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Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are both adult stem cells residing in the bone marrow.
MSCs interact with HSCs, they stimulate and enhance the proliferation of HSCs by secreting regulatory molecules and cytokines,
providing a specialized microenvironment for controlling the process of hematopoiesis. In this paper we discuss how MSCs
contribute to HSC niche, maintain the stemness and proliferation of HSCs, and support HSC transplantation.

1. Introduction

Hematopoietic stem cells (HSCs) are rare cells residing in
the bone marrow (BM; 1 in 104 to 1 in 108 of BM nucle-
ated cells), and they are progenitors that become progres-
sively restricted to several or single lineages. These progen-
itors yield blood precursors devoted to unilineage differen-
tiation and the production of mature blood cells, including
red blood cells, megakaryocytes, myeloid cells (mono-
cyte/macrophage and neutrophil), and lymphocytes [1, 2].
CD34 surface antigen (CD34+) is commonly used as a
marker to identify and quantify the population of progenitor
cells [3], according to which, sorting HSCs from BM, periph-
eral blood (PB), and umbilical cord (UC)/placenta blood
is relatively simple and practical [2, 4–6]. Human HSCs
are known to exhibit CD34+, Thy1+, CD38lo/−, Ckit−/lo,
CD105+, and Lin− phenotype. However, there is no general
agreement on the association between any combination of
these antigenic properties and function of stem cells [3, 6].
HSCs depend on their microenvironment, the niche, for
regulating self-renewal and differentiation [7]. For instance,
the disruption of BMP pathway can increase the numbers
of osteoblasts and HSCs [8, 9], and the chemokine CXCL12
regulates the cyclical release and the migration of HSCs
[10, 11]. Activation of β-catenin enforces HSCs enter cell
cycle, thus leading to exhaustion of the long-term stem
cell pool [12–14]. These findings suggest that signaling
pathways and cellular interactions regulate the BM niche

for HSCs. Besides, hypoxia regulate hematopoiesis in BM
by maintaining important HSC functions and the interplay
between HSCs and neighboring cells [15, 16].

Plating studies indicate that mesenchymal stem cells
(MSCs) are present as a rare population of cells in the
BM. They represent approximately 0.001% to 0.01% of the
nucleated cells, about 10-fold less abundant than HSCs,
but MSCs can be readily grown in culture [17]. Though
predominantly residing in the BM, MSCs also present similar
but not identical features in many other tissues such as
blood, placenta, dental pulp, and adipose tissue. MSCs have
the potential to differentiate into multiple phenotypes such
as osteoblasts, chondrocytes, adipocytes, neural cells, and
probably other cell lineages [18–21]. International Society
for Cellular Therapy (ISCT) has provided the following
minimum criteria for defining multipotent mesenchymal
stromal cells as follows: plastic-adherent under standard
culture conditions; express CD105, CD73, and CD90 and
lack expression of CD45, CD34, CD14, or CD11b, CD79 or
CD19 and HLA-DR, and must differentiate into osteoblasts,
adipocytes, and chondroblasts in vitro [22].

BM has received the most attention because it carries
MSCs as well as HSCs. Evidence indicates that MSCs are
key component of the HSC niche in the BM where these
two distinct stem cell populations arrange closely, ensuring
hematopoietic and skeletal homeostasis [18]. MSCs interact
with HSCs, secreting chemokines that contribute to HSC
niche and support long-term growth of HSCs [23, 24].
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Table 1: The cytokines secreted by MSCs that regulate HSCs.

Cytokines Function References

CXCL12
Regulate the adhesion, expansion,
migration, and homing of HSCs

[10, 11, 28–32]

(SDF-1)
Reduce the production of
inflammatory cytokines and
chemokines

[33]

FL
Maintain HSC proliferation and
self-renewal, regulate
hematopoietic growth

[28]

IL-6, TPO
Influence HSC proliferation and
differentiation

[29, 34]

GM-CSF Regulate HSC engraftment [35]

SCF

Maintain HSC proliferation and
self-renewal

Regulate hematopoietic growth [28, 36]

Regulate HSC engraftment [35]

VCAM1,
E-selectin,
collagen I,
fibronectin

Regulate HSC homing and
adhesion

[35, 37]

MSCs can be cotransplanted with HSCs to improve their
engraftment [25–27] (Table 1).

2. Mesenchymal Stem Cells Contribute to
Hematopoietic Stem Cell Niche

The term “niche” for the specific HSC BM microenviron-
ment was first coined in 1978, proposing that HSCs are in
intimate contact with the bone, which was responsible for
the apparently unlimited capacity of HSCs’ proliferation and
the inhibition of HSCs’ maturation [38]. Niches exist within
the BM which preserve specific aspects of hematopoiesis,
such as HSC survival, self-renewal, and differentiation,
supporting the maintenance of the blood system under
normal and stressed conditions [39]. Research has made
it increasingly clear that the stem cell niches provide a
microenvironment which is important in protecting the
self-renewing, undifferentiated state of their residents [40].
Three types of HSC niches have been hypothesized, defined
according to the HSC uniformity [18, 41]. Two of these
proposed niches are provided by cells directly descending
from MSCs: the osteoblastic niche, where HSCs reside in
close contact with endosteal cells [8], and the reticular
stromal niche, where HSCs reside in close contact with
stromal cells which are also known as mural cells or pericytes,
the smooth muscle cells lining arteriolar side of the sinusoids
[42]. The third proposed niche is the vascular/sinusoidal
niche, where HSCs reside in direct contact with endothelial
cells in the venous side of the sinusoids [43]. It is well
known that HSC circulation involves HSCs leaving the BM,
entering the vascular system (mobilization), and returning
to the BM (homing) [44, 45]. The BM vascular structure
provides a barrier between the hematopoietic compartment
and the peripheral circulation. Most primitive HSCs remain

physiologically quiescent within the BM niche; however, a
portion of HSCs leave this resting pool and start the process
of mobilization [39, 46–48].

Studies showed that both mouse and human osteoblast
cell lines secreted a large number of cytokines that promote
the proliferation of haematopoietic cells in culture, prov-
ing that cells involved in bone formation have stem-cell-
supporting activity [49, 50]. MSCs reside in the bone cavity
and are proposed to give rise to the majority of marrow
stromal cell lineages, including chondrocytes, osteoblasts,
and adipocytes, as suggested in numerous studies [48–50].
MSCs and HSCs form a structurally unique niche in the
BM, which is regulated by local input from the surrounding
microenvironment, and long-distance cues from hormones
and the autonomic nervous system [51]. MSCs isolated
from BM produce several growth factors and chemokines,
such as CXCL12 (SDF-1), stem cell factor (SCF), Flt-3
ligand (FL), thrombopoietin (TPO), interleukin (IL)-6, IL-
11, leukemia inhibitory factor (LIF), macrophage colony-
stimulating factor (M-CSF), tumor necrosis factor- (TNF-)
α, and transforming growth factor- (TGF-) β1 [28, 52–54].
HSCs are reduced in the BM after the depletion of MSCs,
owing at least in part to mobilization towards extramedullary
sites [51]. Loss of SCF from supporting cells or the receptor
in HSCs leads to hematopoietic failure, indicating MSCs
play an essential role in HSC niche function [36]. SCF
and FL are implicated in maintaining HSC proliferation
and self-renewal, regulating hematopoietic growth [28]. IL-
3 or IL-6 combined with TPO signaling can influence
HSC proliferation and differentiation [29, 34]. Besides, as
mentioned previously, the chemokine CXCL12 interacts with
its receptor CXCR4, regulates the cyclical release of HSCs,
the migration of HSCs to the vascular niche from BM,
and the homing of HSCs to the BM [10, 11, 29–32], and
promotes adhesive interactions between HSCs and stromal
cells [55]. In addition, CXCL12 chemokine signaling pathway
contribute to the ex vivo expansion of HSCs [28]. Moreover,
CXCL12 mediates angiogenic responses, promotes differen-
tiation of CD34+ cells to endothelial progenitor cells, and
appears to affect many other factors, including G-CSF, VEGF,
and CXCL16 that relate to HSC mobilization and homing
[33]. However, only β-catenin-activated MSCs but not naı̈ve
MSCs have stimulatory effect on HSC self-renewal in vivo
[56].

3. The Effect of Mesenchymal Stem Cell on the
Maintenance of Hematopoietic Stem Cells

Coculture of HSCs with MSCs might be an ideal method
for maintaining the HSC pluripotency, because the growth
or survival signals might be transferred to the HSC via
adhesive molecules by modulating the cytokines and growth
factor-dependent signals [57]. 5-aza-deoxycytidine (aza-D)
and trichostatin A (TSA) have potent activity to maintain the
stemness of HSCs, being candidate additives for HSCs ex vivo
expansion, but they can also cause serious cell death [58, 59].
Koh et al. examined the effects of MSCs on the maintenance
of CD34+ cells driven by aza-D and TSA in culture with the
combined cytokines, and found that the total cell number
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of HSCs cultured with MSCs was higher in aza-D or TSA
than in any culture conditions without MSCs, while most of
HSCs cultured with cytokine treatment but without MSCs
would lose their pluripotency and then differentiate, though
they were induced to proliferate effectively [60]. It suggested
that the co-culture of CD34+ cells with MSCs might not
simply deliver the proliferation signals but also stemness
and survival signals, and overlap the action of epigenetic
regulators [57, 60].

4. Application of Bone Marrow Mesenchymal
Stem Cells in Hematopoietic Stem
Cell Transplantation

HSCs were primarily used in the treatment of patients
with hematological malignancies. During the course of
treatment, patients’ cancerous cells are first destroyed by
chemo/radiotherapy and then replaced with BM or PB/G-
CSF transplant from a human leukocyte antigen- (HLA-)
matched donor [61, 62]. In most cases, autologous HSCs
are collected prior to the treatment and reinfused into the
patients, but the patient’s cancerous cells may be inadver-
tently collected and reinfused back into the patients along
with HSCs [63]. Allogeneic marrow transplants have also
been used in the treatment of hereditary blood disorders
including aplastic anemia, β-thalassemia, Wiskott-Aldrich
syndrome, and SCID, as well as inborn errors of metabolism
disorders such as Hunter’s syndrome and Hurler’s syndrome
[64–68]. One of the major challenges with HSC transplants
is failure to engraft, which is mediated by donor T cells as
a result of graft-versus-host disease (GVHD). Graft-versus-
tumor effect of allogeneic HSC transplants may be a result
of an immune reaction between donor cytotoxic T cells and
patient’s malignant cells [69]. MSCs are known to interact
with HSCs and immune cells, and represent potential cellular
therapy to enhance allogeneic hematopoietic engraftment
and prevent GVHD [70–72]. Coculture of MSCs and HSCs
could cause a significantly increase in CD34+ cells [73]. Aside
from BM-derived MSCs, MSCs from adipose tissue can also
be applied in hematopoietic engraftment, which would be an
innovative supplement for cellular therapies [74, 75].

Cotransplantation studies in animal models as well as
in humans showed that primary or culture-expanded MSCs
promote the engraftment of HSCs. Cotransplantation of
MSCs and cord blood or mobilized peripheral blood CD34+

cells resulted in a significantly higher level of engraftment
than transplantation of CD34+ cells only [35, 37, 76–81].
This enhancement was greater after cotransplantation of
GM-CSF and SCF-transfected MSCs, indicating that these
growth factors relate to engraftment, though the mechanism
of the enhancing effect is still unknown [35]. It is likely
that the ability to promote engraftment is maintained along
lineage differentiation [76]. Several lines of evidence suggest
that MSCs produce several essential hematopoietic growth
factors, adhesion molecules [28, 52–54], and extracellular
matrix (ECM) proteins (such as VCAM1, E-selectin, collagen
I, and fibronectin) that are known to play an important role
in HSC homing [35, 37]. Selective adhesion of progenitors

and cytokines to ECM components or stromal cells then
result in the colocalization of progenitors at a specific stage
of differentiation with a specific array of cytokines in so-
termed niches [77]. This provides a level of growth and
differentiation regulation [37]. Although it would mean
exposure to allogeneic donor antigens, allogeneic MSCs can
provide equal enhancement of engraftment as autologous
cells. Cotransplanted MSCs shift the differentiation pattern
from a lymphoid to a myeloid predominance and enhance
megakaryocytic engraftment [78]. The cotransplantation
of HSCs and MSCs enhanced engraftment as the dose
of MSCs increased whereas an excessive dose of MSCs
might decrease engraftment efficiency [79]. Besides, human
allogeneic MSC layers in a serum-free culture system enabled
the ex vivo expansion/maintenance of human HSCs [80],
which indicates that MSCs may be used as a universal and
reproducible stromal feeder layer to efficiently expand and
maintain human BM HSCs ex vivo [81].

MSCs produce a microenvironment supporting hema-
topoiesis and may contribute to immune tolerance because
of low immunogenicity and the suppressive effect of allore-
activity [75, 82]. MSCs had a potent immunosuppressive
effect in vivo after allogeneic stem-cell transplantations
[26]. The CXCL12-α secreted by MSCs could reduce the
production of a variety of inflammatory cytokines and
chemokines, including IL-13, IL-3 Rβ, IL-4, IL-5, IL-9,
IL-10, L-selectin, MIP-3α/β, TCA3/CCL1, TNF-a, IL-1β,
lymphotactin/CXCL1, L-selectin, leptin receptor, eotaxin-2,
CTACK/CCL27, CRG-2/CXCL10, and CD30L [33]. In allo-
geneic transplantation, the simultaneous infusion of MSCs
may promote hematopoietic engraftment across the major
histocompatibility complex (MHC) barrier and decrease the
incidence of GVHD, even though the exact mechanisms have
not been clarified [83–85]. MSCs are lack of MHC class
II and most of classical costimulatory molecules [86, 87].
Moreover, MSCs directly inhibit the expansion and activa-
tion of alloreactive Tlymphocytes and this T cell-suppressive
effect may have important therapeutic implications in
preventing or treating acute and chronic GVHD [70].
MSCs can significantly reduced the expression of activation
markers CD25 (interleukn-2 receptor), CD38, and CD69
on phytohaemagglutinin- (PHA-) stimulated lymphocytes,
making allogeneic HSCs and MSCs escape from recognition
by alloreactive T-cells, because the expression of CD25
(IL-2 receptor), CD38 and CD69 was unchanged. Besides,
MSC suppressed the proliferation of PHA-stimulated CD3+,
CD4+, and CD8+ lymphocytes [87–89]. However, MSCs
inhibit naı̈ve and memory T-cell responses to their cognate
antigens by the engagement of the inhibitory molecule PD-1
while the expression of MHC molecules and the presence in
culture of antigen-presenting cells (APCs) or CD4+/CD25+

regulatory T cells were not required for MSCs to inhibit
preferentially [87–91]. MSCs can regulate B-cell functions
including migration, proliferation, and immunoglobulin(Ig)
synthesis. For example, MSCs inhibit the proliferation of B-
cells by arresting them at G0/G1 phase of the cell cycle, and
the production of IgM, IgA, and IgG of B-cells [88, 92].
Dendritic cells (DCs) play an important role in supporting
antigen-specific CD4+ T-cell proliferation and modulating
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Figure 1: MSCs interact with immune cells, representing potential cellular therapy to enhance allogeneic hematopoietic engraftment and
prevent GVHD. MSCs reduced the expression of activation markers CD25, CD38 and CD69 on PHA-stimulated lymphocytes, making
allogeneic HSCs and MSCs escape from recognition of alloreactive T-cells. MSCs suppressed the proliferation of PHA-stimulated CD3+,
CD4+ and CD8+ lymphocytes. MSCs inhibit naı̈ve and memory T-cell responses to their cognate antigens by the engagement of the
inhibitory molecule PD-1. MSCs inhibit the proliferation of B-cells and the differentiation of mature DCs from HSCs. MSCs induce DC
apoptosis by downregulate TNF-α and TGF-β1 levels and upregulated IL-6 levels. MSCs inhibit the IL-2-induced proliferation of NK cells
by producing PGE2. IFN-γ can stimulate MSCs to exhibit induction of class II molecule expression to prevent GVHD.

diverse T-cell responses including GVHD [93]. MSCs can
inhibit the differentiation of mature DCs from HSCs by
arresting them at the precursor stage, interfere with DC
antigen presentation, prevent DC migration ability, and
induce DC apoptosis by downregulate TNF-α and TGF-β1
levels and upregulated IL-6 levels [93–95]. IFN-γ, which is
produced by donor T-cells in response to antigen recog-
nition, displays natural cytolytic activity against the cells

missing markers of self-MHC class I, serves as an initiating
stimulus for MSC immunosuppressive activity in vivo [88].
This indicates that the exposure to concentrated amounts
of IFN-γ of MSCs can stimulate MSCs to exhibit induction
of class II molecule expression, to prevent GVHD and
provide the basis for a new potential strategy in prevention
of GVHD [87–89, 96]. There is also evidences that MSCs
can inhibit the IL-2-induced proliferation of natural killer
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(NK) cells by producing prostaglandin E2 (PGE2), a product
of arachidonic acid metabolism that acts as a powerful
immune suppressant, and inhibits T-cell mitogenesis and IL-
2 production [88, 97, 98] (Figure 1).

5. Conclusion

Lines of evidence have indicated that MSCs are capable
of supporting the expansion and differentiation of HSCs
and enhancing hematopoietic engraftment in the past two
decades, but the exact mechanisms by how MSCs support
HSCs are still unclear. MSCs may affect HSCs by producing
growth factors and chemokines that take parts in signaling
pathways regulating HSCs. Meanwhile, HSCs interact with
MSCs though this has been less understood. MSCs can home
to injured tissues when coinfused with HSCs [99]. A better
understanding of the interaction between MSCs and HSCs
will substantially ultimately help develop novel therapies for
hematopoietic diseases.
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