianisotropic periodic structure has been designed

for this topology to utilize the absorbing property as well as

reduce the field scattering.

• The antenna-absorber system has been crafted as an

ingestible capsule module to enhance mobility and

reduce invasiveness.

Materials and methods

Metasurface absorber design

The metamaterial unit cell has been designed using a four

Ω-shaped structures placed diagonally along with an X-shaped

metallic strip (Figure 1A). In general, Ω-shaped structures

show bianisotropic properties (24). The S parameters of the

unit cell (Figure 1B) have been analyzed. Complex permittivity

and permeability are derived from metamaterials using the

effective medium approach. Complex values of permittivity and

permeability typically correspond to attenuation in a medium.

For designing an absorber, the attenuation must be higher. Also,

the measure of absorbance can be done as, A = 1−T−R, where

A is absorption, R is reflection, and T is transmission. In terms

of S parameters, it can be deduced as, A = 1 − |S11|
2 − |S21|

2.

The proposed absorber unit cell shows high absorbance, which

remains almost similar when the absorber structure is bent

with the different radius of curvature (Figure 2). Validation of

the conformality of the proposed absorber metasurface is thus

established. The dimensions of the unit cell proposed for the

absorber metasurface design are listed (Table 1).

FIGURE 2

Absorbance analysis of the flexible unit cell for the di�erent
radius of curvatures (inset: Bent unit cell structure).

Conformality analysis of the absorber

Flexibility is one of the essential requirements for IMDs and

implantable antennas. The proposed absorber must have this

virtue so that the entire low SAR antenna system can become

conformal in design. The unit cell has been designed on PLA,

which is a flexible bio-plastic. Though the designed absorber
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TABLE 1 Dimensions of unit cell in mm.

Lu a1 a2 r1 r2 w S

4.4 1.1 1.7 0.9 0.7 0.22 0.1

FIGURE 3

Top view of the CPW-fed printed dipole antenna in a flat surface.

TABLE 2 Dimension of implantable antenna in mm.

L1 L2 l1 l2 l3 l4 sf wf lf

10 24 0.5 8.25 4.5 5 2 1.5 3

unit cell can be bent physically, the performance analysis has

been done to validate whether the unit cell is flexible in nature

without affecting the absorber properties. It is evident from the

(Figure 2), that the absorbance of the periodic structure is mostly

unaffected due to the bending with different radius of curvatures

(RoCs). Hence this metasurface can be used in conformal design

in implantable conditions.

Antenna design

A printed dipole antenna (Figure 3) is designed for

implantable applications and all the relevant dimensions are

presented in Table 2. This antenna with coplanar waveguide

(CPW) feeding technique is etched over a PLA slab of 0.5mm

thickness. At 2.4 GHz, the PLA has dielectric constant (ε) 2.72

and loss tangent (tan δ) 0.008 (25). The final proposed antenna

system is aimed to be placed inside the human torso and thus

analyzed with high frequency structure simulator (HFSS 19.2)

by using a single layer muscle model at first.

The printed dipole antenna is analyzed for flexibility over a

range of various RoCs. The resonant frequency and impedance

matching have not been affected due to the structural bending

of the proposed antenna (Figures 4A–E). Depending on this

analysis, the RoC of the proposed antenna is optimized to

10mm. This measure makes the antenna conformal and suitable

for capsule formation. The capsule module for the antenna-

absorber system has been proposed (Figure 5) to make the

implanting process less-invasive. This module consists of two

capsules, i.e., inner capsule and outer capsule, made of PLA.

The absorber metasurface is placed over the inner capsule.

Then the inner capsule is kept inside the outer capsule. The

printed dipole antenna has been attached to the exterior surface

of this outer capsule. As per the antenna optimization, the

diameter of the outer capsule is 9–10mm approximately and

accordingly diameter of the inner capsule is 8mm. This capsule

module is intended to be consumed orally and hence it will
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FIGURE 4

Bending analysis of the proposed antenna; (A) antenna structure, (B) radius of curvature of the bent antenna, (C) return loss characteristics of
the curved antenna for various RoCs, (D) antenna impedance real, and (E) antenna impedance imaginary.
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traverse the entire Gastro Intestinal (GI) tract. Various parts of

GI tract are having different diameters, such as the esophagus

having an average diameter of around 3 cm, whereas small

intestine and large intestine have the average diameter of 2.5 and

4.8 cm, respectively. Hence the proposed capsule antenna can go

through the GI tract and radiates accordingly. The alignment

of the capsule module will definitely be altered during the

journey due to peristaltic motion inside the GI tract, but it will

FIGURE 5

Schematic model of the proposed antenna-absorber capsule
module.

not affect the relative placement of absorber and the antenna

as these two are combined as a composite capsule module.

Hence always the back radiation of the antenna will be absorbed

during the entire process irrespective of the alignment of the

capsule module inside the GI tract. In other hands, to ensure

a greater level of bio-compatibility the exposed metal placed

on the outer capsule has been coated with a layer of alumina

FIGURE 7

Simulated and measured return loss characteristics of the
capsule antenna module.

FIGURE 6

Antenna placement inside the human torso.
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FIGURE 8

Average SAR distribution inside human muscle: (A) antenna without absorber metasurface and (B) antenna with absorber metasurface.

FIGURE 9

Simulated and Measured co-polarization radiation pattern comparison between the antenna system without and with the absorber
metasurface; (A) XY plane and (B) YZ plane.

(Al2O3) (26). To deposit the Al2O3 layer, first a colloidal

solution is prepared with the composition of 1.5 g Al2O3

powder, 20ml 2-propanol, and 10ml diethylamine. After that,

the fabricated prototype is dipped into the prepared solution

and the layer is grown over the antenna surface by a controlled

dip coating technique (Apex Instruments, Xdip-XV1). Using

this technique, the thickness of the alumina layer is controlled

and a thin layer of coating is provided on the proposed

capsule module. For further study, this conformal capsule

module is placed inside a human torso model (Figure 6) in

Ansys HFSS. Later, the fabricated prototype has been validated

using a multilayer porcine slab. The simulated and measured

return loss characteristics (Figure 7) of the capsule module

are analyzed. In Figure 7, it is also shown that the inclusion

of the alumina layer doesn’t affect the return loss pattern of

the antenna.
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Antenna SAR reduction

SAR is a measure of EM radiation absorbed by a unit mass

of human tissue. Mathematically SAR of an implantable antenna

over a unit volume of human tissue can be expressed as,

SAR =
σ E2

ρ

where σ is the conductivity of the human tissue where the

antenna is placed, E is the electric field due to the antenna

radiation and ρ is the density of the human tissue. So it can be

seen that, for a fixed amount of EM radiation this absorption

becomes the property of that tissue itself. Hence the existing

techniques, those used for SAR reduction in wearable antennas,

may cause a paradoxical situation in case of implantable

antennas. Antennas, which are implanted inside the human

body, radiate inside human tissue and make the tissue exposed

to EM radiation. The use of EM shielding might reduce the SAR

value by limiting the antenna radiation, it will certainly, reduce

the antenna gain drastically. As, for implantable antennas, all

the essential and spurious radiation necessarily goes through the

human tissue. Hence, lowering SAR with the existing technique

might reduce the antenna gain and efficiency extensively, so

the antenna performance might be affected. To overcome this

paradox, in previous literature (12), we have already reduced

the SAR of an implantable antenna using a ferrite superstrate

by reducing the discontinuities of the near E field. However,

two major concerns were evident in that approach. Firstly,

the use of a ferrite superstrate degrades the bio-compatibility

of the implantable antenna system. Moreover, the use of a

FIGURE 10

Peak realized gain over the frequency range for antenna module
with and without absorber metasurface.

ferrite superstrate decreases the antenna gain significantly along

with the SAR. The implantable antenna gain is usually found

to be reduced due to the absorbing nature of human tissue,

further decrease in antenna gain may restrict the efficient

communication. Hence, in the present work, we are using for the

first time, metasurface absorber to reduce SAR without affecting

the antenna gain much. As the antenna under consideration is

a CPW-fed antenna, significant amount of back lobe radiation

can be experienced. However, this back lobe has not been used

for communication and can be eliminated without degrading

the desired antenna performance. Hence absorber metasurface,

placed below the antenna, absorbs the back-lobe radiation to

minimize the exposure of human tissue toward EM radiation.

As we know, the SAR is a measure of power absorbed by the

human tissue per unit of mass. By eliminating back radiation,

we limit the amount of antenna radiation absorbed into human

tissue. Thus, we control and reduce the average SAR value.

The average SAR distribution of the antenna with and without

metasurface absorber has been studied (Figure 8) to validate the

proposed SAR-reduction technique. This figure shows that due

to the presence of the metasurface absorber below the printed

dipole antenna, the SAR distribution below the antenna has been

immensely reduced. This is in parlance to the unique approach

to reduce SAR by absorbing the undesired back radiation of the

antenna, and thus the maximum amount of human tissue is not

exposed to the EM radiation.

Overall SAR value has been reduced by 24% approximately,

as this technique almost eliminates the SAR due to unused

back radiation without significantly affecting the antenna

performance. Antenna gain (Figure 9) and efficiency remain

almost unaffected by this SAR reduction technique. Figures 9A,B

shows the simulated and measured co-polarized radiation

pattern of the antenna-absorber capsule module. Figure 10

FIGURE 11

SAR distribution inside human torso.
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TABLE 3 Comparative study of the SAR reduction techniques for biomedical antennas.

References Antenna Freq. (GHz) Technique 1 g SAR

reduction

Remarks

Augustine et al. (27) Integrated inverted F

antenna

2.4 Shielding using ferrite sheet 85.5% Wearable application

Bhattacharjee et al.

(28)

Meanderd antenna 2.4 E-field cancellation 25.5% Wearable application

Das and Yoo (11) Telephonic loop antenna 1.9 Reflection using EBG

structure

24% Wearable application

Wang et al. (29) Micro-strip antenna 2.4 AMC structure >70% Wearable application

El-Atrash et al. (30) Monopole antenna 3.5 Reflection using AMC array 99% Wearable application

Mitra et al. (12) Monopole antenna 2.4 Reducing the discontinuities

of near E field using Ferrite

sheet

42% Fully implantable but ferrite

sheet is not bio-compatible

This work Capsule module antenna

design

2.4 Absorption using metasurface 24% Implantable and less-invasive

unique technique

EBG, electronic band gap; AMC, artificial magnetic conductor.

represents the peak realized gain over the frequency range of

the proposed antenna module with and without the absorber

metasurface. From the figure, it can be inferred that the inclusion

of absorber metasurface does not affect the antenna gain.

Furthermore, the 1 g average SAR distribution due to the capsule

module inside the HFSS human torso model has been presented

in Figure 11. Table 3 represents the comparative analysis of

the measure of SAR reduction with different techniques in

biomedical antenna applications. As SAR reduction technique

for the implantable antennae is being proposed for the first

time in this present literature, almost all the works that are

being compared are for wearable antennas. Although in (12),

we had successfully reduced the implantable antenna SAR

by reducing the discontinuities of near E field using ferrite

sheet, the antenna compromised its bio-compatibility. Hence,

at present, the proposed technique with the capsule antenna-

absorber module, is the unique approach for reducing the SAR

value of an implantable antenna and with this technique, the

peak SAR value has been reduced from 453 to 339.7 W/Kg

(∼24%) which is significant in the given condition. It may be

seen that other non-implantable techniques for SAR reduction

yields the better amount of reduction but those techniques

cannot be used successfully in the case of implantable scenario.

Hence, our proposed technique with absorber metasurface is the

best possible solution to the problem regarding EM absorption

due to in-body antennas. Also, this technique upholds the bio-

compatibility as well as other antenna parameters intact.

Result

In the previous section, a printed dipole antenna was

designed and analyzed. Also, an absorber metasurface has been

proposed to reduce the SAR of that implantable antenna. Both

the antenna and metasurface have been fabricated on a PLA

substrate (Figures 12A–C). The proposed antenna-metasurface

system is designed as an ingestible capsule module using PLA to

make the entire system less-invasive. The inner capsule contains

the metasurface printed around the outer surface. This is a

closed capsule and the metallic structure has been pasted to

create the absorber. This absorber is placed inside the outer

capsule, which is open at one end. This outer capsule holds

the antenna as well. The radiator and coplanar ground planes

are cut from a copper sheet to be pasted around the outer

capsule. The outer capsule is closed by using a PLA cap. This

enclosed capsule having the antenna at its outer surface and

inner capsule with absorbermetasurface within, a porcine slab to

test for various antenna parameters. This in vitro measurement

has been carried out using a network analyzer (Anritsu S820E)

and 50� SMA connector probes. We have used a porcine

slab, as its dielectric properties are similar to those of the

human tissue equivalent, to establish an in vitro setup using

VNA (Figure 12D). These prototypes consisting of coaxial cable

extensions are purely fabricated for in vitro analysis purposes.

Measurement yields almost similar return loss characteristics

compared to the simulated analysis (Figure 7). The efficiency

and gain of the antenna remain unaffected even after the

inclusion of the absorber metasurface (Figure 10).

Discussion

In this paper, a unique technique has been proposed to

reduce the SAR of the implantable antenna using absorber

metasurface. The redundant back radiation of the printed dipole

antenna has been absorbed by the metasurface to reduce the
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FIGURE 12

Fabricated prototype analysis: (A) capsule module parts, (B) arrangements of the module, (C) capsule module top view, and (D) in vitro test setup
using porcine slab.

average SAR by 24%. The antenna-absorber system is designed

as a compact capsule module to enhance the conformal nature

of the system and also, make the system less-invasive. This

capsule module can be attached to any implantable medical

device as a transceiver unit. This ingestible capsule, made of

PLA, is biocompatible in nature. The fabricated module has

been tested in vitro using a multi-layered porcine slab. This

technique helps us to reduce the SAR of the implantable

antenna without affecting the antenna gain much. Also other

parameters, such as antenna efficiency, impedance bandwidth,

etc. remain almost unaffected due to the inclusion of absorber

metasurface. Hence, this technique contributes to curtailing EM

radiation absorption significantly, which results in biologically

safer usage of implantable antennas. Using this technique the

SAR of the proposed antenna has been reduced from 453

to 339.7 W/Kg. However, this reduced value is beyond the

permissible value of the SAR according to FCC standards, i.e.,

1.6 W/Kg. To attain that a well-used practice is to reduce

the input power of the antenna. However, with the technique

proposed here, we can reduce SAR value so that more input

power can be given to the antenna for efficient communication.

In this work, we can provide a maximum input power of

5.5 mW instead of 4.8 mW due to the incorporation of this

proposed SAR technique. While this input power is sufficient
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TABLE 4 Comparative study of the SAR and maximum allowable input power for implantable antennas.

References Antenna Freq. (GHz) Maximum SAR (1W

input power)

Maximum allowable

input power

Mahe et al. (14) Dual ring slot 2.45 GHz 297 W/Kg 5.6 mW

Rajagopalan and

Rahmat-Samii (15)

Meandered dipole 1.4 GHz 330 W/Kg 4.8 mW

Miah et al. (16) Loop antenna 433 MHz Not given 7.1 mW

Wang et al. (18) Double layer patch 2.4 GHz 596.33 W/Kg 2.5 mW

Shah et al. (31) Circular patch 1.4 GHz 368 W/Kg 5.43 mW

Shah et al. (32) Meandered patch 915 MHz

2.45 GHz

377.6 W/Kg

279.5 W/Kg

3.7 mW

5.7 mW

This work Capsule module printed

dipole

2.4 GHz 339.7 W/Kg 5.5 mW

to establish an in-body to an on-body communication link,

a tradeoff between the higher input power and lower SAR

value will always remain a key factor for implantable antenna

design. In future development based on this literature, the

maximum input power may be increased for better in-body

communication. Table 4 shows the maximum input power

allowed for some of the implantable antennas in the literature.

Unlike our proposed work, these compared literatures are given

the obtained SAR value and have not mentioned any SAR

reduction technique.
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