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Abstract

Aldose reductase (AR: human, AKR1B1; mouse, AKR1B3), the first enzyme in the polyol

pathway, plays a key role in mediating myocardial ischemia/reperfusion (I/R) injury. In ear-

lier studies, using transgenic mice broadly expressing human AKR1B1 to human-relevant

levels, mice devoid of Akr1b3, and pharmacological inhibitors of AR, we demonstrated that

AR is an important component of myocardial I/R injury and that inhibition of this enzyme pro-

tects the heart from I/R injury. In this study, our objective was to investigate if AR modulates

the β-catenin pathway and consequent activation of mesenchymal markers during I/R in the

heart. To test this premise, we used two different experimental models: in vivo, Akr1b3 null

mice and wild type C57BL/6 mice (WT) were exposed to acute occlusion of the left anterior

descending coronary artery (LAD) followed by recovery for 48 hours or 28 days, and ex-

vivo, WT and Akr1b3 null murine hearts were perfused using the Langendorff technique

(LT) and subjected to 30 min of global (zero-flow) ischemia followed by 60 min of reperfu-

sion. Our in vivo results reveal reduced infarct size and improved functional recovery at 48

hours in mice devoid of Akr1b3 compared to WT mice. We demonstrate that the cardiopro-

tection observed in Akr1b3 null mice was linked to acute activation of the β-catenin pathway

and consequent activation of mesenchymal markers and genes linked to fibrotic remodeling.

The increased activity of the β-catenin pathway at 48 hours of recovery post-LAD was not

observed at 28 days post-infarction, thus indicating that the observed increase in β-catenin

activity was transient in the mice hearts devoid of Akr1b3. In ex vivo studies, inhibition of β-

catenin blocked the cardioprotection observed in Akr1b3 null mice hearts. Taken together,

these data indicate that AR suppresses acute activation of β-catenin and, thereby, blocks

consequent induction of mesenchymal markers during early reperfusion after myocardial

ischemia. Inhibition of AR might provide a therapeutic opportunity to optimize cardiac

remodeling after I/R injury.
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Introduction

Acute myocardial infarction (AMI) remains the leading cause of morbidity and mortality

worldwide [1]. The extent of myocardial tissue loss (infarct size) is a key determinant of the

prognosis of patients with AMI. Timely reperfusion is the most effective way to limit infarct

size in patients with AMI [2]. However, efficacy of reperfusion therapy is impaired by factors

such as the severity of ischemia, inadequate reflow, presence of residual stenosis, coronary

reocclusion, and reperfusion injury [3–5]. In the quest for novel therapeutic strategies for

acute myocardial ischemia/reperfusion (I/R) injury, we have focused on interventions that

modulate substrate metabolism [6, 7]. In this context, we and others demonstrated that the

aldose reductase (AR) pathway contributes to myocardial I/R injury and that the inhibition of

AR protects hearts from I/R damage [8–13]. Earlier studies showed that increased flux via AR

during I/R leads to ATP depletion and increased mitochondrial oxidative stress, thereby signif-

icantly impeding the recovery process in the heart [9, 14, 15]. We and others demonstrated

that pharmacological inhibition of AR improves functional recovery and reduces myocardial

I/R injury [11, 13, 16, 17].

The Wnt/β-catenin pathway plays an important role in various biological processes includ-

ing development, differentiation, proliferation and tissue homeostasis [18, 19]. Activation of

the Wnt pathway culminates in the transcription of Wnt target genes via β-catenin. Wnt pro-

teins form a family of highly conserved secreted signaling molecules. Upon binding of Wnt to

the seven-transmembrane domain spanning frizzled (Fzd) receptor and the co-receptor lipo-

protein receptor-related 5/6 (Lrp5/6) proteins, GSK3β is inactivated, thereby preventing the

breakdown of β-catenin. After stabilization and accumulation, β-catenin enters the nucleus,

where it binds to LEF/TCF transcription factors to activate the transcription of Wnt target

genes [20, 21]. Several studies have shown involvement of the canonical Wnt/β-catenin signal-

ing pathway in the pathogenesis of I/R injury [22–24] and that phosphorylation of GSK3β is a

key determinant of β-catenin activation [25–27]. Since we previously demonstrated that AR

alters the phosphorylation state of GSK3β during I/R [14], here we investigated if AR modu-

lates β-catenin activity and consequent activation of mesenchymal markers during IR in the

heart. We used two distinct models to study whether AR affects myocardial β-catenin and con-

sequent activation of mesenchymal markers during I/R: a transient occlusion and reperfusion

of the left anterior descending coronary artery (LAD) in vivo model of I/R, and an ex vivo
intact heart preparation subjected to I/R. We employed mice devoid of AR (Akr1b3 null mice)

to determine whether altered flux via AR influences myocardial β-catenin during I/R. Our

results indicate that genetic deletion of Akr1b3 drives acute induction of mesenchymal mark-

ers, at least in part via induction of the β-catenin pathway during I/R in the heart.

Results

Akr1b3 deletion reduces infarct size and improves functional recovery

after I/R

We subjected male WT and Akr1b3 null mice to left anterior descending coronary artery

(LAD) occlusion for 30 min, followed by 48 hours of reperfusion (LADp48h). The expression

or absence of AKR1B3 in WT and Akr1b3 null mice, respectively, was verified by Western blot

(Fig 1A). Infarct size, as a percent of area at risk, measured at 48 h post I/R, was significantly

lower in Akr1b3 null mice vs. WT mice (Fig 1B), but there were no differences in area at risk

between the two genotypes (data not shown). Plasma LDH levels, a marker of myocardial

injury, were significantly lower in mice devoid of Akr1b3 vs. WT mice at 48 h post I/R (Fig

1C). Echocardiographic measurements revealed significant differences in fractional shortening
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Fig 1. Cardioprotection in Akr1b3 null I/R mice. Male WT and Akr1b3 null mice were subjected to LAD occlusion followed by

reperfusion at age 4 months. (A) Western blot analysis of AKR1B3 in heart tissue lysate at 48 h post-LAD was performed and

normalized to levels of B-ACTIN, N = 4 mice/genotype. (B) Akr1b3 null mice exhibit decreased infarct area (expressed as in % of

infarct area/area at risk) after LAD/reperfusion vs. WT mice (n = 10/group; * p<0.05 vs. WT LAD) with no genotype differences in area

at risk (data not shown). (C) Total plasma LDH levels were measured at 48 h post-LAD, N = 6 mice/group. (D) Changes in %

fractional shortening (FS) with representative echocardiographic image. (E) % of fractional area change (FAC), N = 10/group. (F) The

ratio of heart weight to body weight was measured, N = 10/group. Error bars represent mean ± SEM. * p<0.05, unless otherwise

noted.

https://doi.org/10.1371/journal.pone.0188981.g001
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and fractional area change in Akr1b3 null mice compared to WT mice (Fig 1D and 1E). Car-

diac hypertrophy, assessed by measuring the heart weight to body weight ratio, revealed no sig-

nificant differences in Akr1b3 null vs WT mice hearts at 48 h post I/R (Fig 1F). Taken together,

these results demonstrate improved functional recovery and reduced markers of injury in

Akr1b3 null mice hearts compared to WT mice after I/R.

Upregulation of TGFB2 in Akr1b3 null mice hearts after I/R

The early phase of recovery post-LAD ligation involves an inflammatory response with the

release of cytokines. Hence, we quantified the expression of prominent cytokines involved in

wound healing responses, including Tnfα, Tgfb1and Tgfb2via qRT-PCR [28, 29]. There were

no differences in expression of Tnfa or Tgfb1between the two mouse groups but we observed

�4-fold higher Tgfb2mRNA levels in Akr1b3 null vs. WT mice LADp48h mice (Fig 2A). Con-

sistent with changes in mRNA levels, TGFB2 protein levels were upregulated by�3-fold in

mice hearts devoid of Akr1b3 compared to WT mice (Fig 2B). Since studies have implicated

TGFB2 in modulating β-catenin expression, we examined protein expression of β-catenin in

WT and Akr1b3 null mice hearts [21, 30]. Western blot analysis of these heart tissues showed

an�3-fold increase in β-catenin protein expression in Akr1b3 null mice vs. WT mice post-I/R

(Fig 2C). These results indicate that deletion of Akr1b3 enhances TGFB2 and β-catenin expres-

sion after I/R in mice hearts.

Mesenchymal activation in mice hearts devoid of Akr1b3

Loss of cardiomyocytes during ischemia is compensated for by the activation of existing fibro-

blasts or through the trans-differentiation of endothelial cells to mesenchymal cells via endo-

thelial mesenchymal transition (EndMT) [31–33]. Several studies have implicated TGFB2 in

the EndMT pathway [31–33]. Canonical Wnt signaling is involved in EndMT-mediated car-

diac fibrosis and stabilized β-catenin serves as a marker for activated Wnt signaling [22, 31,

34]. Hence, we investigated whether the increase in TGFB2 and β-catenin observed in Ak1br3
null mice hearts (Fig 2A–2C) leads to EndMT transition.

EndMT is characterized by reduction of endothelial markers platelet/endothelial adhesion

molecule (Pecam1, cadherin 5 (Cdh5) and claudin 5 (Cldn5), with concomitant activation of

mesenchymal markers (α-smooth muscle actin (Smaa), Transgelin (Sm22), Vimentin (Vim),
S100a4 (Fsp1) and fibronectin 1 (Fn1) and the related EndMT transcription factors (Snai1 and

Snai2). Analysis of the transcription factors involved in EndMT, Snai1 and Snai2 revealed

upregulation of Snai1, but not Snai2 in hearts devoid of Akr1b3 (Fig 3A). We observed

increased expression of all mesenchymal markers, Smaa, Sm22, Vim and Fsp1, except Fn1 (Fig

3B) in Akr1b3 null hearts. Analysis of endothelial markers showed no differences in gene

expression of Pecam1, Cdh5 and Cldn5 (Fig 3C). To confirm these results in vitro, we employed

mouse primary aortic endothelial cells (MAEC), which were transfected with siRNA against

Akr1b3 (Abr1b3 siR). Scrambled siRNA was used as a negative control (scr siR). 90% knock-

down efficiency was achieved in these cells (Fig 3D). These cells were then subjected to 30 min

of hypoxia followed by 1 h reperfusion (H/R). qRT-PCR analysis showed a significant increase

in EndMT transcription factor Snai2 (Fig 3E), a significant increase in Smaa, but not in the

other mesenchymal markers (Fig 3F) and no reduction in the endothelial markers (Fig 3G).

Taken together, these results ruled out the possibility of classical EndMT processes, both in
vitro and in vivo, yet distinct mesenchymal activation was observed in cells depleted of Akr1b3.

Furthermore, increased expression of mesenchymal markers (Smaa, Sm22, Vim, Fsp1) sug-

gested an activated fibroblast phenotype in endothelial cells derived from mice devoid of

Akr1b3.
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Induction of genes linked to fibrosis in hearts devoid of Akr1b3

Activated fibroblasts are the primary source of increased extracellular matrix, which contrib-

utes to tissue fibrosis [35, 36]. The extracellular matrix of myocardium is largely composed

of structural proteins, type I and III collagens, which not only provide mechanical support

but also force for contraction. The homeostasis of collagens is maintained by the delicate

balance between their synthesis and degradation via matrix metalloproteinases (MMPs). The

Fig 2. Upregulation of TGFβ2/β-catenin in Akr1b3 null mice 48 h post-I/R. (A) qRT-PCR on Tnfα, Tgfb1 and Tgfb2

transcripts from RNA isolated in the heart tissues, N = 5 mice/group. (B) Western blot of TGFB2 protein expression normalized

to Beta-actin, N = 4 mice/group (C) Western blot of β-catenin protein expression normalized to Beta-actin, N = 4 mice/group.

Error bars represent mean ± SEM. * p<0.05, unless otherwise noted.

https://doi.org/10.1371/journal.pone.0188981.g002
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Fig 3. Mesenchymal activation in Akr1b3 null mice hearts 48 h post-I/R. RNA isolated from heart tissues from mice subjected to

I/R. (A) qRT-PCR on EndoMT transcription factors- Snai1 and Snai2. (B) qRT-PCR on mesenchymal markers as indicated. (C)

qRT-PCR on endothelial markers as indicated. MAECs transfected with scrambled and siR against Akr1b3 and probed for (D)

Akr1b3. € qRT-PCR on EndoMT transcription factors as indicated. (F) qRT-PCR on mesenchymal markers as indicated. (G)

qRT-PCR on endothelial markers as indicated. N = 3 mice/group. Error bars represent mean ± SEM. * p<0.05, unless otherwise

noted.

https://doi.org/10.1371/journal.pone.0188981.g003
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β- catenin pathway has been linked to induction of genes encoding collagens and MMPs

[37–39]. We next examined if collagens and MMPs were altered in mice hearts devoid of

Akr1b3 post- I/R. qRT-PCR analysis on Type I and III collagens (Col1a1, Col1a2, Col3a1)

and MMPs (Mmp2 and Mmp9) revealed an increase in both types of collagens as well as

MMPs in mice hearts devoid of Akr1b3 after I/R (Fig 4A). Further, we observed increases in

RUNX2 and MMP2 protein expression in Akr1b3 null mice hearts (Fig 4B). These results

suggest that in mice hearts devoid of Akr1b3, increased expression of collagens and MMPs

may contribute to remodeling responses after I/R.

Lack of changes in fibrotic genes at 28 days post infarction

Post-infarction remodeling is a complex process in which cardiomyocyte loss is accompanied

by cellular hypertrophy and fibrosis. Initially an adaptive response, extended cardiac fibrosis

can lead to maladaptive remodeling and heart failure. Our results indicate that there was no

evidence of hypertrophy in either WT or Akr1b3 null mice hearts, but that there was induction

of genes linked to fibrotic remodeling in mice hearts devoid of Akr1b3. If ablation of Akr1b3

Fig 4. Increased expression of fibrotic factors in Akr1b3 null I/R mice hearts. RNA isolated from heart tissues from mice

subjected to I/R. (A) qRT-PCR on collagens (Col1a1, Col1a2, Col3a1) and MMPs (Mmp2 and Mmp9), N = 5 mice/group. (B) Western

blot analysis on RUNX2 and MMP2 expression in heart tissues subjected to I/R. N = 4/group. Error bars represent mean ± SEM.

* p<0.05, unless otherwise noted.

https://doi.org/10.1371/journal.pone.0188981.g004
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results in fibroblast activation and induction of genes linked to fibrotic remodeling, we sought

to test whether this activation and induction persisted even after a month of infarction, with-

out culminating in fibrosis. Hence we assessed echocardiographic measurements on WT and

Akr1b3 null mice 28 days post-LAD occlusion/recovery. We found a significant increase in

fractional shortening and fractional area change measurements in Akr1b3 null LAD mice com-

pared to WT, which is consistent with overall superior cardiac function in the hearts devoid of

Akr1b3 (Fig 5A). Further, RNA analysis on fibrotic marker expression failed to show any dif-

ferences between WT and the Akr1b3 null mice on day 28 post-LAD (Fig 5B). Further, β-cate-

nin and TGFB2 protein levels were comparable between both groups of mice at day 28 post-

LAD (Fig 5C). We measured the total collagen levels in heart tissues 48 hrs and 28 days post

LAD in both WT and mice devoid of Akr1b3 and found no significant differences in collagen

levels (Fig 5D). Taken together, these results indicate that changes in β-catenin, TGFB2 and

fibrotic markers were unique to early phase of recovery (48 hours) in Akr1b3 mice, and not

sustained at the later phase of recovery (28 days).

β-catenin inhibition ablates the beneficial effects of deletion of Akr1b3 on

expression of mesenchymal markers in the heart in I/R

To confirm the mesenchymal activation observed in mice devoid of Akr1b3 was due to

enhanced β-catenin levels, we employed IWR-endo, an inhibitor of Wnt-β catenin pathway

[40]. Using an ex-vivo isolated perfused heart for model of I/R, Akr1b3 null mice hearts were

treated with either vehicle or IWR-endo during the 30 min of ischemia and 60 min of reperfu-

sion. qRT-PCR analysis from the RNA extracted from heart tissues revealed that IWR-endo

treatment reduced the expression of mesenchymal and fibrotic markers after I/R in these mice

hearts when compared to the vehicle treatment (Fig 6A and 6B). Further, to determine if car-

diac fibroblasts (CF) at key site for the observed mesenchymal markers changes, primary CF

were isolated from WT and Akr1b3 null mice and subjected to H/R in the presence of recombi-

nant TGFB2 protein. Treatment of IWR in CFs was used to establish the link to β-catenin.

Data presented in Fig 6C shows no significant changes in mesenchymal markers in WT and

Akr1b3-/- CF, while treatment with TGFB2 protein upregulated the mesenchymal markers.

IWR treatment did not lead to activation of mesenchymal markers in WT and Akr1b3-/- CFs

(Fig 6C). These results reveal that mesenchymal activation in Akr1b3-/-, is in part, via TGFB2

in CFs.

Discussion

Post infarct remodeling in the heart is a complex process, where I/R-associated necrosis and

apoptosis of cardiomyocytes is compensated by processes such as cardiomyocyte hypertrophy,

transdifferentiation of endothelial to mesenchymal cells (EndMT) and fibroblast activation.

Akr1b3 null mice failed to show any hypertrophy. Our studies revealed that enhanced β-cate-

nin signaling at an early time point of reperfusion in mice devoid of Akr1b3 was beneficial to

hearts that had been subjected to I/R. The increased TGFB2 and β-catenin protein suggested

the EndMT pathway as a potential mechanism. However, this possibility was ruled out as

endothelial markers were not downregulated.

Akr1b3 null mice hearts displayed enhanced expression of mesenchymal markers, sugges-

tive of fibroblast activation. Several studies had suggested the role of β-catenin in fibrosis and

mesenchymal activation as a key driver of wound healing [41–44]. Published studies have

shown that I/R can induce formation of epicardium-derived cells, which then differentiate

into mesenchymal cells expressing fibroblast and smooth muscle cell markers [45, 46].
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Fig 5. Absence of changes in expression of fibrotic factors in Akr1b3 null I/R mice hearts after 28 days of recovery. Mice

were subjected to LAD and studies were done 28 days post infarction recovery. (A) Echocardiographic measurements made in WT

and Akr1b3 null mice. Functional measurements, fractional shortening (FS) and fractional area change (FAC) are expressed as %,

with representative image, N = 10 mice/group. (B) qRT-PCR on collagens (Col1a1, Col1a2, Col3a1) and MMPs (Mmp2 and Mmp9)

from heart tissue, N = 5 mice/group. (C) Western blot from heart lysates for detection of β-catenin and TGFB2 normalized to Beta-

Actin, N = 4 mice/group. (D) Total collagen levels in hearts from mice subjected to LAD post 48 h and 28 days of recovery, N = 4 mice/

group. Error bars represent mean ± SEM. * p<0.05, unless otherwise noted.

https://doi.org/10.1371/journal.pone.0188981.g005
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Consistent with these findings, our data show that the mesenchymal markers are upregulated

during I/R in the Akr1b3 null hearts and that these increases require β-catenin.

Activation of β-catenin in the mice hearts devoid of Akr1b3 during I/R in our study could be

attributed to either TGFB2 or GSK3B phosphorylation or both. Studies have shown that activa-

tion of β-catenin could be due, in part, to phosphorylation of GSK3β. The phosphorylation of

Fig 6. β-Catenin pathway inhibitor reverses the Akr1b3 null mediated protection and mesenchymal marker expression.

Mice hearts were subjected to ex vivo I/R using Langendorff technique. (A) qRT-PCR on heart tissues for mesenchymal markers as

indicated, N = 3. (B) qRT-PCR on heart tissues for collagen and matrix metalloproteinases as indicated, N = 3 mice/group. (C)

qRT-PCR on primary CF for mesenchymal markers treated either with recombinant TGFB2 or IWR as indicated, N = 5/group. Error

bars represent mean ± SEM. * p<0.05, unless otherwise noted.

https://doi.org/10.1371/journal.pone.0188981.g006
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GSK3β by p-Akt destabilizes GSK3β complex, resulting in the dissociation of β-catenin from

the GSK3β complex. This process leads to nuclear translocation of β-catenin [26, 47]. Earlier

studies in rats have shown that the cardioprotection afforded by phyllanthus emblica was linked

to increasing levels of p-Akt and β-catenin, as well as increased GSK3β phosphorylation [25, 27,

48]. Since our earlier studies demonstrated reduced Tyr216 GSK3β phosphorylation during I/R

in Akr1b3-/- hearts compared to WT hearts (14), here we focused on the role of TGFB2. Since

TGFB2 has been implicated in β-catenin activation and cellular plasticity [21, 30], it is conceiv-

able that activation of β-catenin in hearts devoid of Akr1b3 could also be due to increases in

TGFB2. Our studies in cardiac fibroblasts from WT and Akr1b3 null mice subjected to H/R

revealed only modest activation of mesenchymal markers in the presence of TGFB2, indicating

other mechanisms are also contributing to mesenchymal activation. Specifically, in addition to

TGFB2, secreted factors from other cells in heart may play an important role in activation of

mesenchymal markers in our study.

The impact of mesenchymal activation on cardiac remodeling post infarction may, in part,

explain reduced I/R injury in Akr1b3-/- hearts. Repair mechanisms to manage tissue scaring

are essential for viable recovery after I/R. We believe β-catenin related changes may be of help

in reducing the tissue scar through mesenchymal activation. In our studies we show that CF

activation results in upregulation of both matrix metalloproteinases and collagens in Akr1b3-/-
hearts, key players that facilitate removal and replacement of necrotic tissue. Hence we posit,

in Akr1b3-/- mice, TGFB2 mediated mesenchymal activation may aid in the clearance of

necrotic tissue thereby reducing injury.

MMPs are involved in physiological as well as pathological processes, such as inflammation,

tumor metastasis and tissue remodeling [49]. Several studies have shown that activated MMPs

mediate injury to contractile apparatus as well as that they affect the structural proteins within

the intra- and extracellular matrix lattices [50–52]. Hence, inhibition of MMPs is considered

as a therapeutic strategy to improve functional recovery in the heart after I/R [53]. Though iso-

form-specific Mmp knockout (global) mice showed cardioprotection, inhibitor studies as well

as macrophage-specific MMP9 overexpression studies contradicted the earlier observations

[54, 55]. Such studies underscore the complexity and cell type-specificity of MMP actions,

both in development and in I/R in the adult heart. In this context, our studies demonstrated

acute increases in Mmp2, Mmp9, as well as collagenases, without increases in the total collagen

content in the mice hearts devoid of Akr1b3 in I/R. Hence our findings on MMP changes are

those in line with macrophage specific MMP9 overexpression mice and MMP9 inhibitor stud-

ies [54, 55].

Several studies point out the importance of prolonged structural alteration resulting in

fibrosis and heart failure. TGFB2 and β-catenin mediated changes in our studies are likely

related to acute structural alterations. Studies in the literature are mixed in regard to the role of

TGFB in I/R hearts, with some studies showing the detrimental effects of TGFB and others

showing cardioprotective effects of TGFB during I/R. [56–60] Likewise, studies in β-catenin

were also contradictory, regarding its role in I/R hearts. Nevertheless, several studies have

underscored the importance of β-catenin activation in reducing I/R injury either by reducing

oxidative stress or apoptosis [41–44]. We observed that the cardioprotective effects in Akr1b3
null mice in acute (48 hours) as well as extended periods of recovery (28 days) was linked to β-

catenin changes. Our study identifies that β-catenin-mediated mesenchymal activation is

linked to reduced myocardial I/R injury and that this pathway is downstream of the AKR1B3

pathway. In myocardial I/R, deletion of Akr1b3 modulates the myocardial β-catenin pathway

and consequent induction of mesenchymal markers as well as genes linked to fibrotic remod-

eling, thereby highlighting inhibition of the AKR1B3 pathway as a key strategy in protection

against myocardial injury after infarction.
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Materials and methods

Animals used

All animal experimentations were performed with the approval of the Institutional Animal

Care and Use Committee at New York University School of Medicine. Male Akr1b3 null mice-

and wild type littermate mice were used as described earlier [8, 61]. Surgical procedures related

to coronary artery ligation (LAD) were performed as previously described [8]. Briefly male

mice aged approximately 4 months of age were anesthetized and subjected to LAD/reperfu-

sion. LAD was ligated for 30 min and then blood flow was restored. Mice were allowed to

recover and measurements were made after 48 h or 28 days of recovery. For functional mea-

surements, mice were anesthetized with isoflurane via a nose cone and 2-dimensional echocar-

diography was performed on a Vevo 2100 System (Visual Sonics, Ontario, Canada). The left

ventricular end-diastolic and end-systolic dimensions were measured and percent fractional

shortening was calculated. Echocardiographic measurements were made before the surgery

and after 48 h or 28 days of recovery. Age and sex matched controls were used. Cohort of

hearts were used to assess area at risk and infarct area by 2,3,5-triphenyl-2H-tetrazolium chlo-

ride and Evan’s blue staining as published earlier [62, 63].

Ex-vivo I/R

Experiments were carried out as described earlier [8, 15]. Briefly, mice were anesthetized using

ketamine/xylazine. The hearts were rapidly excised and perfused through the aorta in a non-

recirculating mode, using an isovolumic perfusion system through Langerndorff technique

(LT) with Krebs-Henseleit buffer. Perfusion pO2>600 mm Hg was maintained in the oxygen-

ation buffer. IWR-endo was added at 10μM final concentration to the buffer, whereas DMSO

was added for vehicle control. Hearts were perfused with IWR or vehicle starting at 10 min

prior to initiation of ischemia for 30 min and continued throughout 60 min of reperfusion.

Lactate dehydrogenase (LDH) levels in plasma (in vivo) and effluents (ex vivo) were mea-

sured using a commercially available kit (Pointe Scientific, Canton, MI).

Cell culture

For transfection in mouse aortic endothelial cells, siRNA specific against Akr1b3 was obtained

from Life Technologies and were transfected using electroporation kit obtained from Lonza.

48 h post transfection experiments were conducted. For H/R experiment, cells were placed in

a hypoxia chamber (Biospherix, Lacona, NY) for 30 min of hypoxia (0.5% O2, 5% CO2) at

37˚C followed by 60 min of reoxygenation in 5% CO2 incubator (hypoxia/reoxygenation,

H/R). Cells were collected at the end of reoxygenation in ice cold PBS for further analysis.

Primary cardiac fibroblast isolation

Murine primary cardiac fibroblasts were isolated using the protocol mentioned [64]. Briefly,

mince the hearts in ice-cold PBS into a size of 1mm using scalpel. The minced tissue was

digested using digestion buffer (100U/ml collagenase II, 0.1% trypsin in HBSS buffer). Cells

isolated were then plated in fibroblast medium (DMEM/F12, 10%FBS, 100U/ml Pen-Strep, 1X

Glutamine, 100uM Ascorbic acid). Recombinant TGFB2 was purchased from R &D systems

and used at a concentration of 10ng/ml.

Collagen measurements

Total collagen levels from heart tissues subjected to LAD post 48hrs and 28 days were measured

using total collagen assay kit (Biovison). Briefly, tissues were homogenized in concentrated
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HCl and hydrolyzed at 120˚C for 3 h. Hydrolyzed sample were vacuum evaporated and sub-

jected to quantification as per manufacturer‘s protocol.

Western blot analysis

Total lysates from heart tissues or cells were prepared using lysis buffer (Cell Signaling). Tis-

sues/cells were crushed using beads for homogenization and were quantified. For the detection

of the protein following antibodies were used β-catenin, RUNX2 (cell signaling), TGFB2 (San-

tacruz), MMP2 (abcam), β-ACTIN (sigma) and ARKR1B3 (GeneTex). Antibodies were used

at a final concentration of 1μg/ml.

Realtime PCR

cDNA was prepared from whole heart tissues or cells using RNAeasy isolation kit (Qiagen).

cDNA was prepared using iScript cDNA synthesis kit (BioRad). Fast sybrgreen mastermix and

Taqman probes were used for quantification and data were normalized using 18s rRNA.

Details of the primers used are in S1 Table.

Statistics

All values are presented as the mean ± standard error of the mean. Data were analyzed by

unpaired two-tailed t-tests to assess the difference between groups as specified. A probability

value of� 0.05 was considered significant.

Supporting information

S1 Table. Primers used.

(PDF)
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