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Abstract: We sought to identify metabolites that mark the relationship of sugar-sweetened beverage
(SSB) intake with adiposity and metabolic risk among boys (n = 114) and girls (n = 128) aged 8–14 years.
We conducted the analysis in three steps: (1) linear regression to examine associations of SSB intake
(quartiles) with adiposity, glycemia, lipids, and blood pressure (BP); (2) least absolute shrinkage and
selection operator (LASSO) regression to identify SSB-associated metabolites from an untargeted
dataset of 938 metabolites; and (3) linear regression to determine whether SSB-related metabolites are
also associated with adiposity and metabolic risk. In girls, SSB intake was associated with marginally
higher BP (Q2 vs, Q1: 1.11 [−3.90, 6.13], Q3 vs. Q1: 1.16 [−3.81, 6.13], Q4 vs. Q1: 4.65 [−0.22, 9.53]
mmHg systolic blood pressure (SBP); P-trend = 0.07). In boys, SSB intake corresponded with higher
C-peptide insulin resistance (Q2 vs. Q1: 0.06 [−0.06, 0.19], Q3 vs. Q1: 0.01 [−0.12, 0.14], Q4 vs. Q1: 0.17
[0.04, 0.30] ng/mL; P-trend = 0.03) and leptin (P-trend = 0.02). LASSO identified 6 annotated
metabolites in girls (5-methyl-tetrohydrofolate, phenylephrine, urate, nonanoate, deoxyuridine,
sn-glycero-3-phosphocholine) and 3 annotated metabolites in boys (2-piperidinone, octanoylcarnitine,
catechol) associated with SSB intake. Among girls, urate and nonanoate marked the relationship of
SSB intake with BP. None of the SSB-associated metabolites were related to health outcomes in boys.
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1. Introduction

Self-reported dietary assessment methods widely-used in epidemiological studies, such as
food frequency questionnaires, 24-h dietary recalls, and food records, are subject to recall errors.
In some instances, such as the famous example of obesity-related under-reporting of usual dietary
intake [1], the recall errors are differential with respect to biological conditions and health outcomes,
thereby making it difficult to account for such error in the statistical analysis. Dietary biomarkers
provide a more objective assessment of dietary intake [2]. For example, urinary sodium and nitrogen
have been used as biomarkers of salt and protein intake, and fatty acid composition of subcutaneous
adipose tissue provides an estimate of long-term polyunsaturated fatty acid intake [3]. To date,
most studies have assessed biomarkers of single foods or nutrients, rather than food groups, which may
provide a more accurate reflection of how we consume foods in real life.

One food group of particular interest in the realm of obesity research is sugar-sweetened beverages
(SSBs), which typically comprises non-diet sodas, sweetened fruit juices, and other beverages with
added sugars (i.e., tea with sugar, coffee with sugar). Accurately assessing SSB intake is challenging
given that under-reporting of intake is a particular problem for socially undesirable foods and
beverages [4], an issue that may be further compounded by obesity-related underreporting of dietary
intake. To address this challenge, a few studies have attempted to identify biomarkers of sugar
intake, such as urinary sugar excretion, and δ13C in finger-stick blood, serum, red blood cells and hair.
However, these biomarkers exhibited only modest associations with sugar intake [5].

The recent advent of high-throughput technologies has made it possible for researchers to identify
novel biomarkers of dietary intake via comprehensive metabolomics profiling of tissues and fluids.
Using a discovery and validation design, Gibbons et al. [6] used data from 565 participants of the
Irish National Adult Nutrition Survey to identify urinary metabolites (quantified via targeted nuclear
magnetic resonance [NMR] spectroscopy) associated with SSB intake, then validated the findings among
10 adults attending University College Dublin. The investigators identified four compounds of interest
(formate, citrulline, taurine, and isocitrate), all of which were on carbohydrate metabolism pathways.
While we are not aware of metabolomics analyses of SSB intake in youth, Mayengbam et al. [7]
examined postprandial serum metabolomic correlates of B-vitamin fortified beverage consumption
among 20 adolescents. The authors noted perturbations in serum homocysteine, betaine, vitamins B6
and B12, choline, folate and taurine [7]. Together, these studies support the possibility of using
metabolomics to identify biomarkers of beverage intake, and provide proof-of-principle evidence of
specific metabolic effects of beverage composition on circulating metabolites in youth. Yet, a missing
piece revolves around understanding whether metabolites of interest (i.e., those related to SSB intake)
are also associated with known risk factors for obesity-related conditions.

In this study, we leveraged data from untargeted metabolomics profiling of fasting blood, a systemic
tissue that reflects all ongoing physiological processes, to identify novel metabolite biomarkers of
sugar-sweetened beverage (SSB) intake that may also mark the relationship between SSBs and a range
of adverse metabolic health outcomes among adolescents in Mexico City, MX.

2. Results

Median age of the participants was 10.0 years (range: 8.1, 14.7) and a little less than half of the
sample (47.1%; n = 114) were boys. The majority of children reported having consumed SSBs at
least four servings of sugar-sweetened beverages (SSB) in a day (63.9% of girls and 59.7% of boys;
Table 1). In concordance with a previous publication in this cohort [8], the main contributors to the
SSB food group were soda and fruit juices with added sugar (data not shown, available upon request).
Table S1 in supplementary materials shows mean ± standard deviation (SD) of the adiposity indicators
and metabolic biomarkers for boys and girls, separately.
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Table 1. Percent (% [N]) of participants reporting intake of any sugar-sweetened beverages among
242 Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) project participants.

Intake of Any Sugar-Sweetened Beverage a Girls n = 128 Boys n = 114

Never to <1 time/month 0.0% (0) 4.4% (5)
1–3 times/month 4.7% (6) 2.6% (3)
Once per week 8.6% (11) 4.4% (5)
2–4 times/week 3.9% (5) 2.6% (3)
5–6 times/week 3.9% (5) 12.3% (14)
Once per day 4.7% (6) 6.1% (7)
2–3 times/day 10.9% (14) 7.9% (9)
>4 times/day 63.3% (81) 59.7% (68)

a Defined as non-diet soda, coffee with sugar, tea with sugar, sweetened fruit juice (does not include natural fruit
juices), or any drink with added sugar.

Table 2 shows associations of quartiles of SSB intake with biomarkers of glycemia, lipid profile,
adiposity, and blood pressure for boys and girls, separately. In boys, higher SSB intake was associated
with higher C-peptide (Q4 vs. Q1 of SSB intake: 0.72 [95% confidence interval (CI): 0.16, 1.27]
ng/mL; P-trend across quartiles = 0.04), C peptide insulin resistance (CP-IR) (Q4 vs. Q1 of SSB intake:
0.17 [95% CI: 0.04, 0.30] ng/mL; P-trend across quartiles = 0.03), and leptin (Q4 vs. Q1 of SSB intake:
3.78 [95% CI: 0.49, 7.08] ng/mL; P-trend across quartiles = 0.02). We also noted marginally significant
positive associations with measures of fat distribution (waist circumference and sum of the subscapular
and triceps skinfolds (SS+TR)), and positive associations with blood pressure. Among girls, the only
association we detected was a marginal positive association with blood pressure (Table 2).

In Table 3, we show results of least absolute shrinkage and selection operator (LASSO)
regression, which identified the strongest metabolite correlates of SSB intake, along with feature
characteristics and annotation methods for the compounds of interest. The procedure identified
18 metabolites in girls that met the selection cut-off of 70 (i.e., in the 100 bootstrap replication
procedures, these metabolites were selected at least 70% of the time in the LASSO models), six of
which were named compounds: 5-methyl-tetrohydrofolate (5-THF), phenylephrine, urate, nonanoate,
deoxyuridine, and sn-glycero-3-phosphocholine. In boys, 11 compounds met the selection cut-off,
three of which were named compounds: 2-piperidinone, octanoylcarnitine, and catechol.

In Table 4, we show associations of the named metabolites from Table 3 with the adiposity
indicators and metabolic biomarkers. In girls, urate and nonanoate were each positively associated
with blood pressure. A 1 z-score increment in urate was associated with 3.09 (95% CI: 1.38, 4.79) mmHg
higher systolic blood pressure (SBP), and 1.31 (95% CI: 0.01, 2.61) mmHg higher diastolic blood pressure
(DBP). Similarly, a 1 z-score increment in nonanoate was associated with 2.27 (95% CI: 0.58, 3.97)
mmHg higher SBP. None of the named metabolites from Table 3 were associated with outcomes of
interest in boys (Table 4).
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Table 2. Associations of quartiles of sugar-sweetened beverage (SSB) intake with metabolic biomarkers
in ELEMENT participants during peripuberty.

-

Associations (β a [95% Confidence Interval (CI)]) of Quartiles of SSB Intake with
Adiposity and Metabolic Risk Biomarkers during Peripuberty

Girls (n = 128)

Q2 vs. Q1 Q3 vs. Q1 Q4 vs. Q1
P-Trendn = 32 vs. 32 n = 32 vs. 32 n = 32 vs. 32

Glycemia

Fasting glucose (mg/dL) 0.02 (−5.09, 5.12) 0.91 (−4.19, 6.00) −0.13 (−5.23, 4.98) 0.95
Fasting C-peptide (ng/mL) 0.12 (−0.49, 0.74) −0.23 (−0.85, 0.38) 0.04 (−0.57, 0.65) 0.81

CP-IR b 0.05 (−0.14, 0.24) −0.04 (−0.23, 0.14) 0.04 (−0.15, 0.23) 0.94
Leptin (ng/mL) −1.33 (−6.04, 3.39) −3.37 (−8.07, 1.34) −0.72 (−5.43, 4.00) 0.58

Lipid Profile

Total cholesterol (mg/dL) 0.85 (−11.77, 13.47) 6.29 (−6.31, 18.88) 0.14 (−12.48, 12.76) 0.77
HDL (mg/dL) 2.81 (−2.83, 8.45) 2.42 (−3.22, 8.05) −1.14 (−6.78, 4.50) 0.68
LDL (mg/dL) −3.89 (−13.99, 6.20) 3.14 (−6.93, 13.22) −2.57 (−12.66, 7.53) 0.98

Triglycerides (mg/dL) 9.67 (−13.30, 32.63) 3.61 (−19.31, 26.53) 19.24 (−3.72, 42.19) 0.17

Adiposity and Blood Pressure

BMI z-score c 0.11 (−0.48, 0.70) −0.20 (−0.79, 0.39) 0.20 (−0.39, 0.79) 0.76
Waist circumference (cm) 0.30 (−4.65, 5.25) −1.33 (−6.27, 3.61) 2.04 (−2.90, 6.99) 0.58

SS+TR (mm) −0.37 (−5.86, 5.12) −1.64 (−7.12, 3.84) 1.50 (−3.99, 6.99) 0.72
SBP (mmHg) 1.11 (−3.90, 6.13) 1.16 (−3.81, 6.13) 4.65 (−0.22, 9.53) 0.07
DBP (mmHg) 0.02 (−3.61, 3.66) 1.27 (−2.33, 4.86) 3.08 (−0.45, 6.62) 0.07

-
Boys (n = 114)

Q2 vs. Q1 Q3 vs. Q1 Q4 vs. Q1
P-Trendn = 29 vs. 29 n = 28 vs. 29 n = 28 vs. 29

Glycemia

Fasting glucose (mg/dL) 1.12 (−2.80, 5.03) 1.70 (−2.27, 5.67) 1.52 (−2.43, 5.47) 0.42
Fasting C-peptide (ng/mL) 0.27 (−0.28, 0.83) 0.00 (−0.57, 0.56) 0.72 (0.16, 1.27) 0.04

CP-IR b 0.06 (−0.06, 0.19) 0.01 (−0.12, 0.14) 0.17 (0.04, 0.30) 0.03
Leptin (ng/mL) 0.99 (−2.27, 4.25) 1.78 (−1.53, 5.09) 3.78 (0.49, 7.08) 0.02

Lipid profile

Total cholesterol (mg/dL) −1.20 (−15.68,
13.28) 3.37 (−11.32, 18.07) −2.39 (−17.01,

12.22) 0.90

HDL (mg/dL) −0.49 (−6.61, 5.62) −1.24 (−7.44, 4.96) −3.83 (−10.00, 2.34) 0.22
LDL (mg/dL) −2.70 (−14.80, 9.41) 2.90 (−9.39, 15.18) 0.26 (−11.96, 12.48) 0.76

Triglycerides (mg/dL) 9.97 (−9.76, 29.70) 8.58 (−11.44, 28.61) 5.89 (−14.02, 25.81) 0.61

Adiposity and blood pressure

BMI z-score c 0.40 (−0.21, 1.00) 0.13 (−0.48, 0.74) 0.55 (−0.05, 1.16) 0.15
Waist circumference (cm) 3.81 (−0.86, 8.48) 1.69 (−3.05, 6.42) 5.06 (0.35, 9.77) 0.08

SS+TR (mm) 2.69 (−2.80, 8.18) 0.83 (−4.74, 6.40) 5.51 (−0.03, 11.06) 0.10
SBP (mmHg) 4.18 (−0.90, 9.26) 7.08 (2.00, 12.16) 8.79 (3.69, 13.90) 0.0004
DBP (mmHg) 3.88 (0.24, 7.51) 6.18 (2.55, 9.81) 7.10 (3.45, 10.75) <0.0001

a Estimates are adjusted for child’s age and pubertal status (breast and pubic hair for girls; testicular volume and
pubic hair for boys); b Calculated as [fasting serum C-peptide × fasting serum glucose]/405; c According to the WHO
sex-specific growth reference for children 5–19 years of age.
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Table 3. Metabolites associated with quartiles of sugar-sweetened beverage (SSB) intake, selected via
least absolute shrinkage and selection operator (LASSO) regression.

- Feature Characteristics and Annotation Methods LASSO Parameters

Ion
Acquisition

Mode

Retention
Time
(min)

m/z Annotation
Method

Level of
Confidence Selection β a

Girls (n = 128)

5-methyl-tetrohydrofolate
(THF) + 3.63 460.194 In-house

library Level 1 96 −0.508

Urate + 1.00 169.037 In-house
library Level 1 96 0.576

Unknown + 9.54 920.466 95 −0.467

Phenylephrine + 0.94 168.102 In-house
library Level 1 95 0.419

Unknown + 29.63 647.560 94 −0.346

Unknown − 0.79 195.810 93 0.399

Unknown + 24.97 810.597 90 −0.348

Unknown + 10.11 211.131 83 0.249

Unknown + 22.22 435.271 81 −0.288

Nonanoate − 18.33 157.123 In-house
library Level 1 81 0.287

Unknown − 18.57 473.275 80 0.335

Unknown − 8.47 516.006 78 −0.247

Unknown + 22.91 359.317 77 −0.238

Unknown + 19.33 501.317 76 −0.241

Unknown − 16.19 398.036 75 0.265

Deoxyuridine + 1.67 251.066 In-house
library Level 1 75 0.257

Unknown + 19.80 588.318 73 −0.269

Unknown − 20.63 584.236 73 0.198

Unknown + 25.07 1614.146 72 −0.216

Sn-glycero-3-phosphocholine + 0.61 258.111 In-house
library 71 0.192

Boys (n = 114)

2-piperidinone + 2.68 100.077 In-house
library Level 1 96 0.45

Unknown − 12.73 430.015 91 0.36

Unknown + 18.77 455.202 91 0.45

Unknown + 7.82 279.171 90 0.51

Octanoylcarnitine + 25.31 752.562 In-house
library Level 1 86 −0.42

Unknown + 11.65 311.147 86 −0.38

Catechol − 2.50 109.029 In-house
library Level 1 82 0.35

Unknown − 24.00 883.537 81 0.30

Unknown + 14.05 793.411 77 −0.28

Unknown + 22.91 471.353 75 0.24

Unknown + 12.03 1238.497 75 −0.37
a Estimates are adjusted for age and pubertal status (breast and pubic hair for girls; testicular volume and pubic hair
for boys).
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Table 4. Associations of quartiles of SSB-related metabolites with blood pressure in ELEMENT
participants during peripuberty.

-

β a (95% CI) per 1-SD Increment in Each SSB-Related Metabolite with Select Adiposity Indicators and
Metabolic Biomarkers

Girls (n = 128)

5-Methyl-THF Phenylephrine Urate Nonanoate Deoxyuridine Sn-Glycero-3-
Phosphoholine

Blood pressure

SBP (mmHg) −1.18 (−2.92, 0.55) 0.03 (−1.68, 1.73) 3.09 (1.38, 4.79) 2.27 (0.58, 3.97) 0.04 (−1.73, 1.81) −0.10 (−1.77, 1.57)
DBP (mmHg) −0.44 (−1.73, 0.84) 0.26 (−1.00, 1.52) 1.31 (0.01, 2.61) 0.31 (−0.98, 1.60) 0.44 (−0.86, 1.75) −0.05 (−1.28, 1.19)

- Boys (n = 114)

2-Piperidinone Octanoylcarnitine Catechol

Metabolic biomarkers

Fasting C-peptide
(ng/mL) 0.06 (−0.13, 0.25) −0.15 (−0.37, 0.08) 0.08 (−0.15, 0.30)

CP-IR b 0.01 (−0.03, 0.06) −0.03 (−0.08, 0.02) 0.02 (−0.03, 0.07)
Leptin (ng/mL) 0.79 (−0.32, 1.89) 0.19 (−1.11, 0.15) 0.06 (−1.28, 1.39)

Adiposity

BMI z-score 0.16 (−0.05, 0.36) −0.04 (−0.28, 0.20) 0.01 (−0.23, 0.25)
Waist circumference

(cm) 1.50 (−0.07, 3.07) −0.37 (−2.24, 1.50) 0.26 (−1.64, 2.16)

SS+TR (mm) 1.35 (−0.50, 3.21) −0.62 (−2.81, 1.57) −0.27 (−2.50, 1.96)

Blood pressure

SBP (mmHg) 0.98 (−0.86, 2.83) 0.37 (−1.68, 2.43) 1.98 (−0.06, 4.02)
DBP (mmHg) 1.10 (−0.23, 2.43) −0.98 (2.46, 0.51) 1.23 (−0.26, 2.72)

a Estimates are adjusted for child’s age and pubertal status based on breast and pubic hair development for girls, and
based on testicular volume and public hair development in boys. b Calculated as [fasting serum C-peptide × fasting
serum glucose]/405.

Based on our findings of the relevance of uric acid as a potential marker for the relationship between
SSB intake and hypertension in girls, we further adjusted all conventional models (i.e., excluding LASSO)
for total energy-adjusted fish and organ meat intake, as both of these foods are purine sources that
contribute to hyperuricemia. Inclusion of these food groups did not change our results. For example,
in girls, using the same covariates as in models for Table 2, but with inclusion of fish intake as a covariate,
the estimate for the Q4 vs. Q1 of SSB intake in relation to SBP was 5.17 (95% 0.45, 9.89) mmHg (P-trend
across quartiles = 0.04). Likewise, in the model relating urate as the independent variable to SBP as the
outcome in girls, the estimate for urate was 2.90 (95% CI: 1.19, 4.60) mmHg.

3. Discussion

In this study of 242 Mexican youth, we sought to identify metabolites that mark the relationship of
sugar-sweetened beverage (SSB) intake with adiposity and metabolic risk. SSB intake was associated
with higher blood pressure in girls, and with biomarkers of glycemia (C-peptide, CP-IR, leptin) and
fat distribution (waist circumference, skinfold thicknesses) in boys. In girls, urate (aka uric acid) and
nonanoate (aka nonanoic acid) marked the relationship between SSB intake and blood pressure. We did
not identify any metabolites that marked associations of SSB intake with the adiposity or metabolic
risk biomarkers in boys.

3.1. Girls

In girls, higher SSB intake was associated with higher systolic and diastolic blood pressure.
We identified urate and nonanoate as key metabolites that mark this relationship. Our finding with
respect to urate corroborates a longstanding literature on the relationship between sugar (in particular,
fructose) intake and gout [9], a condition caused by high serum uric acid in tissues (hyperuricemia),
as well as the established link between hyperuricemia and high blood pressure in adults [10] and
children [11,12]. The process of phosphorylation of fructose, the first step of fructose metabolism, leads to
an increase in circulating uric acid as a byproduct [13]. Uric acid is an antioxidant that initially exerts
neuroprotective functions. However, when present in excess, this compound has detrimental effects on
health via induction of platelet aggregation and chronic systemic inflammation [14], both of which are



Metabolites 2019, 9, 100 7 of 15

precursors to elevated blood pressure [15,16]. Recent meta-analyses showed a significant association of
serum uric acid and incident hypertension, independent of traditional risk factors (i.e., smoking habits,
age, lipid profile, physical activity levels, and socioeconomic characteristics) [17,18]. The fact that we
identified an association only in females may be related to the effects of SSB on female reproductive
hormones [19], which have a physiological impact on circulating uric acid [20]. In addition to the
above explanations, we acknowledge the possibility that the association of SSB intake with uric acid in
girls may be confounded or modified by the effect of menstrual cycle hormones.

Nonanoate also marked the SSB/blood pressure association in girls. Nonanoate is a flavoring agent
used predominantly in alcoholic drinks but may also be added to fruit-flavored beverages, such as the
sweetened fruit juices inquired about by our food frequency questionnaire (FFQ) instrument. While we
were not able to locate any published studies on associations of nonanoate with blood pressure,
methyl nonanoate (a compound that is not yet annotated in the chemical library of the laboratory
that performed the metabolomics analysis) interacts with neutrophil gelatinase-associated lipocalin
(NGAL), an iron-trafficking protein involved in renal development [21]. Given that the kidneys play
a key role in pressor systems, nonanoate-NGAL interactions is one possible pathway through which
nonanoate may influence blood pressure.

We also identified several metabolites associated with SSB intake that were not associated with
blood pressure, but are worth mentioning because they shed light biochemical pathways that may link
SSB intake to adverse health outcomes not yet detectable in adolescents. SSB intake was inversely related
to 5-methyl-THF, a relationship that may transpire from interactions between glucose metabolism
pathways and the folic acid cycle [22]. We also noted a positive association of SSB intake with:
phenylephrine, an exogenous adrenergic receptor agonist that causes vasoconstriction; deoxyuridine,
a nucleoside involved in DNA synthesis; and sn-glycero-3-phosphocholine, a phospholipid intermediate
in the catabolism of lecithin—an emulsifier and stabilizer used in beverages.

3.2. Boys

In boys, higher SSB intake was associated with higher fasting C-peptide, CP-IR, and leptin; higher
central adiposity (waist circumference); and higher blood pressure. While these relationships align with
an established literature on the detrimental effects of SSB consumption on obesity and cardiometabolic
risk [23], none of the three named SSB-related metabolites were associated with the aforementioned
health outcomes. The null findings in this regard may be due to our stringent criteria for retention of
metabolites in the LASSO regression.

Despite these null results, SSB intake was associated with three named metabolites in boys
that may provide insights into the physiological consequences of SSB consumption. SSB intake was
positively associated with 2-piperidinone, an organic compound isolated from black pepper used
as a reagent in synthesis of other organic compounds, including pharmaceuticals [24]; and catechol,
an inorganic compound found in cocoa powder and beverages [25]. On the other hand, SSB intake was
negatively associated with octanoylcarnitine, a medium-chain acylcarnitine that has been implicated
in metabolic conditions with altered fatty acid β-oxidation [26,27]. Some of these metabolites may be
related to SSBs directly through intake (i.e., 2-piperidone via coffee and hot cocoa consumption), or via
physiological effects of SSB consumption (i.e., glucose and fructose intake can interfere with fatty acid
oxidation [28], resulting in disturbances to intermediates of lipid metabolism like octanoylcarnitine).

3.3. Strengths and Weaknesses

This study has several strengths. First, we used bootstrap LASSO, a multivariate dimension
reduction technique that reduces the possibility of false positive findings, an ongoing challenge of ’omics
analyses. Second, we used research-quality measures of body composition and metabolic biomarkers to
assess outcomes of interest in this study. Third, in the Early Life Exposure in Mexico to Environmental
Toxicants (ELEMENT) project, we have rich data on key covariates including physician-assessed
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pubertal status and other lifestyle and dietary characteristics to control for confounding and assess for
effect modification.

However, our study is not without limitations. First, our sample size was relatively small,
which may have reduced our ability to detect associations, although we note that our N is comparable
to that of other untargeted metabolomics analyses carried out in children and adolescents [29,30].
Second, the SSB beverage group comprises beverages that contain more than just their sweeteners.
Thus, we cannot make firm conclusions regarding specific ingredients responsible for the SSB-metabolite
associations we detected. Third, use of a predictive algorithm like LASSO to identify metabolite
predictors of SSB intake does not reflect the hypothesized direction biological relationship (i.e., SSB intake
affects circulating metabolites). Thus, the procedure may not have appropriately accounted for the
covariance structure among the SSB-metabolite associations. However, LASSO assesses conditional
associations of each metabolite with the health outcomes (i.e., the relationship of each metabolite
with an outcome while adjusting for all other metabolites in the dataset), which to some extent,
handles intercorrelations among metabolites. Fourth, given that there are currently no standards on the
optimal selection factor for bootstrap LASSO, the one we selected (≥70) was arbitrary. Fifth, we cannot be
certain that SSBs are the definitive source of metabolites of interest. For example, many over-the-counter
cold medications and decongestants contain phenylephrine. Finally, the cross-sectional design impedes
our ability to ascertain temporality. Finally, assessment of the metabolites took place at a single
time-point and thus, we are not able to make inference on metabolic homeostasis.

4. Materials and Methods

4.1. Study Population

This study included children and adolescents in the ELEMENT project, a cohort of mother-child
dyads in Mexico City, Mexico [31]. The present analysis draws from a subset of the children (n = 250)
who were recruited in 2010 for a follow-up study if they were 8–14 years of age, and had adequate
volumes of archived prenatal biospecimens for laboratory assays. At research visits that took place in
2010, the children provided an 8-h fasting blood sample and participated in anthropometric assessment.
Our study sample included 242 children with dietary intake data on SSBs, anthropometry or metabolic
biomarkers, and adequate fasting serum volume for metabolomics analyses. The institutional review
boards of the Mexico National Institute of Public Health and the University of Michigan approved the
research protocols (IRB #HUM00034344).

4.2. Dietary Assessment

At the 8- to 14-year research visit, research staff administered an age-specific semi-quantitative
food frequency questionnaire (FFQ) to the children. The FFQ was adapted from the 2006 Mexican
Health and Nutrition Survey [32], and queried frequency of consumption of 109 food items during the
last seven days. Participants reported their frequency of consumption of standard portions of each
food or beverage ranging from “Never” to “≥6 times per day.”

Prior to formal data analyses, we combined the 109 food items into 35 food groups
(details previously published) [33], including the SSB group which comprised non-diet sodas, fruit juices
with added sugar (did not include natural fruit juices), other beverages with added sugar namely,
coffee, tea, and water. The components of this food group were selected based on the predominant use
of fructose and/or glucose as sweeteners, and previous findings in this cohort of a specific detrimental
effect of consumption of this specific SSB food group on obesity-related health outcomes during
childhood and adolescence [8] and young adulthood [34]. For each food group, we estimated total daily
energy intake of each food group using the United States Department of Agriculture Food Composition
Database [35] and adjusted each food group by total energy intake using the residual method [36].
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4.3. Untargeted Metabolomics Profiling

The Michigan Regional Comprehensive Metabolomics Resource Core (MRC2) carried out
untargeted metabolomic profiling in fasting serum collected from the participants at the 8- to 14-year
research visit. MRC2’s untargeted platform utilizes liquid chromatography and mass spectrometry
(LC/MS). Details on the laboratory procedures are included in Appendix A. The procedure yielded
9303 chemical features. After removal of redundant compounds and those with >70% of values missing,
the final data set comprised 938 unique compounds, 332 of which were annotated (named) metabolites
whose spectral peaks, fragmentation patterns, and retention times matched with compounds within
the laboratory’s chemical library. Upon receiving the data from the lab, we removed run-order batch
effects by adjusting batch-specific median deviances for the global median and used a non-parametric
LOESS smoothing curve to account for deviation over time, imputed values below the detection using
the K-nearest neighbor algorithm (K = 5) using the IMPUTE package in R, and standardized each
metabolite as a z-score using a rank-based inverse normal transformation.

Of note, in the multivariate dimension-reduction analysis, we included all 938 metabolites,
both named and un-named. Our rationale for taking this approach is that un-named compounds
represent reliably detected metabolites that contribute to the correlation structure among metabolites
in the dataset, and thus, including these metabolites in the analysis more closely reflects true biological
associations. However, our interpretation of results focuses on the annotated compounds, as we have
previously [37].

4.4. Adiposity and Conventional Biomarkers of Metabolic Risk

4.4.1. Adiposity

We measured the children’s weight (kg) on a digital scale (BAME Mod 420; Catálogo Médico),
height (cm) using a calibrated stadiometer (BAME Mod 420; Catálogo Médico), waist circumference
(cm) using a non-stretchable measuring tape (QM2000; QuickMedical), and the subscapular (SS) and
triceps (TR) skinfold thicknesses (mm) using calibrated skin calipers (Lange; Beta Technology) [38].

We used the weight and height measurements to calculate body mass index (BMI) [39], then used
the World Health Organization growth reference to calculate BMI z-score [40]. We used waist
circumference as a proxy for central visceral adiposity [39], and the sum (SS+TR) of the subscapular
and triceps skinfolds as a marker of subcutaneous adiposity [41].

4.4.2. Blood Pressure

Research staff used an automated blood pressure monitor (BpTRU; Coquitlam, BC) to measure
systolic (SBP) and diastolic blood pressure (DBP) five times. The intra-class correlation (ICC) between
the measurements were high (ICCSBP = 0.95; ICCDBP = 0.89), so we took the average of the values in
the statistical analysis.

4.4.3. Glycemia Biomarkers

We assayed all glycemia biomarkers in fasting serum. Glucose was measured enzymatically,
and C-peptide was assayed using an automated chemiluminescence immunoassay (Immulite 1000,
Siemens Medical Solutions). These biomarkers serve as assessments of glycemic control: fasting glucose
is an indicator of glucose metabolism, and C-peptide is a proxy for insulin secretion [42]. We measured
leptin from serum using a radioimmunoassay (Millipore).

4.4.4. Lipid Profile

We measured total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C)
in peripubertal fasting serum samples (mg/dL) using a biochemical analyzer (Cobas Mira



Metabolites 2019, 9, 100 10 of 15

Plus, Roche Diagnostics), and calculated low-density lipoprotein cholesterol (LDL-C) as:
Total cholesterol − HDL-C − (Triglycerides/5).

4.5. Covariates

At enrollment, mothers reported on age, reproductive history, lifestyle and sociodemographic
characteristics. At the peripubertal visit, a trained pediatrician assessed each child to determine
Tanner stage on a scale of 1 (no development) to 5 (full development) for genital (boys), breast (girls),
and pubic hair (both) development [43]. We then dichotomized pubertal status as pre-pubertal vs.
pubertal: boys were classified as pubertal if they received an assessment of Tanner stage >1 for genital
or pubic hair development, and girls were classified as pubertal if they received an assessment of
Tanner stage >1 for breast or pubic hair development [44]. At this visit, the child (with proxy-assistance
from the accompanying caregiver when necessary) completed a validated interviewer-administered
questionnaire that queried the amount of time he/she spent engaged in moderate-to-vigorous physical
activities each week [45]. For the analysis, we parameterized physical activity as quartiles of total
hours per week as we have in previous studies [33].

4.6. Data Analysis

Prior to formal analysis, we examined bivariate associations of total energy-adjusted SSB intake as
a continuous variable across background characteristics of the study sample. This step, in conjunction
with our a priori knowledge of determinants of metabolic risk in youth, informed our selection of
covariates for multivariable models. Due to known sex-specific differences in metabolism in the age
range of our study sample [44], as well as sex-specific effects of dietary intake on health outcomes in
this population [33], we implemented all models separately for boys and girls.

We carried out the main analysis in three steps. First, we examined associations of
quartiles of SSB intake (independent variable) with the adiposity indicators and conventional
metabolic biomarkers (dependent variables) to ascertain relationships of SSB intake with the health
outcomes. Next, we identified metabolite biomarkers of SSB intake using LASSO regression [46].
Finally, we examined whether the metabolites of interest are also associated with health outcomes
“predicted” by SSB intake in the first step. We describe each step in detail, below.

In the first step of our analysis, we examined sex-specific associations of quartiles of SSB intake
with the conventional biomarkers of glycemia, adiposity, and blood pressure using linear regression
models that accounted for the child’s age and pubertal status. In the models, we interpreted the
estimates for the 2nd, 3rd, and 4th quartiles of intake vs. the 1st quartile as the reference, and also
tested for a linear trend by entering an indicator for quartiles of SSB intake as a continuous variable.
In this analysis, we considered a relationship to be of interest for further exploration in downstream
analysis if the P-trend across the SSB quartiles <0.10.

In the second step, we identified metabolite biomarkers of SSB intake using LASSO regression [46].
In the LASSO model, we included all 938 metabolites in the model as predictors, and entered quartiles
of SSB intake as the outcome. In the context of association analysis (as is the case here), the direction of
the predictor/outcome relationship is exchangeable such that statistical methods to unveil associations
are invariant to conceptual relationships. Thus, we capitalized on this proven dimension-reduction
technique to identify the strongest SSB/metabolite associations. LASSO is a regularized regression
technique that detects the strongest predictor-outcome signals from a high-dimensional and correlated
set of predictors [46]. The key feature of LASSO is the imposition of a tuning parameter on model
coefficients (β, representing the relationship between a given set of metabolite and SSB intake) while
conditioning on all other metabolites and adjusting for the covariates (age and pubertal status).
The tuning parameter shrinks weak or null βs to zero and effectively removes them from the predictive
model [47]. We used 10-fold cross validation to identify the threshold below which a beta estimate
is shrunk to 0 (based on lowest model validation error). We then conducted bootstrap LASSO,
which entailed creation of 100 copies of the original metabolite data set, and applying the LASSO
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procedure to each resampled dataset. We then identified metabolites of interest as those that were
selected by LASSO at least 70% of the time (i.e., selection factor ≥70) [48]. We used this arbitrary
threshold based on a relaxation of the more stringent one used by Bach et al. (selection factor ≥70) [48]
due to lower model error, and to capture a larger number of annotated compounds in the final
predictive model for interpretability purposes.

In the third step, we investigated whether the SSB-associated metabolites are also associated with
the adiposity indicators and metabolic biomarkers that were associated with SSB intake in the first
step. Here, we used multivariable linear regression models that accounted for age and pubertal status.
We considered a metabolite to be associated with a conventional biomarker of interest if the P-value for
the β coefficient for the relationship between the metabolite and the biomarker was <0.10.

We also carried out sensitivity analysis where we further adjusted multivariable models
(i.e., those in Steps 1 and 3) for physical activity level, parity, and maternal smoking during pregnancy,
as each of these may be associated with dietary intake as well as obesity-related health outcomes.
In addition, based on our results, we also further explored the impact of adjustment for total energy
adjusted fish and organ meat intake, as each of these foods were on related biochemical pathways
identified in the main analysis. Inclusion of these variables did not materially change our results,
thus we did not include them in the final models for the sake of parsimony and statistical power.

Unless otherwise stated, we performed statistical analyses using SAS 9.4 (Cary, NC, USA).

5. Conclusions

In this study of Mexican children and adolescents, we identified urate (uric acid) and nonanoate
as metabolites associated with SSB intake that were also associated with higher blood pressure in
girls. These findings may have ramifications for understanding the pathophysiology of obesity-related
conditions that manifest with a cluster of cardiometabolic disturbances that are of particular concern in
Hispanic populations (i.e., non-alcoholic fatty acid disease) due to evidence of synergistic gene-diet
interactions [49]. Future prospective studies are necessary to establish temporal relations of SSB intake,
metabolites, and conventional metabolic risk biomarkers in this cohort, as well as other populations.
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Appendix A Liquid Chromatography–Mass Spectrometry (LC–MS) Methods

Appendix A.1 Chemicals and Reagents

Water, methanol, acetonitrile, formic acid, ammonium bicarbonate, ammonium hydroxide solution,
and ammonium acetate (99.999%) were purchased from Sigma-Aldrich (St. Louis, MO) and were
liquid chromatography–mass spectrometry (LC–MS) grade except as noted.

Appendix A.2 Sample Preparation

Plasma samples were thawed on ice prior to processing. For deproteinization in preparation
for LC-MS analysis, 100 µL of plasma was combined with 400 µL 1:1:1 methanol:acetone:water

http://www.mdpi.com/2218-1989/9/5/100/s1
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containing the following internal standards (l-(D4) thymine, l-[15N] anthranilic acid (each 5 uM);
L-(15N)2 tryptophan, gibberellic acid, l-epibrassinolide (each 20 uM) for metabolites recovery assesment.
The sample was vortexed, then centrifuged (10 min at 15,000 × g). For reversed phase (RPLC)-MS
analysis, the supernatant was transferred to a clean vial and dried under a stream of nitrogen gas.
The dried sample was reconstituted 50 µL MeOH: Water (50:50) containing zeatin (1 uM) as an
instrument performance standard. All samples were processed in random order and were assigned to
a random LC–MS run order using a computerized algorithm.

Appendix A.3 Optimized LC–MS Methods

For reversed-phase liquid chromatography and mass spectrometry (RPLC–MS), samples were
analyzed on an Agilent 1200 LC/6530 quadrupole time of flight (qTOF) MS system (Agilent Technologies,
Inc., Santa Clara, CA USA) using the Waters Acquity HSS T3 1.8 µ column (Waters Corporation,
Milford, MA). Each sample was analyzed twice, once in positive and once in negative ion mode.
For positive ion mode runs, mobile phase A was 100% water with 0.1% formic acid and mobile phase
B was 100% methanol with 0.1% formic acid. For negative ion mode runs, the formic acid was replaced
with 0.1% (m/v) ammonium bicarbonate. The gradient for both positive and negative ion modes was
as follows: 0–0.5 min 1%B, 0.5–2 min 1–99%B, 2–6 min 99%B, 6–6.1 min 99–1%B, hold 1%B until 9 min.
The flow rate was 0.35 mL/min and the column temperature was 40 ◦C. The injection volume for
positive and negative mode was 5 µL and 8 µL, respectively. Mass spectrometry was performed by
electrospray ionization with an Agilent Jetstream ion source, with full-scan mass spectra acquired over
the m/z range 50–1500 Da. Source parameters were: drying gas temperature 350 ◦C, drying gas flow
rate 10 L/min, nebulizer pressure 30 psig, sheath gas temp 350 ◦C and flow 11 L/min, and capillary
voltage 3500 V, with internal reference mass correction.

Appendix A.4 Data Analysis Workflow

Chromatographic peaks that represent metabolites—which are henceforth termed
“features”—were detected in the data using the automated “Find by Feature” algorithm in Agilent
Masshunter Qualitative Analysis Software. Feature alignment between samples was performed using
an in-house software package called “Binner” (methods paper currently under review), with annotation
matching to 0.05 minutes and 2 or 3 mDa mass accuracy. Binner groups features into bins based
on similarity of retention time and computes correlation of feature intensities across all samples,
followed by hierarchical clustering to subdivide bins into smaller clusters. Additionally, the software
computes a matrix of mass differences on a per-bin basis and compares these to a list of known adducts
and neutral losses. The application of Binner resulted in a ~30% decrease in features from 6000 to
4200 after removal of signals likely to be adducts, fragments, dimers, and isotopes. We then examined
a correlation matrix of retention times for the remaining 4200 features and identified feature clusters
based on gaps in retention time of >0.05 minutes. Within each cluster, we selected the most intense
peak to retain as a unique metabolite feature. This procedure resulted in the final data set comprising
938 unique metabolites.

Once we arrived at the final list of 938 unique features, we annotated the dataset by using MRC2’s
in-house library of 800 known metabolite standards previously analyzed under identical LC–MS
conditions. Our in-house library offers Level 1 confidence according to proposed reporting standards
by the Metabolomics Standards Initiative (MSI) [50]. Features that were not identified via our in-house
library were searched for possible matches using the online Metlin database (http://metlin.scripps.edu)
and Human Metabolome Database (HMDB; http://www.hmdb.ca), both of which confer Level 3
confidence. In many cases, the database searches resulted in multiple possible matches for each feature
within a 10 ppm mass error window. Metabolite matches were ranked in order of ascending mass error,
and among matches with equivalent mass error, in order of ascending Metlin or HMDB identification
(ID) number. At this point, remaining features (n = 606) which did not match any database entries were
not considered for further evaluation and denoted as an unannotated feature in the analytic dataset.

http://metlin.scripps.edu
http://www.hmdb.ca
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