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Abstract
The genome sequence of more than 100 Pseudomonas syringae strains has been
sequenced to date; however only few of them have been fully assembled, including P. syrin-
gae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have

different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to

B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and

the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In
this study we report the complete sequence and annotation of P. syringae pv. syringae

UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available

sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes

DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158

chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes.

Bioinformatics analysis revealed the presence of genes potentially implicated in the viru-

lence and epiphytic fitness of this strain. We identified several genetic features, which are

absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango

trees: the mangotoxin biosynthetic operonmbo, a gene cluster for cellulose production, two

different type III and two type VI secretion systems, and a particular T3SS effector reper-

toire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences com-

pared to wild-type during its interaction with host and non-host plants and worms. Here we

report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to
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a woody plant host. Our data also shed light on the genetic factors that possibly determine

the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further

analysis on specific mechanisms that enable this strain to infect woody plants and for the

functional analysis of host specificity in the P. syringae complex.

Introduction
Pseudomonas syringae is a species of Gram-negative plant pathogenic bacteria that cause dis-
ease in many agriculturally important crops [1]. P. syringae infection provokes a variety of
symptoms, such as leaf spots and blights, soft rots, stem knots, scabs or cankers, and leads to
severe economic losses worldwide [2]. Based on plant pathogenicity test and host specificity,
strains belonging to the P. syringae complex are subdivided into 57 pathovars [3]. In contrast,
DNA hybridization segregated the P. syringae complex into at least nine different genomospe-
cies [4,5] and multilocus sequence typing (MLST) permitted the classification into 13 phy-
logroups, including 23 differentiated clades [6]. Notably, the broad host range of the species as
a whole contrasts with that of individual isolates, which can exhibit virulence potential in a
diverse range or in a limited set of plant hosts [7,8], but the host range of each individual isolate
frequently is not clear because experimental data about it are not available [9]. Moreover,
many pathovars associated with unrelated plants are grouped together, sometimes even within
the same clade [6]. Among plant pathogenic bacteria, P. syringae is an ideal system to study
how evolutionary forces shape adaptation to different hosts, which makes it an archetype of
plant-pathogen interactions [7,10].

To date, the complete genome or chromosome of at least 10 strains of P. syringae complex
have been sequenced and fully assembled (http://www.ncbi.nlm.nih.gov/assembly/organism/
136849/all/), including the three reference genomes, P. syringae pv. tomato DC3000 (DC3000),
P. syringae pv. syringae B728a (B728a) and P. syringae pv. phaseolicola 1448A (1448A) (http://
pseudomonas-syringae.org/) [11–13]. Additionally, more than 100 complete draft genomes of
high quality are also available (http://www.ncbi.nlm.nih.gov/assembly/organism/136849/all/).
DC3000, a pathogen that infects both tomato and Arabidopsis, is the causal agent of bacterial
speck disease. In addition, both B728a and 1448A infect bean, but show significantly different
phenotypes. B728a produces brown spot disease and exhibits an extensive epiphytic phase
[12]. 1448A is the seed-borne causal agent of halo blight for bean, which is a calamitous disease
in a number of first-world countries [13]. Many other P. syringae draft genome sequences exist
for isolates from a great diversity of host plant [10]. These genomes exhibit drastic differences
from each other, particularly in the presence/absence of virulence factors-associated genes
[10]. Of these, the major determinants of pathogenesis include the effector proteins secreted
through the type III secretion systems (T3SS) [14]. Once inside plants, effectors have the ability
to promote virulence by disrupting and suppressing host immune signals. The super repertoire
of effectors in the pangenome of the P. syringae species complex comprises 89 T3SS effector
(T3E) proteins grouped into 64 families with DC3000 having the largest number of validated
T3Es [10]. Furthermore, the host range of a given strain is thought to be mainly structured by
the repertoire of the T3Es it encodes [14]. Which combination of effectors and other virulence-
associated genes define the overall plasticity of host ranges is a question that remains
unanswered.

P. syringae pv. syringae includes a diverse collection of strains isolated from different envi-
ronments, many of them pathogenic on a variety of plant hosts, but showing different host
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range [6]. It also includes strains that cause mango tree apical necrosis, a disease affecting buds,
leaves, and stems that has important economic impact worldwide [15]. Its pathogenic arsenal
includes several T3Es and virulence factors, but the production of phytotoxins plays a crucial
role during symptom development. Phytotoxins promote virulence by disrupting host metabo-
lism and mimicking plant hormones [16]. Such is the case for mangotoxin, an antimetabolite
toxin encoded by several pathovars of P. syringae genomospecies 1, which is produced in the
early exponential growth phase and inhibits the enzyme ornithine N-acetyl transferase [17–
19]. Production of mangotoxin, which has been observed in almost all of the P. syringae pv.
syringae strains isolated from mango tissues, requires involvement of themgo andmbo oper-
ons, whose contribution to virulence has been mostly analyzed in the model strain UMAF0158
[18–21]. Interestingly, phylogenetic analyses grouped P. syringae pv. syringae strains isolated
from mango with mangotoxin-producing strains isolated from other plants [22]. Unlike herba-
ceous hosts, mango trees provide infection and overwintering sites, which are unique to woody
perennials. This characteristic is reflected in the lifestyle of mango-associated P. syringae strains
and the way they induce disease symptoms in plants [23]. In this regard, genome sequencing
and comparative genomics are useful tools for the identification of genetic elements of P. syrin-
gae strains that enable the colonization of woody plants as olive, horse chestnut, plum, maple
tree or kiwi [10,24–26], which will provide insight into the interactions of P. syringae and
woody plants.

Here, we report the complete sequence, annotation and bioinformatic analysis of the P. syr-
ingae pv. syringae UMAF0158 genome (chromosome and pPSS158 plasmid), highlighting the
virulence and plant interaction genetic background of this pathogenic bacteria on mango trees.
We also compared its genome with those of other 25 sequenced P. syringae strains from the P.
syringae complex with a special focus on P. syringae pv. syringae B728a, which shares approxi-
mately 91% of the UMAF1058 protein coding genes, but they grouped into different pv. syrin-
gae phylotypes [22] and clades of phylogroup 2 [6]. Our analysis highlights genetic differences
between these two strains, which may confer UMAF0158 its ability to infect mango trees. In
addition to the presence of the mangotoxin biosynthetic operonmbo, the UMAF0158 genome
differs from that of B728a in the codification of a cellulose synthase operon and in harboring
two additional secretion systems, i.e., a T3SS and a T6SS. Moreover, UMAF0158 displays a dif-
ferent repertoire of T3Es, which may be a determinant of its association with mango trees. Our
data provide the basis for further functional studies of the virulence mechanisms and host spec-
ificity determinants of the P. syringae pv. syringae UMAF1058, a representative strain of phylo-
type 1 of this pathovar and the clade 2a of phylogroup 2 of the P. syryngae complex, which is
pathogenic on a woody plant and whose complete genome sequence has been made available.

Materials and Methods

Bacterial Growth and DNAmethods
The bacterial strain UMAF0158 (CECT 7752) belonging to Pseudomonas syringae pv. syringae
and derivative mutants were routinely grown in KB medium with 48 h of incubation at 28°C
for further studies.

Ten colonies from a pure culture of UMAF0158 strain were inoculated on 100 ml of LB
medium and grown for 15 h at 28°C with shaking (150 r.p.m.). After this period, the OD600nm

of the culture was 1.8. Serial dilutions of this culture and plating on LB plates yielded 1.3×109

CFU/ml of pure bacterial culture. The rest of the culture was divided into 54 aliquots of 1.5 ml,
and DNA was extracted from all of the cultures using the Jet-Flex genomic DNA purification kit
(Genomed GmbH, Germany). DNA samples were collected together and further purified by
extraction with 1:1 phenol:chloroform and precipitated with 4 M NaCl and 13% PEG. DNA
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was suspended in 500 μl MilliQ H2O, and NanoDropmeasurements indicated 3.6 μg/μl (in
total 1800 μg of DNA) with an A260/A280 of 1.85. The extracted DNA was visualized in 1% aga-
rose after digestion with the restriction enzymes EcoRI and PstI.

Whole Genome Sequencing
The finished UMAF1058 genome was generated at the Beijing Genomics Institute (BGI-HK)
using an Illumina HiSeq 2500 system. Briefly, the isolated DNA was used to generate three
libraries of 500 bp, 2000 bp and 6000 bp, producing 1336, 1312 and 1352 Mb of raw data,
respectively. These were passed through a filtering pipeline that removed known sequencing
and library preparation artifacts. After data treatment, the SOAPdenovo 1.05 software package
[27,28] was used for sequence assembly and quality assessment. Assembly results were then
combined and mapped to the genome of P. syringae B728a, yielding to two scaffolds corre-
sponding to one chromosome and one plasmid. Finally, a PCR gap closure and three circle
PCR verification were performed to obtain the final complete sequence of chromosome and
pPSS158 plasmid. Further details of the whole process are described in S1 File.

Genomic data and annotation
The assembled genome of UMAF0158 was submitted to the NCBI Prokaryotic Genome Anno-
tation Pipeline for automatic annotation and manually reviewed. Gene locations and protein
products were generated from above annotation (ASN.1 file) using the script “asn2all” belong-
ing to the NCBI ToolKit (http://www.ncbi.nlm.nih.gov/toolkit). Genome sequences (DNA,
proteins and gene locations) of DC3000, B728a and 1448A were downloaded from the NCBI
complete bacterial genome repository (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria), while the
corresponding sequences of P. savastanoi pv. savastanoi strain NCPPB3335 were downloaded
from ASAP (https://asap.genetics.wisc.edu/asap/home.php; [29]. The rest of the P. syringae
genome sequences (DNA, proteins and gene locations) were downloaded from the NCBI draft
bacterial genome repository (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria_DRAFT/). Proteins
and gene locations were also generated from DNA sequences (fna files) using Glimmer v3.02
[30] and only very subtle differences were obtained. All genomes were downloaded on July 15,
2014. The accession numbers and references for all the genome sequence data used in this
work are summarized in S1 Table.

The UMAF0158 annotation of COGs was performed by aligning the set of predicted protein
sequences against the COG PSSM of the CDD (http://www.ncbi.nlm.nih.gov/cdd) using
rpsblast. Hits with an E-value� 0.001 were first retained. Then, only the best hit was selected
for each protein. The same procedure was used to assign COG categories to the repertoire of
predicted proteins of the B728a, DC3000 and 1448A strains. Predictions of horizontally trans-
ferred regions and prophages were computed using Alien Hunter 1.7 [31] and Prophage Finder
[32], respectively. T346Hunter [33] was used to identify secretion systems clusters.

Trinucleotide composition
The distribution of all 64 trinucleotides was determined for the whole chromosome and 2 kb
sub-windows. Then, the χ2 statistic of the difference between the trinucleotide composition of
each window and that of the whole chromosome was computed. Large values for χ2 in a given
window denote different trinucleotide compositions from the rest of the chromosome. Proba-
bility values were computed assuming uniform distribution of the DNA composition along the
genome. Because this assumption may have been incorrect, high χ2 values were interpreted as
indicators of unusual regions on the chromosome that require further investigation.
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Protein and DNA-based phylogenetic trees
Phylogenetic analyses were performed by multilocus sequence analysis using a concatenated
dataset for gapA, gltA, recA, rpoA and rpoB. Phylogenies trees were obtained using the Maxi-
mum Likelihood method based on the JTT (Jones-Taylor-Thornton) matrix-based model [34].
The percentage of trees in which associated taxa clustered in the bootstrap test (1000 replicates)
is shown next to the branches in the corresponding Figures [35]. Multiple alignments and evo-
lutionary analyses were conducted using MEGA5 software [36].

Comparative Genomics
Each of the predicted proteins in UMAF0158 was compared to those of the other P. syringae
strains using BLASTP (E-value� 1×10−10). The same procedure was used to compare pre-
dicted proteins in B728a with those in UMAF0158.

Distribution of T3Es
We performed BLASTP searches of the T3Es in http://pseudomonas-syringae.org/ against the
26 P. syringae proteomes. First, only hits with an E-value� 1×10−10 were retained. If no hits
were found for a given T3E, it was considered absent. For a given strain, when a gene product
was found to match with several T3Es, the one with the best E-value was selected. If there were
more than one T3E with the best E-value, the alignment with the greatest number of identities
was retained. Then, lengths of the query T3Es were compared to those of the alignments. We
labelled a potential T3E as incomplete when the alignment was� 25% smaller than the length
of the original T3E. Otherwise, the T3E was labelled as complete. Based on the presence of
complete and incomplete T3Es, a matrix was created and used to generate a dendrogram by
means of the R package APE [37]. Further information on this analysis can be found in S2
Table.

Circular Genome Visualization
Circular layouts were generated using Circos [38].

Accession Numbers
The finished genomic sequences of UMAF0158 have been deposited in GenBank under acces-
sion numbers CP005970 (chromosome) and CP005971 (plasmid pPSS158).

Laboratory procedures
Construction of T3SS Mutants. Single mutants in the orthologous genes of the T3SS (hrp

cluster) and a second rhizobial-like T3SS-2 (cluster rhc) and double mutants in both T3SSs were
constructed in UMAF0158, using the protocol described by Zumaquero et al [39]; the used prim-
ers are summarized in S3 Table. Additionally, the simple mutant in T3SS-1 (UMAF0158ΔhrpL)
was complemented using the replicative vector pBBR1 MCS-5 [20] containing the hrpL gene.
The primers used to confirm the integration were as follows: hrpL_HindIII_for (TTaaGCTtG-
CATGGTTATCGC) and hrpL_XbaI_rev (CGTtCtAGaTGGTTCCAGAC).

Bacterial motility. Swimming and swarming motility were tested in vitro using KB
medium diluted at 20%, and using a 0.3 and 0.5% agar concentration to determine both motil-
ity styles. All strains used in this experiment were inoculated in the center of the plate and incu-
bated at 28°C for 24 h while being careful to maintain the plates completely horizontal. The
diameter of displacement was measured in all plates. The experiment was performed three
times with five replicates for each.
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Toxicity in worms. To further investigate the toxicity of the parental strain and defective
derivative mutants, both simple and double mutants were tested in the Caenorhabditis elegans
model system. The worms were in the same larval stage for when egg preparation was com-
plete. Afterward, the eggs were incubated on Escherichia coliOP50 feeding plates at 20°C for
approximately 76 h. At the time point the egg preparations were made, 5 ml of LB liquid media
was incubated with the experimental strains used, which were previously incubated for 48 h at
28°C. The day after, 100 μl of the bacterial culture was added onto 6-well plates and incubated
again overnight at 30°C until a bacteria lawn formed. On the next day, the synchronized
worms were washed away from the feeding plates with M9 buffer and transferred to the bacte-
rial lawns in the 6-well plates (20–40 worms per well). The worms were counted after 24, 48, 72
and 96 h with the aid of a bifocal magnifier [40].

A complementary toxicity study was performed with Galleria mellonella. In this experiment,
UMAF0158 parental and simples and double T3SS mutants diluted 1:100 were inoculated
from an overnight culture in new liquid LB culture. When the OD was between 0.4 and 0.9, 10
ml was harvested and centrifuged at room temperature at 4000 rpm for 10–15 min. The pellets
were resuspended in 10 ml 10 mMMgSO47H2O to an OD value of 1. From these stocks, a dilu-
tion series were prepared by 50% dilutions, and 10 μl of every dilution was injected into of each
G.mellonella larva. Five larvae per bacteria were inoculated, using 10 mMMgSO47H2O as a
negative control. The larvae were maintained in a Petri dish at 30°C, and the evaluation of the
health state was checked after 20, 24, 48 and 72 h. Both toxicity tests were performed twice.

Adhesion in mango leaf. To determine the adhesive ability to the mango leaf surfaces
(Mangifera indica L. var. Osteen), wild type and derivative mutants were grown in KB medium
for 48 h at 28°C, and the final OD was adjusted to approximately 108 CFU/ml (0.7–0.8 at
600 nm). Drops of 10 μl for each strain were placed on the same clean mango leaf to which it
had painted dividing lines to avoid mixture. The two years old mango plants were maintained
in a conditioned room, with adjustable temperature to 25°C and light cycles of 16h, environ-
mental relative humidity was around 70–80%. After 30 min, the leaf was carefully washed by
sterile water, cut from a mango tree and cut again by lines for processing. Leaf pieces were
placed into sterile bags with 1 ml of sterile water and homogenized for 3 min using a lab
blender. Serial dilutions of 100 μl from homogenized tissues were plated in KB medium to
count recovered cells. Three plates per strain were used, and three replicates per experiment
and three independent experiments were performed to obtain the adhesion experiments
results. Statistical analysis were performed with IBM.SSPS 19 software (IBM Company,
Armonk, NY) using ANOVA of one factor for analysis of the means with P = 0.05.

Survival on tomato plant surfaces. Bacterial suspensions of UMAF0158 and defective
mutants adjusted to 108 CFU/ml were used to spray 6-week-old tomato plants. Two inoculated
tomato plants per strain and a control (sterile water) were used. The tomato plants (Solanum
lycopersicum L. cv. Hellfrucht-Früstamm) of two weeks old were maintained in a conditioned
room in a 16 h photoperiod at 25°C. Two leaflets of each plant were taken three times a week
for 21 days for analysis. The leaflets were divided into two pieces using a sterile scalpel and cut
along the midrib. One half was promptly processed, and the second half was processed after
disinfection using 3% hydrogen peroxide for 5 min and washed in sterile water for another 5
min. The samples were homogenized in 1 ml sterile water, diluted in a decimal series and
plated in rich medium. Colonies were counted after two days of incubation at 28°C. Two inde-
pendent experiments were performed and three replicates were included in each experiment.

Hypersensitivity reaction in tobacco. To determine hypersensitivity reaction or cell
death in tobacco leaves, bacterial suspensions of wild type UMAF0158 and defective mutants
were adjusted to 106 CFU/ml. Infiltrations in tobacco leaves at 106, 105, 104 and 103 CFU/ml
were performed. Cell death was checked after 3 and 7 days.
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Pathogenesis on tomato leaves. Inoculations on detached tomato leaflets were conducted
by wild type UMAF0158 and mutant derivatives. The evaluation of the pathogenesis was per-
formed according to previous evaluations made with the wild type UMAF0158 strain [18,41].
Bacterial suspensions from exponentially growing cultures were adjusted to 108 CFU/ml.
Detached leaflets were inoculated by placing six 10 μl drops of the bacterial suspension on six
different places on each leaflet. Inoculations were then performed by piercing through the
droplets with a sterile entomological pin. The leaflets were maintained in Murashige & Skoog
(MS) media at 22°C for a 16 h photoperiod. Six tomato leaflets were used for each strain and
independent experiment. Non-infected detached leaflets inoculated with sterile distilled water
were included in all experiments as a control. These experiments were repeated three times.

The development of necrotic symptoms at the inoculation points was determined every day
for 10 days. The appearance of necrotic symptoms was monitored by visual analysis to evaluate
disease incidence (number of inoculated points with symptoms of necrosis), considering points
with areas between 0.2 and 0.5 cm (Category 2) equal or greater than 0.5 cm (Category 3) in
diameter. Severity analysis was performed by image analysis with Visilog 5.0 software of the
total necrotic area developed per leaflet on the last day of the assay. Statistical analysis of inci-
dence was performed using SAS9.2 software (SAS Institute Inc., Cary, NC, USA) with Enter-
prise Guide 4.2 using generalized linear model analysis. Severity results were analyzed by one
way ANOVA by IBM.SSPS 19 software (IBM Company, Armonk, NY).

Results and Discussion

General features
The P. syringae pv. syringae UMAF0158 genome is composed of one circular chromosome of
5787986 bp (Table 1; Fig 1) and one plasmid. The pPSS158 plasmid (GenBank CP005971) of
63004 bp has an average GC content of 54.6% and 71 coding sequences (CDSs) (Table 1),
where is remarkable the presence of characteristic genetic traits for conjugative plasmids of the
pPT23A-like family, such as repA, a T4SS conjugative system and the rulAB genes [42]. Conju-
gative plasmids harboring rulAB genes contributes to UV and solar radiations tolerance and
epiphytic fitness, as it was previously demonstrated [42]. However, most of CDSs found on the
plasmid pPSS158 were annotated as hypothetical proteins and any potentially gene clearly
associated with virulence has been determined (S4 Table). In total, 5017 CDSs were identified
within the UMAF0158 chromosome, which has an average GC content of 59.3% (Table 1).
Among the predicted chromosomal CDSs, a putative function was assigned to 4030 (80%),
while the remaining 987 CDSs were designated as hypothetical proteins. A total of 18 genes
were predicted to be pseudogenes. The classification of the UMAF0158 CDSs into functional
categories according to the COG (Clusters of Orthologous Groups) database is summarized in
Table 2 in comparison with P. syringae pv. syringae B728a, P. syringae pv. tomato DC3000 and
P. syringae pv. phaseolicola 1448A. With the exception of category L (replication, recombina-
tion and repair), which includes a reduced number of UMAF0158 CDSs (137) in comparison
with those of the other three genomes (187, 272 and 370 CDSs for B728a, 1448A and DC3000,
respectively), no significant differences were found regarding the remaining functional catego-
ries, further supporting the relatedness of these four strains. In addition to CDSs, a total of 63
tRNAs and five rRNA operons were found on the UMAF0158 chromosome.

Phylogeny
In order to establish the phylogenetic relationship between UMAF0158 and other related
P. syringae strains, we selected 25 genome sequenced strains (S1 Table) and compared a set of
five protein-coding house-keeping genes, namely gapA, gltA, recA, rpoA and rpoB. We created
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an alignment of the proteins and reconstructed the phylogenetic tree shown in Fig 2, using
neighbor-joining methods. The strain P. fluorescens Pf-5 was used as outgroup. The resulting
phylogeny clustered UMAF0158 with P. syringae Cit 7, a strain originally isolated from a
healthy orange tree [10,43], and more separate from B728a, the model strain for pv. syringae.
This result is in agreement with previous phylogenetic analyses, which clustered both
UMAF0158 and Cit 7 in phylotype 1 [21,22]. Such a phylotype of the pathovar syringae is
mainly associated with the mango host and characterized by mangotoxin production [22].
Additionally, UMAF0158 and other strains of phylotype 1 are pathogenic on mango, lilac,
tomato or pear [15], but not on bean, in contrast with B728a, which is pathogenic on bean but
showed low virulence on mango [12,22]. Given that UMAF0158 is the only strain belonging to
this group whose complete genome is available, it could be taken as a representative of phylo-
type 1 for pv. syringae [22] and clade 2a of phylogroup 2 of P. syringae complex [6].

Regarding the other P. syringae strains in the phylogeny with complete genome sequences,
B728a was the closest to UMAF0158. Accordingly, this strain shares the highest number of
CDSs predicted in UMAF0158 (see next section). These data, together with the fact that both
B728a and UMAF0158 belong to P. syringae pv. syringae, prompted us to pay special attention
to the genomic differences between these two strains.

Comparative genomics
The sequence of the UMAF0158 chromosome was compared to that of selected P. syringae
strains (Fig 3). Of the 5017 CDSs predicted in UMAF0158, 4912 (98%) have orthologs
(BLASTP E-value� 1×10−10) in other P. syringae and 3570 (71%) are present in all strains. All
of the 105 genes found to be unique to UMAF0158 are heavily enriched in hypothetical pro-
teins (103). The other two genes include a membrane protein (PSYRMG_17725) and a flavo-
doxin (PSYRMG_09680).

Among the selected strains, Cit 7, BRIP39023 and 642 share the highest number of CDSs
compared to UMAF0158. These three strains, which belong to pv. syringae or are closed to it
and whose complete genome sequences are not yet available, share 93.6, 93.4 and 91.2% of the
CDSs predicted in UMAF0158, respectively (Fig 3). Regarding P. syringae with complete
genome sequences, B728a shares 90.7% of the CDSs followed by 1448A and DC3000, which
share 88.4 and 88.1%, respectively (Fig 3).

Fig 3 shows some sequence features associated with mechanisms of horizontal transfer,
including regions with differential distributions of trinucleotides and GC-content, predicted
prophages and putative horizontally transferred genes. In most cases, these features match

Table 1. General features of the Pseudomonas syringae pv. syringae UMAF0158 genome and comparison with P. syringae pv. syringae B728a, P.
syringae pv. phaseolicola 1448A and P. syringae pv. tomato DC3000.

Feature PssUMAF0158 PssB728a Psp1448A PstDC3000

Molecule Chromosome pPSS158 Chromosome Chromosome p1448A-A p1448A-B Chromosome pDC3000A pDC3000B

Size (bp) 5787986 63004 6093698 5928787 131950 51711 6397126 73661 67473

G+C content (%) 59.3 54.6 59.2 58.0 54.1 56.0 58.4 55.1 56.1

CDSs predicted no. 5017 71 5089a 4985a 127* 60a 5481a 68a 70a

No. of rRNAs 16 - 16 16 - - 15 - -

No. of tRNAs 63 - 64 64 - - 63 - -

Reference This study [12]a [13]a [11]a

a The number of predicted CDSs corresponds to those indicated at NCBI for the corresponding genome sequences (March 1st, 2015).

doi:10.1371/journal.pone.0136101.t001
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with non-conserved regions of the UMAF0158 chromosome (white-colored in the six most
outer rings of Fig 3).

Comparison of CDSs between UMAF0158 and B728a
In order to compare the genomes of UMAF0158 and B728a, we proceeded to identify regions
enriched in coding genes in either strain that are not present in the other. The search was per-
formed so that only regions spanning at least 4000 bp were retained (the whole set of differen-
tial protein coding genes are listed in S5 and S6 Tables). These regions are summarized in
Tables 3 and 4. Thirteen regions were identified in UMAF0158 with sizes ranging from 6051 to
20822 bp. Eight of such regions are highly enriched in hypothetical proteins (at least 80% of

Fig 1. Features of the Pseudomonas syringae pv. syringae UMAF0158 chromosome. From the outside in, the outermost circle (black) shows the scale
line; circles 2 and 3 represent predicted coding regions on the plus and minus strand, respectively, which are color coded based on COG categories; circles 4
and 5 show tRNA (blue) and rRNA (red), respectively; circle 6 depicts ORFs associated with virulence (purple).

doi:10.1371/journal.pone.0136101.g001
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their CDSs). Two of the remaining five regions contain a combination of mobile genetic ele-
ments and hypothetical proteins. The remaining regions correspond to three operons: an addi-
tional rhizobial-like T3SS Rhc (PSYRMG_02470–02585), which is analyzed below (S1 Fig), a
cellulose production operon (PSYRMG_20805–20845), and the well-described mangotoxin
biosynthetic operonmbo [19,21] (PSYRMG_10110–10135). This operon is present in only a
limited number of strains belonging to genomospecies 1, and it has been acquired once during
evolution by horizontal transfer [21,22].

In addition, ten regions were identified in B728a with sizes ranging from 4968 to 43402 bp.
Most of these regions contain mobile genetic elements. It is worth noting a region containing
the streptomycin resistance transposon Tn5393 [12]. Two other regions are enriched in secre-
tion components with one of them corresponding to a T4SS, which is addressed below.

Secretion systems
The T6SS, which was first described in pathogenic bacteria such as Vibrio cholerae, Pseudomo-
nas aeruginosa and Burkholderia mallei [44–46], has been widely identified in Gram-negative
bacteria, including P. syringae [47]. This versatile secretion system has been proposed to pro-
mote symbiotic, commensal or mutualistic relationships between bacteria and eukaryotes and
to intervene in cooperative or competitive interactions between different bacteria [48].
UMAF0158 contains two putative gene clusters that are associated with the T6SS, similarly to
what it has been previously described for other strains of pvs. tomato, tabaci and oryzae, and in

Table 2. Number of CDSs associated with COG functional categories in the Pseudomonas syringae pv. syringae UMAF0158 genome and compari-
son with P. syringae pv. syringae B728a, P. syringae pv. phaseolicola 1448A and P. syringae pv. tomato DC3000.

Funtional Category UMAF0158 B728a 1448A DC3000

A RNA processing and modification 1 1 1 1

B Chromatin structure 1 1 1 1

C Energy production and conversion 223 231 210 234

D Cell cycle control, cell division, chromosome partitioning 38 46 41 44

E Amino acid transport and metabolism 459 467 458 461

F Nucleotide transport and metabolism 89 87 88 81

G Carbohydrate transport and metabolism 276 268 263 264

H Coenzyme transport and metabolism 177 178 179 173

I Lipid transport and metabolism 163 162 166 176

J Translation, ribosomal structure and biogenesis 198 205 204 201

K Transcription 360 360 343 367

L Replication, recombination and repair 137 187 272 370

M Cell wall/membrane/envelope biogenesis 270 288 270 263

N Cell motility 163 166 168 160

O Posttranslational modification, protein turnover, chaperones 156 157 152 157

P Inorganic ion transport and metabolism 272 277 287 278

Q Secondary metabolites biosynthesis, transport, and catabolism 119 128 112 118

R General function prediction only 521 522 520 544

S Function unknown 385 393 356 406

T Signal transduction mechanisms 343 349 339 358

U Intracellular trafficking, secretion, and vesicular transport 150 148 156 136

V Defense mechanisms 48 53 48 58

Z Cytoskeleton 1 1 1 0

Total 4550 4675 4635 4851

doi:10.1371/journal.pone.0136101.t002
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contrast with the genomes of B728a and 1448A, which carry only one T6SS [47]. Both clusters
in UMAF0158 are composed of 14 genes (PSYRMG_02245 to PSYRMG_02310 and
PSYRMG_15560 to PSYRMG_15625) and range from coordinates 470416 to 487611 (Fig 4A)
and 3502757 to 3522874 (Fig 4B), respectively. The first cluster is highly conserved in DC3000
[49], while the second shows high similarity to that found in B728a [49].

The T4SS can be involved in the translocation of proteins and genetic material, thus contrib-
uting to genome plasticity and virulence of bacteria harboring them [50]. B728a contains a
conjugative G-type T4SS [51] that was not found in UMAF0158. However, UMAF0158
encodes a putative P-type T4SS in its plasmid, which is presumably involved in DNA conjuga-
tion [42] (S4 Table).

The role of T3SSs in the virulence of pathogenic bacteria has been widely investigated
[52,53]. Two T3SS clusters were observed in the UMAF0158 chromosome. A complete T3SS
(here called T3SS-1) similar to the Hrp-1 family of T3SS [54] found in pathogenic P. syringae
strains [55,56] was identified, ranging from coordinates 5000786 to 5047952 and consisting of
42 genes (PSYRMG_22290 to PSYRMG_22510) (Fig 4C). This was not unexpected as this
strain has been shown to induce the hypersensitive response (HR) in tobacco plants [15], a pro-
cess dependent on a functional T3SS in P. syringae [57]. This cluster showed high similarity to
that found in B728a, whose role in virulence has been widely reported [58,59]. The second
putative T3SS (here called T3SS-2), which ranges from coordinates 523773 to 547384 in the
UMAF0158 chromosome and consists of 24 genes (PSYRMG_02470 to PSYRMG_02585) (Fig
4D), shows high similarity to the rhizobial-like T3SS Rhc of Rhizobiales family of T3SS [54,56].
Among these 24 genes are included the complete set of core components to form the minimal

Fig 2. Phylogenetic analyses of Pseudomonas syringae pv. syringae UMAF0158 and 25 selected strains of the P. syringae complex (see S1 Table).
Multilocus sequence analysis were performed using a concatenated dataset for gapA, gltA, recA, rpoA and rpoB. The evolutionary history was inferred using
the Maximum Likelihood method based on the JTT matrix-based model. The percentage of trees in which the associated taxa clustered in the bootstrap test
(1000 replicates) is shown next to the branches. P. fluorescens strain Pf-5 was used as an outgroup.A, Phylogeny based on protein products.B, Phylogeny
based on DNA sequences. Some strains were labelled with the corresponding phylotype of pv. syringae [21, 22] and clade of phylogroup 2 of P. syringae
complex [6]. The alignments used to generate this figure have been included as supporting information (S2 File).

doi:10.1371/journal.pone.0136101.g002
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apparatus [60]. This cluster is also encoded in P. syringae pv. phaseolicola 1448A [13], P. syrin-
gae pv. tabaci 11528 [61], P. syringae pv. oryzae 1–6 [62], P. syringae pv. syringae 642 [63] and
P. savastanoi NCPPB 3335 [24,64] among other strains of the P. syringae complex but not in P.
syringae pv. tomato DC3000 and P. syringae pv. syringae B728a. In agreement with data
reported for other P. syringae genomes, regulatory sequences typical of the HrpL regulon [65]

Fig 3. Conservation analysis of the Pseudomonas syringae pv. syringae UMAF0158 chromosome.
From the outside in, the outermost circle (black) shows the scale line. Circles 2 to 4 display similarity (E-
value� 1×10−10) among UMAF0158 and the three P. syringaewith complete genome sequences: DC3000
(grey), 1448A (orange) and B728a (red). Circles 5 to 7 display similarity (E-value� 1×10−10) among
UMAF0158 and the draft genomes of the three phylogenetically closest P. syringae strains among the 25
selected in this study: 642 (purple), BRIP39023 (green) and Cit 7 (blue). Circles 8 and 9 display putative
horizontally transferred regions (red) and prophages (purple), respectively; circle 10 shows G+C in relation to
the mean G+C in 2 kb windows (red); circle 11 shows trinucleotide composition (black).

doi:10.1371/journal.pone.0136101.g003

Table 3. Regions of Pseudomonas syringae pv. syringae UMAF0158 genomewith low similarity to P. syringae pv. syringae B728a.

Location (bp) Length No. of CDSs No. of hypothetical No. of CDSs not present in B728a Relevant features

248304–257525 9221 bp 16 9 (56%) 15 (94%) mobile genetic elements

258593–272300 13707 bp 21 11 (52%) 19 (90%) mobile genetic elements

519318–537403 18085 bp 20 8 (40%) 15 (75%) T3 secretion components

996632–1011913 15281 bp 17 17 (100%) 17 (100%) hypothetical proteins

1133844–1143487 9643 bp 20 19 (95%) 18 (90%) mobile genetic elements

1357822–1378644 20822 bp 5 4 (80%) 5 (100%) hemolysin secretion/activation

2201422–2221045 19623 bp 22 18 (82%) 19 (86%) mobile genetic elements

2233554–2244999 11445 bp 33 28 (85%) 31 (94%) thiamin biosynthesis, peptidase

2324538–2330589 6051 bp 6 2 (33%) 6 (100%) mangotoxin biosynthetic operon mbo

2710838–2721328 10490 bp 10 10 (100%) 10 (100%) hypothetical proteins

3032080–3050678 18598 bp 14 13 (93%) 14 (100%) hypothetical proteins

4684145–4696189 12044 bp 7 0 6 (86%) cellulose synthase

5668482–5685647 17165 bp 21 21 (100%) 21 (100%) hypothetical proteins

doi:10.1371/journal.pone.0136101.t003
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were not found preceding the genes in this second T3SS cluster. As deduced from analysis of
specific mutants in the canonical T3SS in other P. syringae strains also encoding this second
T3SS [66,67], it has been suggested that this rhizobial-like T3SS Rhc is not essential for patho-
genicity, but a possible role in plant surface colonization or interaction with insects has been
postulated [63,68]. To address this hypothesis experimentally, we constructed a UMAF0158
T3SS-2 mutant and analyzed its ability to infect tomato plants (see below).

Phenotypic analysis of a second T3SS (T3SS-2)
Defective simple mutants via deletion of the hrpL gene (UMAF0158ΔhrpL) and deletion of
2500 bp from the rhc cluster containing the rhcJ, rhcL, rhcN genes (UMAF0158Δrhc), and the
double mutant UMAF0158ΔhrpL + rhc and complemented mutant UMAF0158ΔhrpL + pLac-
hrpL were constructed and assayed to search some evidence of T3SS-2 function. In vitromotil-
ity tests showed no differences, and swimming and swarming type movements did not appear
to be affected by any of the mutations. Furthermore, experiments were performed in planta
including a hypersensitivity response (HR) test in tobacco, surface adhesion on mango leaves,
bacterial growth on the surface of tomato leaves and pathogenesis in tomato leaflets main-
tained in vitro. The wild type, T3SS-2 mutant (UMAF0158Δrhc) and complemented T3SS-1
mutant (UMAF0158ΔhrpL+pLac::hrpL) demonstrated a typical HR reaction; however, the
T3SS-1 mutant (UMAF0158ΔhrpL) and double mutant (UMAF0158ΔhrpL+rhc) did not

Fig 4. Genomic organization of putative Pseudomonas syringae pv. syringae UMAF0158 secretion
systems involved in effector translocation. A, T6SS-1.B, T6SS-2.C, T3SS-1 (hrc-1). D, T3SS-2 (rhc).
Genes presumably involved in secretion are shown in red. Components of the T6SS with no consensual
name are labelled with their corresponding NCBI-annotated locus tags. Numbers below the arrows refer to bp
positions in the chromosome.

doi:10.1371/journal.pone.0136101.g004
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induce a reaction in inoculated tobacco leaves as expected. In adhesion assays, the results
obtained revealed an identical behavior for all strains assayed (S2 Fig). Similarly, the parental
strain and simple and double mutants had no differences in survival assays on tomato leaflet
surfaces. The pathogenicity assays on tomato leaflets showed no relevant results in either the
incidence or severity of necrotic symptoms. Thus, the symptom incidence induced by the wild
type and T3SS-2 and complemented T3SS-1 mutant strains demonstrated the highest levels. In
contrast, the lowest symptoms for incidence were observed for the double mutant and single
T3SS-1 mutant (S3 Fig). The severity of the symptoms demonstrated results similar to that for
incidence. Finally, toxicity experiments in Caenorhabditis elegans and Galleria mellonella were
performed, resulting in the complete absence of toxicity from the bacterial strains used, includ-
ing the wild type and mutant strains. All of these experiments have not demonstrated a relevant
role for the T3SS-2 of UMAF0158 in virulence, leaf colonization and toxicity in insects and
worms as proposed by other authors for atypical Pseudomonas T3SSs [63,68].

T3SS effectors
The in silico proteomes of UMAF0158 and the 25 selected P. syringae strains listed in S1 Table
were screened for known P. syringae T3Es. Based on the presence or absence (E-value� 1x10-10)
of the 89 effector proteins currently described in http://pseudomonas-syringae.org/, a matrix was
constructed by evaluating whether each T3E was found as a complete ORF, an incomplete ORF,
or not present (Fig 5). S2 Table contains detailed information on these analyses. By selecting
T3Es with complete and incomplete ORFs, a matrix was built based on Fig 5 data and used to
generate a dendrogram shown in Fig 6. Note that we accounted for incomplete ORFs, since trun-
cated effectors can still be effective in planta [64]. The results showed that UMAF0158 encodes
11 putative T3Es, including 7 which are also encoded in the B728a genome. Notably, and in
agreement with the phylogeny showed in Fig 2, Cit 7 was the closest strain to UMAF0158, both
containing the same T3Es repertoire, including hopI1which is disrupted in Cit7.

Virulence Factors
The UMAF0158 genome was analyzed to detect known genes potentially implicated in viru-
lence. We interpreted virulence to include factors such as siderophores, adhesins, phytotoxins,

Fig 5. Presence of T3Es in 26 Pseudomonas syringae strains (see S1 Table). T3Es from the P. syringaeGenome Resource (http://pseudomonas-
syringae.org/) are listed across the bottom. Blue boxes indicate presence of complete ORFs within each genome; light blue boxes indicate that genes were
found by similarity searches but they seem to be incomplete (see Materials and Methods section); white boxes indicate that no significant matches (E-
value� 1×10−10) were found. The alignments used to generate this figure have been included as supporting information in S3 File and S2 Table, which
contains detailed information on these analyses.

doi:10.1371/journal.pone.0136101.g005
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phytohormones, detoxifying compounds, plant cell wall degrading enzymes (PCWDEs) and
exopolysaccharides (EPSs). In total, we identified 107 putative orthologs involved in the pro-
duction of any of the above virulence factors (listed in S7 Table and summarized in Table 5),
which are addressed below, most of them also present in B728a.

Fig 6. Dendrogram analysis of Pseudomonas syringae pv. syringae UMAF0158 and 25 selected strains of the P. syringae complex (see S1 Table)
based on the presence of T3Es. Amatrix was created based on the presence/absence of T3E proteins (see supporting information S9 Table). Then, the
corresponding distance matrix was inferred, and the R package APE was used to generate the tree (see Materials and Methods section). The scale shows
the joining distance between each join point (strains) in the matrix. Some strains were labelled with the corresponding phylotype of pv. syringae [21, 22] and
clade of phylogroup 2 of P. syringae complex [6].

doi:10.1371/journal.pone.0136101.g006
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Siderophores. Phytopathogenic bacteria synthesize and secrete a number of low molecular
weight iron-chelating compounds called siderophores, which allow them to grow in iron-lim-
ited host environments [69,70]. UMAF0158 encodes genes orthologous to those required for
the synthesis of pyoverdin and achromobactin, which have been widely described in other
Pseudomonas [12,71,72]. These two siderophores have also been proposed to increase the epi-
phytic fitness of P. syringae [73].

Adhesins and exopolysaccharides (EPSs). Once a target host is reached, bacteria activate
machinery for adhesion to plant tissues, which is thought to be necessary for the pathogenesis
of many strains [74,75]. Attachment factors previously identified in the genome of P. syringae
strains include type IV pili, alginate, non-alginate capsular polysaccharide, EPSs, and filamen-
tous hemagglutinin [13]. Several genes predicting adhesins have been found in the UMAF0158
genome, including a filamentous hemagglutinin (PSYRMG_05745) and several fimbrial pro-
teins, with the latter being clustered together with a number of pilus assembly proteins (see

Table 4. Regions of Pseudomonas syringae pv. syringae B728a genomewith low similarity to P. syringae pv. syringae UMAF0158.

Location (bp) Length No. of
CDSs

No. of
hypothetical

No. of CDSs not present in
UMAF0158

Relevant features

102358–
116873

14515
bp

12 9 (75%) 10 (83%) hypothetical proteins/mobile genetic elements

838293–
843261

4968 bp 6 1 (17%) 5 (83%) hypothetical proteins/mobile genetic elements/T3 effector

1614863–
1658265

43402
bp

46 37 (80%) 40 (87%) T4 secretion components

1672580–
1678069

5489 bp 8 6 (75%) 7 (88%) hypothetical proteins/membrane transport

1692009–
1713389

21380
bp

18 6 (33%) 14 (78%) mobile genetic elements/secretion/pilus proteins

3182993–
3199241

16248
bp

11 6 (55%) 10 (91%) hypothetical proteins/putative virulence protein

3207940–
3242247

34307
bp

23 12 (52%) 18 (78%) streptomycin resistance

3368488–
3409506

41018
bp

53 44 (83%) 44 (83%) hypothetical proteins/phage-related proteins

4526331–
4542603

16272
bp

11 7 (64%) 7 (64%) hypothetical proteins/mobile genetic elements/T3 effector

5507043–
5520779

13736
bp

14 6 (43%) 11 (79%) hypothetical proteins/phage-related proteins/plasmid-
related proteins/T3 effector

doi:10.1371/journal.pone.0136101.t004

Table 5. Summary of putative virulence-associated genes in Pseudomonas syringae pv. syringae
UMAF0158.

Virulence Factor Products

Toxins Syringomycin, syringopeptin, mangotoxin, phaseolotoxin, syringolin A

PCWDEs Pectin lyase, xylanase, cellulase, lipoyl synthase

Siderophores Achromobactin, pyoverdine

Adhesion proteins Cellulose synthase, filamentous haemagglutinin, fimbrial proteins, adhesion
proteins attC/attG

Detoxifying
compounds

Copper oxidase, catalase/hydroperoxidase, proline iminopeptidase, ferritin,
cytochrome C oxidase

Phytohormones Auxin

EPSs Alginate, gpsX

doi:10.1371/journal.pone.0136101.t005
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additional file 9). Another gene predicting an adhesin is PSYRMG_14835, which resembles the
gene encoding XadM, whose role in attachment and the formation of biofilms has been previ-
ously reported in Xanthomonas oryzae [76]. Interestingly, UMAF0158 contains two genes
showing high similarity with the attC and attG genes in Agrobacterium (PSYRMG_02675 and
PSYRMG_09205, respectively), whose mutation leads to virulence and lack of attachment on
tomato, carrot, and Bryophyllum daigremontiana [77].

Synthesis and secretion of EPSs is a common mechanism used by phytopathogenic bacteria,
particularly in P. syringae strains [7]. They contribute to virulence by helping in attachment to
host tissues and protecting bacterial cells from external stress [78]. All of the genes required for
alginate biosynthesis [79] are present in the UMAF0158 gene cluster (PSYRMG_21640–
21695). Notably, an ortholog of gpsX, a gene that encodes a glycosyltransferase that is involved
in EPS production and is essential for the full virulence of Xanthomonas citri [80], which was
also identified (PSYRMG_21000).

Phytotoxins. The production of small phytotoxic compounds by P. syringae pv. syringae
is a well-known virulence mechanism that contributes to plant disease [17,81]. UMAF0158
and B728a contain orthologs of genes participating in the synthesis of syringopeptin and syrin-
gomycin. These two toxins induce necrosis in plant tissues and have been shown to be the
major virulence determinants of P. syringae pv. syringae [16,82]. The two clusters encoding
these toxins form a larger cluster (PSYRMG_03860–03910), which is consistent with data pre-
viously reported [12,82]. The production of syringomycin by UMAF0158 has been experimen-
tally validated in previous studies by our group [17].

Syringolins are another family of phytotoxins synthesized by a number of P. syringae pv.
syringae [83]. UMAF0158 has a gene cluster resembling that of the production of syringolin A
(PSYRMG_24250–24275), a toxin that has been shown to counteract stomatal innate immu-
nity in beans and Arabidopsis [84].

Phaseolotoxin and coronatine are two chlorosis-inducing toxins that also represent major
virulence factors for some P. syringae isolates [85,86]. UMAF0158 lacks orthologs for most of
the genes involved in the production of coronatine; however, analysis of the 23 genes required
for the synthesis of phaseolotoxin [86] showed that orthologs of 17 of these genes are included
in its genome. Given that no inhibition halos were observed in the bioassay for toxin detection
when ornithine was added [17,18] and no chlorosis was detected among the symptoms of
UMAF0158 infection, it is likely that the lack of the other six genes prevent the synthesis of
phaseolotoxin by this strain.

The production of mangotoxin by UMAF0158 and its contribution to the virulence of this
strain has been widely described [17–19]. Two operons are involved in the synthesis of this
toxin, includingmgo (PSYRMG_15820–15835) andmbo (PSYRMG_10110–10135) [18–21],
and the latter is absent in B728a as previously described. Unlike other toxins, mangotoxin is
thought to be associated with host specificity because it is typically synthesized by strains of
phylotypes 1 and 2 of pv. syringae, which were mainly isolated from mango trees and other
woody crops [22].

It is worth noting that the production of at least two phytotoxins has been experimentally
validated in UMAF0158 (i.e., syringomicin and mangotoxin) [17,18]. Whether this strain is
capable of producing the rest of the phytotoxins mentioned above is a question that requires
further investigation.

Phytohormones. Bacterial-produced phytohormones are typically transported to the
plant cell to regulate plant biological processes, providing a beneficial context for the pathogen
[87]. Such is the case of auxin, which is predominantly represented by indole-3-acetic acid
(IAA), a key plant growth regulator that is also involved in plant-bacteria interactions. The
downregulation of this hormone in plants has been shown to restrict P. syringae growth in
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Arabidopsis [88], suggesting that bacteria may have evolved the production of auxin to over-
come this plant response. Accordingly, auxin production has been demonstrated to promote
susceptibility to P. syringae [89]. Although the two genes involved in the biosynthesis of IAA,
iaaH and iaaM, are present in UMAF0158 (PSYRMG_14175 and PSYRMG_11680, respec-
tively), IAA production was not detected in culture supernatants of this strain using a colori-
metric assay [90]. Under the same conditions, IAA production was neither detected for P.
syringae DC3000, which has been reported to produce low levels of IAA [11]. Thus, production
of IAA by UMAF0158 in comparison to other P. syringae strains remains to be elucidated
using more sensitive analytical methods and different culture conditions.

Detoxifying compounds. As a response to bacterial infections, plants synthesize reactive
oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (O2

-) and hydroxyl radi-
cal (OH). These molecules have a toxic effect on invading bacteria [91], which have evolved
mechanisms to counterattack by detoxification. DC3000 typically makes use of the catalases
KatB and KatE together with the catalase-peroxidase KatG to detoxify plant-produced H2O2.
Interestingly, orthologs of these three gene products are present in the UMAF1058 genome
(see additional file 9). Moreover, an ortholog of the gene that encodes Dps (PSYRMG_23380),
a ferritin-like protein that has been shown to protect plant-associated bacteria against oxidative
stress [92], has also been identified. Other genes possibly implicated in detoxification found in
UMAF0158 correspond to a cluster presumably encoding a cbb(3)-type cytochrome C oxidase
(PSYRMG_07490–07505) and a proline iminopeptidase (PSYRMG_18265). The latter has
been reported to be required for pathogenicity of X. campestris [93] and to have dealanylating
activity toward ascomycin, an antibiotic produced by Streptomyces that inhibits protein synthe-
sis [94]. Genes involved in copper resistance have also been identified, including a cluster con-
taining copA and copB (PSYRMG_23630 and PSYRMG_23625, respectively), and a locus with
high similarity to the cueAR system in P. putida [95]. This system consists of a copper-trans-
porting ATPase transmembrane protein and its transcriptional regulator (PSYRMG_19635
and PSYRMG_19630, respectively). Additionally, the copABCD operon described in other P.
syringae [96] is absent in the UMAF0158 chromosome, and also any copper resistant genes are
present in the UMAF0158 plasmid, in agreement with the copper sensitivity of this strain [97].

Plant cell wall degrading enzymes (PCWDEs). Some phytopathogenic bacteria need to
overcome the plant cell wall in the process of accessing the host cytoplasm. Therefore, many
plant pathogens harbor a collection of genes encoding PCWDEs, which are considered impor-
tant virulence determinants [98]. The UMAF1058 genome contains genes predicting a cellulase
(PSYRMG_06950), a lipoyl synthase (PSYRMG_12655), a xylanase (PSYRMG_13355) and a
pectin lyase (PSYRMG_10750), which are also detected in B728a [12] and other P. syringae
strains [13,99]. Although there is no experimental evidence in this case, it could be assumed
that the above predicted enzymes are likely exported by means of a type II secretion system
(T2SS) putatively encoded in the genome of UMAF0158.

Conclusions
Summarizing, bioinformatic analysis of the complete genome of P. syringae pv. syringae
UMAF0158, a pathogen of mango trees, revealed a high degree of conservation with other
pseudomonads belonging to the P. syringae complex, including the model strain P. syringae pv.
syringae B728a. However, the resulted phylogeny clustered UMAF0158 with P. syringae Cit 7
and more separately from B728a. Indeed, our data revealed a number of genetic factors that
could be involved in the differential pathogenic and epiphytic lifestyle of UMAF0158, in com-
parison with the model strain B728a. The mangotoxin biosynthetic operonmbo is included
among these factors, which role in the pathogenicity of UMAF0158 has been previously

Complete Genome of P. syringae pv. syringae UMAF0158

PLOSONE | DOI:10.1371/journal.pone.0136101 August 27, 2015 18 / 26



reported [19,41]. Moreover, UMAF0158 harbors an operon involved in cellulose production
and encodes additional T3SS and T6SS, as well as displays a particular T3Es repertoire. How-
ever, an UMAF0158 mutant affected in this rhizobial-like second T3SS (T3SS-2) showed iden-
tical virulence, leaf colonization ability and toxicity on insects or worms than the wild-type
strain. Additionally, the conjugative plasmid pPSS158 harbors rulAB genes involved in UV
resistance and epiphytic fitness [42]. This work provides the basis for further analysis on the
specific mechanisms that enable this strain to infect mango trees and for the functional analysis
of the factors governing host specificity in pv. syringae strains from different phylotypes.

Supporting Information
S1 Fig. Genomic representation of the secretion-associated features of Pseudomonas syrin-
gae pv. syringae UMAF0158. From the outside in, the outermost circle (black) shows the scale
line; circles 2 represents T3SS (blue) and T6SS (green); circle 3 displays putative T3 effectors;
circle 4 depicts predicted hrp boxes. Only secretion systems associated with effector transloca-
tion were considered.
(PDF)

S2 Fig. Bacterial cells counts recovered during adhesion experiments on mango leaves.
Drops of bacterial suspension were deposited on mango leaves, after 30 min were softly washed
and the adhered cell were recovered and counted. In this experiment were assayed Pseudomo-
nas syringae pv. syringae UMAF0158 as wild type, and their defective simple mutants by dele-
tion of hrpL gene (ΔhrpL) and deletion of 2500 bp of rhc cluster corresponding to rhcJ, rhcL,
rhcN genes (Δrhc), and a double mutant (ΔhrpL + rhc). The experimental data used to con-
struct this figure are summarized as a datasheet in S8 Table.
(PDF)

S3 Fig. Analysis of the two T3SS cluster as putative virulence factor of Pseudomonas syrin-
gae pv. syringae UMAF0158. The wild type P. syringae pv. syringae UMAF0158 and their
defective simple mutants by deletion of hrpL gene (ΔhrpL) and deletion of 2500 bp of rhc clus-
ter corresponding to rhcJ, rhcL, rhcN genes (Δrhc), the double mutant (ΔhrpL + rhc) and the
complemented mutant ΔhrpL + pLac-hrpL were inoculated into tomato leaflets by piercing
and maintained in vitro ten days at 22°C and 16 h of photoperiod. Development of necrotic
symptoms in tomato leaflets inoculated with the assayed strains were determined as the Inci-
dence level of necrotic symptoms, it is represented as accumulative number of inoculated
points developing necrotic area between 0.2 and 0.5 cm (cat. 2) and equal or higher than 5 mm
in diameter (cat 3). The symptoms were monitoring and counted at different days from 0 to 10
for the total of the inoculated points with each strain. The ANOVA statistical analysis of sever-
ity was performed using data of tenth day. Asterisk mark significant differences regarding to
wild type, double asterisk mark statistical differences regarding wild type and ΔhrpLmutant.
(PDF)

S1 File. Complete Map Report of UMAF0158 Genome Sequencing Project.
(PDF)

S2 File. Alignment of the concatenated sequences corresponding to five house-keeping
genes (gapA, gltA, recA, rpoA and rpoB) used to generate the phylogeny for the strains in
Fig 2. Alignment of the concatenated protein sequences were used in Fig 2A (SX file) and the
concatenated nucleotide sequences to generate the phylogeny of Fig 2B (SY file).
(ZIP)
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S3 File. Alignments of the analysed T3Es used to construct Figs 5 and 6. The information
about T3Es repertoires found in 26 Pseudomonas syringae strains used in this study are pro-
vided in S2 Table.
(ZIP)

S1 Table. Accession numbers and references of genome sequences corresponding to 26
Pseudomonas strains used in this study.
(DOCX)

S2 Table. T3Es repertoires found in 26 Pseudomonas syringae strains. Columns provide
information on BLASTp alignments between T3Es from http://pseudomonas-syringae.org/
and strains gene products, such as E-value, fraction and number of identical positions, align-
ment length, coordinates (start-end) for the query effector and subject gene product in the
alignment and number of gaps. Other relevant information is also provided, such as lengths of
both the effector and the gene product, the rate between effector length and alignment length
and whether the searched effectors are considered complete.
(XLSX)

S3 Table. Primers used in the construction of TTSS mutants of Pseudomonas syringae pv.
syringae UMAF0158.
(DOC)

S4 Table. Predicted ORF in Pseudomonas syringae pv. syringae plasmid (pPSS158, Gene
Bank accession number CP005971).ORFs were first predicted and annotated by the NCBI
Prokaryotic Genome Annotation Pipeline. Then, annotation was manually curated. ORFs
highlighted in grey correspond to T4SS components (VirB, VirD), replication protein A and
ultraviolet light resistance proteins A and B.
(DOC)

S5 Table. Genes corresponding to regions of Pseudomonas syringae pv. syringae
UMAF0158 genome with low similarity to P. syringae pv. syringae B728a (summarized in
Table 3). Gray shading indicates genes which are present in B728a (E-value< 1e-10).
(DOCX)

S6 Table. Genes corresponding to regions of Pseudomonas syringae pv. syringae B728a
genome with low similarity to P. syringae pv. syringae UMAF0158 (summarized in
Table 4). Gray shading indicates genes which are present in UMAF0158 (E-value< 1e-10).
(DOCX)

S7 Table. Relevant virulence factors found in P. syringae pv. syringae UMAF0158 genome.
Each row corresponds to an ORF. Columns provide information on locus tag, position (bp),
strand, length (aa), protein product, type of virulence factor assigned and name of such a fac-
tor.
(XLSX)

S8 Table. Datasheet including the original data of the adhesion on mango leaves experi-
ments. The data for each replicate and experiment, and the calculated averages and standard
deviations used to construct the supporting S2 Fig are summarized in this table.
(XLS)

S9 Table. Matrix based on the presence/absence of putative T3Es in 26 Pseudomonas syrin-
gae strains. Complete, incomplete and not present ORFs are assigned values of 1, 0.5 and 0,
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respectively. This matrix was used to construct Fig 6.
(XLSX)
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