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Benchmark on a large cohort for sleep-wake classification with
machine learning techniques
Joao Palotti 1, Raghvendra Mall1, Michael Aupetit 1, Michael Rueschman2,3, Meghna Singh4, Aarti Sathyanarayana3,5,
Shahrad Taheri6 and Luis Fernandez-Luque 1

Accurately measuring sleep and its quality with polysomnography (PSG) is an expensive task. Actigraphy, an alternative, has been
proven cheap and relatively accurate. However, the largest experiments conducted to date, have had only hundreds of participants.
In this work, we processed the data of the recently published Multi-Ethnic Study of Atherosclerosis (MESA) Sleep study to have both
PSG and actigraphy data synchronized. We propose the adoption of this publicly available large dataset, which is at least one order
of magnitude larger than any other dataset, to systematically compare existing methods for the detection of sleep-wake stages,
thus fostering the creation of new algorithms. We also implemented and compared state-of-the-art methods to score sleep-wake
stages, which range from the widely used traditional algorithms to recent machine learning approaches. We identified among the
traditional algorithms, two approaches that perform better than the algorithm implemented by the actigraphy device used in the
MESA Sleep experiments. The performance, in regards to accuracy and F1 score of the machine learning algorithms, was also
superior to the device’s native algorithm and comparable to human annotation. Future research in developing new sleep-wake
scoring algorithms, in particular, machine learning approaches, will be highly facilitated by the cohort used here. We exemplify this
potential by showing that two particular deep-learning architectures, CNN and LSTM, among the many recently created, can
achieve accuracy scores significantly higher than other methods for the same tasks.
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INTRODUCTION
Short and poor quality sleep have been directly linked to a series of
chronic health problems, including obesity, insulin resistance, and
hypertension.1–4 Thus, measuring sleep and its quality are increas-
ingly important beyond the diagnosis of specific sleep disorders.
While polysomnography (PSG) is the gold standard approach

for diagnosing specific sleep disorders, it is impractical for use in
the identification of more prevalent issues with sleep loss and
sleep quality. An attractive alternative to PSG is the use of
wearables, such as accelerometer-based technology (Actigraphy),
which may be used as a diagnostic aid for specific sleep disorders
such as circadian rhythm disorders.
Actigraphy devices allow several weeks of unobtrusive, con-

tinuous recording, enabling prospective, and naturalistic assess-
ment of sleep.5 While the signals captured by an actigraphy device
are not as detailed as the ones obtained by PSG, it allows the
identification of sleep-wake states, sleep timing, and sleep quality.5

Over the past three decades, a number of studies have
demonstrated the reliability and validity of actigraphy to replace
PSG for nocturnal sleep-wake scoring.5–13 These studies show an
epoch-by-epoch agreement between activity-based sleep-wake
scoring algorithms and traditional PSG-based scoring ranging
between 80 and 95%. This accuracy helped in making the usage of
actigraphy devices a part of sleep medicine guidelines for the
diagnosis of a number of sleep disorders.14

Nevertheless, an existing challenge for actigraphy studies is the
relative difficulty in comparing the performance of different

actigraphy algorithms due to the lack of standardized datasets.15

Although recent studies have assessed the validity of scoring
algorithms in comparison with PSG,8,16 they are usually made with
a small number of participants due to the complexity of
conducting these studies.
Until very recently, one of the main barriers for the develop-

ment and enhancement of artificial intelligence methods in sleep
research was the lack of public repositories of actigraphy data and
tools. However, that trend is changing with recent initiatives, such
as sleepdata.org from the National Sleep Research Resource
(NSRR), which allows researchers to freely access large collections
of well-characterized research cohorts and clinical trials.17,18 One
such dataset is the Multi-Ethnic Study of Atherosclerosis (MESA).
MESA was a research study investigating factors associated with

the development of subclinical cardiovascular disease and the
progression of subclinical to clinical cardiovascular disease in 6814
individuals. The participants were men and women between 45
and 84 years of age at the beginning of the study, from different
ethnic communities (Black, White, Hispanic, and Chinese-Amer-
ican). Between 2010 and 2012, approximately one-third of the
participants (2237) were enrolled for sleep assessment (MESA
Sleep), which included one full overnight unattended PSG session,
7-day wrist-worn actigraphy, and a sleep questionnaire.
In this work, we propose to use the MESA dataset as a cohort to

compare the performance of existing and future sleep-wake
scoring algorithms. We leveraged the fact that the MESA Sleep
dataset is the largest dataset to date for studying actigraphy-
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based sleep-wake scoring algorithms, being a hundred times
bigger than previously used datasets. The Supplementary Table 1
summarizes the basic statistics of the part of MESA Sleep dataset
used in this work and compares it to the related work.
The contribution of this work is threefold:

● First, we build a standardized benchmark to serve the
development of new ideas and approaches. We propose
two specific research tasks for this cohort: Task Night and Task
Night&Day.

● Second, we review, investigate and validate the main
heuristics to identify wake-sleep patterns from actigraphy
devices. In our study, we include both well-established
heuristics and algorithms, and new state-of-the-art machine
learning algorithms. We aim to foster future artificial
intelligence research into sleep medicine, and the methods
described here will serve as baselines for future research.

● Third, we make available to the community, a Python library
for sleep-wake scoring with all algorithms implemented in this
paper (and tools to facilitate the implementation of new
algorithms in the future). The code and data used can be found
online at https://github.com/qcri/sleep_awake_benchmark.

RESULTS
The performance of machine learning methods is influenced by
the choices of optimal hyperparameters. The only hyperparameter
optimized for the traditional scoring formulas was Oakley’s
threshold θ, which was set to 10, the value that yielded the
highest accuracy score in the training set. We show results for θ=
40 and θ= 80 as well, as these values are commonly used in the
literature.16 In particular, θ= 40 is the device algorithm.19,20

Hyperparameters of ML and DL algorithms were obtained via the
standard fivefold cross-validation while optimizing for accuracy. A
detailed list of all the hyperparameters for each model that we
explored in this work are provided in the Supplementary Material.

Task night results: predicting sleep quality metrics during night
The results of the experiments of Task Night are shown in Table 1.
We group the results according to the technique used (traditional
algorithms, ML algorithms and DL algorithms), and whether
Webster rescoring rules were used or not. Within each group, we
sort the results by mean accuracy in descending order.
Results of the baseline approaches Always Sleep and Always

Wake show that 58.4% of the epochs in Task Night dataset are
sleep and thus the minimum accuracy score that we should
expect is 58.4. The proprietary Device Algorithm and the Manual
Annotation have, respectively, an accuracy of 76.2 and 79.8, in line
with other traditional algorithms, which vary from 73.3 (Webster)
to 77.5 (Oakleyθ=10). Note that this accuracy range is lower than
the reported accuracy of 80–95% in original papers that
introduced new algorithms (upper part of Table S1, e.g., refs
6,21), but it is similar to the reported 70–85% range of validation
papers (lower part of Table S1, e.g., refs 11,22,23). Note that both
Manual Annotation and Device Algorithm underestimate the
number of wake epochs, resulting in the overestimation of sleep
efficiency when compared to the Oracle. Also note that, as
expected, Oakleyθ=40 and Device Algorithm present very similar
results, with no significant differences between the results of these
two approaches.
Apart from Sazonov, all other traditional algorithms have a high

sensitivity score (as high as 98.3 for Sadeh algorithm), but
relatively smaller average precision score (highest is Oakleyθ=10

with 77.5). This means that although these algorithms are highly
effective in detecting epochs of sleep, they do not identify wake
time so well, thus overestimating sleep epochs. This is a well-
known behavior in the literature that is validated in our

experiments,11 as seen by the low values of WASO (and the high
values for sleep efficiency) when compared to the Ground Truth.
Scripps Clinic algorithm achieved the highest F1 score, 81.8, which
is not statistically different from the Device Algorithm (p= 0.47,
n= 363), nor the Manual Annotation method (p= 0.10, n= 363).
On average, all results for the traditional algorithms are lower

than both Device Algorithm and Manual Annotation baselines. This
is somewhat expected as the Device Algorithm is optimized to be
used with the particular actigraphy device employed in the
experiments and the Manual Annotation resorts to human expert
knowledge annotating the dataset.
The use of Webster’s rescoring rules shows gains in both

specificity and precision for all the traditional algorithms but at the
cost of sensitivity. This implies in a large proportion of epochs
previously classified as sleep being reclassified as awake. For the
top six traditional algorithms in terms of accuracy, Resc.
Oakleyθ=40, Resc. Cole-Kripke, Resc. Scripps Clinic, Resc. Oakleyθ=80,
Resc. Sadeh, and Resc. Webster, the use of rescoring rules resulted
in higher accuracy and F1 scores. The opposite was found for the
other two algorithms. The results show that the rescoring rules
are, in general, effective in increasing the accuracy score (the
average accuracy score increased from 75.1 to 78.0) but they
should be applied with caution, as they could negatively impact
the F1 score (average F1 score decreased from 80.3 to 79.8) or
overestimate wake epochs (the group average WASO for the
traditional algorithms went from 59 to 111 min). Note that there
was no significant difference between WASO for Resc. Scripps Clinic
and the Ground Truth (p= 0.901, n= 363). That was the case also
for Resc. Oakleyθ=40, (p= 0.07, n= 363), Oakleyθ=10 (p= 0.13, n=
363), and Perceptron (p= 0.14, n= 363), for all the rest the
differences were statistically significant.
Apart from the Perceptron, the ML algorithms have a very similar

performance to each other for all the metrics evaluated. The
sensitivity and F1 scores of the Perceptron algorithm were
significantly lower than the second worst ML algorithm, Linear
SVM (for both p < 0.001). Perceptron was also the only algorithm
among the ML ones that overestimated WASO. The best ML
algorithm with respect to accuracy score and F1 score, Extra Trees,
was significantly better than the Device Algorithm (p < 0.001 for
both accuracy and F1). While Extra Trees were significantly better
than the Manual Annotations for accuracy (p= 0.016, n= 363), it
was not significantly better for F1 (p= 0.26, n= 363).
Similar to the Extra Trees algorithm, the performance of DL

algorithms were significantly better than the Device Algorithm for
all metrics. Additionally, the F1 performance of LSTM 100, LSTM 50,
CNN 100 and CNN 50 was also statistically better than Manual
Annotation (p= 0.012, p= 0.046, p= 0.023, p= 0.039, ∀n= 363).
Increasing the input size of both CNN and LSTM algorithms from
20 to 100 significantly increased the accuracy score (p= 0.014 for
CNN and p= 0.035 for LSTM, ∀n= 363), but did not increase the
F1 score significantly (p= 0.111 for CNN and p= 0.120 for LSTM,
∀n= 363). No significant differences were found between CNN
100 and LSTM 100 for accuracy and F1 (p= 0.789 and p= 0.817,
∀n= 363). All DL algorithms underestimated WASO and over-
estimated the sleep efficiency when compared to the Ground
Truth.
The use of rescoring rules had a similar effect in both ML and DL

algorithms as it did in the traditional algorithms: increased
specificity and precision, but decreased sensitivity (i.e., increased
WASO and decreased the sleep efficiency). This time, though, both
accuracy and F1 went down after the usage of Webster’s rescoring
rules, which indicate that these rules should not be used with ML
and DL algorithms.
In Fig. 1 we show the Pearson’s r correlation between the results

of the 41 different algorithms shown in Table 1. The correlation
coefficients show that Sensitivity is the metric that best
(negatively) correlates with WASO and sleep efficiency, the sleep
quality metrics studied in this work. However, an algorithm that
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Table 1. Results (Mean ± 95% confidence interval) for Task Night

Method Algorithm evaluation metrics Sleep quality metrics

Accuracy Specificity Precision Sensitivity F1 WASO (min) MAE WASO Sleep Eff. (%) MAE sleep Eff.

Ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 102.1 ± 7.3 0.0 58.4 ± 1.4 0.0

Baselines

Manual annotations 79.8 ± 1.2 56.5 ± 2.3 75.8 ± 1.5 94.8 ± 1.5 83.3 ± 1.4 45.8 ± 8.6 74.7 73.0 ± 1.7 17.2

Device algorithm 76.2 ± 1.0 50.1 ± 1.8 72.6 ± 1.3 94.3 ± 0.6 81.3 ± 1.0 54.0 ± 4.2 53.1 75.7 ± 1.0 17.7

Always sleep 58.4 ± 1.4 0.0 ± 0.0 58.4 ± 1.4 100.0 ± 0.0 72.8 ± 1.1 0.0 ± 0.0 102.1 100.0 ± 0.0 41.6

Always wake 41.6 ± 1.4 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 459.2 ± 9.0 357.0 0.0 ± 0.0 58.4

Traditional algorithms

Oakley
θ= 1032

77.5 ± 0.9 63.0 ± 1.7 76.8 ± 1.3 87.2 ± 0.9 81.0 ± 1.0 95.0± 5.9 37.3 66.0 ± 1.1 10.1

Scripps Clinic21 76.6 ± 1.1 48.8 ± 1.9 72.5 ± 1.4 95.9 ± 0.5 81.8 ± 1.0 46.3 ± 4.2 58.5 77.1 ± 1.0 18.9

Oakley
θ= 4032

75.9 ± 1.0 49.3 ± 1.8 72.2 ± 1.3 94.4 ± 0.5 81.2 ± 1.0 53.1 ± 4.1 52.9 76.0 ± 1.0 17.9

Cole-Kripke6 75.4 ± 1.1 45.0 ± 1.8 71.1 ± 1.4 96.7 ± 0.4 81.2 ± 1.0 40.2 ± 3.7 63.5 79.2 ± 1.0 21.0

Sazonov9 75.2 ± 1.0 73.3 ± 1.6 79.9 ± 1.3 75.5 ± 1.4 76.7 ± 1.2 149.2 ± 7.7 58.7 54.9 ± 1.3 9.1

Oakley
θ= 8032

73.9 ± 1.1 41.2 ± 1.7 69.7 ± 1.4 96.9 ± 0.4 80.3 ± 1.0 35.9 ± 3.2 67.4 80.9 ± 0.9 22.7

Sadeh5 73.4 ± 1.2 38.3 ± 1.8 69.1 ± 1.4 98.3 ± 0.3 80.3 ± 1.1 26.3 ± 3.1 76.5 83.0 ± 0.9 24.7

Webster28 73.3 ± 1.2 38.2 ± 1.8 69.0 ± 1.4 98.2 ± 0.3 80.3 ± 1.1 27.5 ± 3.0 75.3 83.0 ± 0.9 24.7

Group average 75.1 ± 1.3 49.6 ± 10.4 72.5 ± 3.3 92.9 ± 6.6 80.4 ± 1.3 59.2 ± 35.4 61.3 ± 10.6 75.0 ± 8.2 18.6 ± 5.1

Rescoring rules applied to traditional algorithms

Resc. Oakley
θ= 40

80.3 ± 0.9 68.3 ± 1.9 79.9 ± 1.3 88.1 ± 0.9 83.1 ± 1.0 93.2 ± 6.6 37.7 64.4 ± 1.2 9.0

Resc. Cole-Kripke 80.2 ± 1.0 65.7 ± 2.0 78.9 ± 1.3 89.9 ±0.8 83.3 ± 1.0 83.5 ± 6.3 40.0 66.6 ± 1.2 10.2

Resc. Scripps Clinic 80.1 ± 1.0 70.4 ± 1.9 80.7 ± 1.3 86.3 ± 1.1 82.6 ± 1.0 102.8 ± 7.5 41.8 62.5 ± 1.3 9.1

Resc. Oakley
θ= 80

79.3 ± 1.0 59.8 ± 2.0 76.6 ± 1.4 92.8 ± 0.6 83.2 ± 1.0 65.0 ± 5.4 46.4 70.7 ± 1.1 13.1

Resc. Sadeh 79.1 ± 1.0 59.4 ± 2.0 76.5 ± 1.4 92.8 ± 0.7 83.1 ± 1.0 64.1 ± 5.7 49.2 70.9 ± 1.2 13.5

Resc. Webster 79.0 ± 1.0 58.9 ± 2.0 76.2 ± 1.4 93.1 ± 0.7 83.0 ± 1.0 63.2 ± 5.5 48.9 71.3 ± 1.2 13.8

Resc. Oakley
θ= 10

77.8 ± 1.0 81.6 ± 1.6 85.5 ± 1.3 73.8 ± 1.6 78.0 ± 1.3 163.9 ± 9.1 68.7 50.7 ± 1.5 10.8

Resc. Sazonov 68.1 ± 1.3 90.1 ± 1.3 87.8 ± 1.6 51.2 ± 2.1 62.3 ±2.0 258.4 ± 11.0 156.7 34.0 ± 1.6 24.7

Group average 78.0 ± 3.4 69.3 ± 9.5 80.3 ± 3.6 83.5 ± 12.1 79.8 ± 6.1 111.8 ± 56.8 61.2 ± 33.3 61.4 ± 10.9 13.0 ± 4.3

Machine learning algorithms

Extra trees 81.8 ± 1.0 68.1 ± 1.9 80.3 ± 1.3 90.4 ± 1.2 84.3 ± 1.1 85.4 ± 7.4 42.8 65.8 ± 1.4 10.3

Logistic regression 81.5 ± 1.0 67.2 ± 2.0 79.9 ± 1.3 90.7 ± 1.2 84.1 ± 1.1 83.2 ± 7.5 45.6 66.3 ± 1.4 11.1

Linear SVM 81.4 ± 1.1 68.0 ± 2.0 80.2 ± 1.3 89.9 ± 1.3 83.8 ± 1.1 87.2 ± 7.8 45.8 65.5 ± 1.5 10.8

Perceptron 78.4 ± 1.0 69.0 ± 1.8 79.4 ± 1.3 83.9 ± 1.4 80.7 ± 1.2 110.3 ± 8.0 44.0 61.7 ± 1.4 9.3

Group average 80.8 ± 2.5 68.1 ± 1.2 80.0 ± 0.6 88.8 ± 5.1 83.2 ± 2.7 91.5 ± 20.1 44.6 ± 2.3 64.8 ± 3.4 10.4 ± 1.2

Rescoring rules applied to machine learning algorithms

Resc. Log.
Regression

78.9 ± 1.2 80.7 ± 1.8 85.6 ± 1.2 75.9 ± 1.9 78.8 ± 1.5 152.8 ± 10.4 64.5 52.2 ± 1.7 10.6

Resc. extra trees 78.5 ± 1.2 82.0 ± 1.7 86.1 ± 1.2 74.2 ± 1.9 78.2 ± 1.5 160.4 ± 10.3 68.6 50.8 ± 1.7 11.0

Resc. linear SVM 78.3 ± 1.2 81.4 ± 1.7 85.8 ± 1.2 74.4 ± 2.0 77.9 ± 1.6 159.4 ± 10.6 69.6 51.1 ± 1.7 11.2

Resc. perceptron 73.4 ± 1.3 84.4 ± 1.5 85.7 ± 1.4 63.8 ± 2.2 70.8 ± 1.9 202.2 ± 11.3 104.4 43.7 ± 1.8 16.2

Group average 77.3 ± 4.1 82.1 ± 2.6 86.0 ± 0.3 72.1 ± 8.9 76.4 ± 6.0 168.7 ± 35.9 76.8 ± 29.5 49.5 ± 6.2 12.2 ± 4.2

Deep-learning algorithms

LSTM 100 83.1 ± 1.0 69.9 ± 2.0 81.6 ± 1.3 91.4 ± 1.1 85.5 ± 1.0 79.2 ± 7.6 43.9 65.6 ± 1.4 10.0

CNN 100 82.9 ± 1.0 68.8 ± 2.1 81.3 ± 1.3 91.7 ± 1.2 85.3 ± 1.1 78.3 ± 7.9 46.7 66.2 ± 1.5 10.8

LSTM 50 82.7 ± 1.0 70.1 ± 1.9 81.5 ± 1.3 90.5 ± 1.1 85.0 ± 1.0 85.6 ± 7.6 41.3 64.9 ± 1.4 9.6

CNN 50 82.5 ± 1.0 67.6 ± 2.0 80.5 ± 1.3 92.0 ± 1.1 85.1 ± 1.1 75.9 ± 7.4 46.6 66.9 ± 1.4 11.0

CNN 20 81.4 ± 1.0 66.5 ± 1.9 79.6 ± 1.3 90.9 ± 1.1 84.1 ± 1.1 81.9 ± 7.1 43.2 66.7 ± 1.4 10.8

LSTM 20 81.3 ± 1.0 65.0 ± 1.9 79.0 ± 1.3 92.0 ± 1.0 84.3 ± 1.0 75.3 ± 6.7 44.5 68.0 ± 1.3 11.4

Group average 82.3 ± 0.8 68.0 ± 2.1 80.6 ± 1.2 91.4 ± 0.7 84.9 ± 0.6 79.4 ± 4.1 44.4 ± 2.2 66.4 ± 1.1 10.6 ± 0.7

Rescoring rules applied to deep-learning algorithms

Resc. LSTM 100 81.2 ± 1.0 77.8 ± 1.8 84.8 ± 1.2 82.1 ± 1.5 82.3 ± 1.2 123.4 ± 9.4 47.2 57.1 ± 1.6 8.7

Resc. CNN 100 80.9 ± 1.0 78.3 ± 1.9 85.1 ± 1.2 81.1 ± 1.7 81.7 ± 1.3 128.1 ± 9.9 50.8 56.4 ± 1.7 9.3

Resc. CNN 50 80.6 ± 1.1 78.2 ± 1.8 84.8 ± 1.3 80.6 ± 1.7 81.4 ±1.3 130.0 ± 9.7 51.4 56.1 ± 1.6 9.3

Resc. LSTM 50 79.9 ± 1.0 80.1 ± 1.7 85.6 ± 1.2 78.0 ± 1.6 80.4 ± 1.3 142.9 ± 9.8 55.6 53.8 ± 1.6 9.5

Resc. LSTM 20 79.5 ± 1.1 79.9 ± 1.7 85.2 ± 1.2 77.5 ± 1.7 79.9 ± 1.4 145.2 ± 9.8 56.9 53.6 ± 1.6 9.6

Resc. CNN 20 78.4 ± 1.1 81.3 ± 1.7 85.7 ± 1.3 74.5 ± 1.8 78.2 ± 1.5 158.5 ± 10.2 66.8 51.3 ± 1.7 10.8

Group average 80.1 ± 1.1 79.3 ± 1.5 85.2 ± 0.4 79.0 ± 3.0 80.7 ± 1.6 138.0 ± 13.8 54.8 ± 7.2 54.7 ± 2.3 9.6 ± 0.7

Methods within each group are sorted by their mean accuracy score. The best results for each category are marked in bold. Note that for WASO and Sleep
Efficiency, the best results are the closest to the ground truth
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reaches high values for WASO or sleep efficiency does not
necessarily correctly assess one’s sleep quality. For that, we should
rely on the mean absolute error between an algorithm and the
ground truth for both WASO and sleep efficiency. The metrics that
best correlated with MAE WASO is F1 (r=−0.98, p < 0.001), while
the one that best correlates with MAE sleep efficiency is accuracy
(r=−0.93, p < 0.001).

Task Night&Day results: algorithm performance metrics during day
time and night
Task Night&Day results are shown in Table 2. Once again the
Manual Annotation method had the highest accuracy among the
baseline methods. For Task Night&Day, though, the performance
difference between the Manual annotationmethod and the Device
Algorithm was high: for example, the Manual Annotation accuracy
of 86.5 was 13% higher than Device Algorithm’s accuracy of 76.6.
The accuracy results of Always Wake and Always Sleep show how
the data now has more awake epochs (69.2%) than sleep ones.
Among the group of traditional algorithms, Table 2 shows that

in terms of accuracy score, Sadeh and Webster fall short even to
the Always Wake method by not being significantly different from
it (p= 0.37 and p= 0.55, ∀n= 363). Sazonov achieved the highest
accuracy score for Task Night&Day (82.7), even though it did not
do well for Task Night, having an accuracy score lower than the
Device Algorithm for Task Night. Oakleyθ=10 and Scripps Clinic
algorithms were the only ones that outperformed the Device
Algorithm baseline for accuracy in both tasks.
The rescoring rules applied in addition to the traditional

algorithms improved both accuracy and F1 score for all methods
in Task Night&Day, contrary to the results of Task Night, with the
sole exception of accuracy and F1 score for Resc. Sazonov, which
decreased, respectively, from 82.7 to 82.5 and from 71.7 to 62.4.
The minimum accuracy of the rescoring methods was found for
Resc. Webster (82.2), which was still significantly higher than the
accuracy of the Device Algorithm (76.5, p= 0.005, n= 363).
The performance of the ML algorithms shown in Table 2 for

Task Night&Day is similar to the performance of the same
algorithms for Task Night, i.e., the ranking with regards to accuracy
and F1 for the four ML algorithms studied was the same: Extra
Trees followed by the Logistic Regression, Linear SVM and the
Perceptron. The best accuracy of 86.7 for the Extra Trees was
significantly higher than the Device Algorithm (p < 0.001, n= 363),

but not significantly different from the Manual Annotation (p=
0.95, n= 363).
The rescoring methods applied in addition to the ML algorithms

improved the accuracy and F1 scores for all but one method, the
Extra Trees. The highest accuracy was 87.3 for the Resc. Logistic
Regression, which was significantly higher than the Manual
Annotation (p < 0.001, n= 363), while its F1 was not found
significantly different from the Manual Annotation (p= 0.79,
n= 363). Table 2 also shows that the average accuracy of the
ML group went from 83.1 to 86.4 (improvement of 3%) when
using the rescoring rules.
Table 2 shows that the DL algorithms can reach an accuracy as

high as 88.2 for LSTM 100 without rescoring rules and 87.6 for CNN
100 with rescoring rules. LSTM 100, CNN 100, and CNN 50 were the
only approaches performing better than the Manual Annotation
for accuracy, but the difference was not statistically significant (p
= 0.287, p= 0.495, and p= 0.528, ∀n= 363). Finally, similar to Task
Night, differences between CNN 100 and LSTM 100 were not
significant for accuracy (p= 0.734, n= 363) and F1 (p= 0.995, n=
363).

DISCUSSION
In this study, we introduced a new benchmark for sleep-wake
scoring algorithms, based on data from the MESA Sleep study.17,18

While the original MESA Sleep dataset can be obtained upon
request from https://sleepdata.org/datasets/mesa, we make freely
available for download all the scripts required to process the data
and generate the same datasets and results reported here for both
Task Night and Night&Day, at https://github.com/qcri/
sleep_awake_benchmark. By providing this resource, we hope
that future research in developing new sleep-wake scoring can be
easily facilitated.
The results of our experiments showed that the proprietary

algorithm used by the actigraphy device, although likely
optimized for it, did not perform the best for Task Night and
Night&Day. The average accuracy and F1 scores achieved by both
Oakleyθ=10 or Scripps Clinic algorithms were higher than the Device
Algorithm.
Our experiments validated the use of four ML algorithms, which

presented statistically significant improvements compared to the
Device Algorithm. It must be noted that in this work we devised
only features based on the distribution of activity counts. In the
Supplementary Material, we show our initial experiments with
features extracted from the demographic and clinical information
of the participants. More complex feature engineering, which can
likely improve the current results even further, is left as
future work.
Furthermore, we evaluated two state-of-the-art deep- learning

techniques (DL), such as CNN and LSTM. Owing to the success of
DL algorithms in areas such as computer vision, speech
recognition, and bioinformatics, new architectures are continually
being proposed. The use of a benchmark like the one proposed in
this paper can potentially accelerate the adoption of new
techniques in the sleep science field. Most of the traditional
algorithms, as well as the features devised in this work for the
traditional ML and DL algorithms, make use of future activity
counts, i.e., when predicting the epoch n, these algorithms use the
activity counts in proceeding epochs, n+ 1, n+ 2, and so on. The
only exception is the Sazonov algorithm (refer to the Supplemen-
tary Material for the description and formula of each algorithm).
Real-time applications should not use future activity counts.
However, the typical usage of sleep-wake scoring algorithms does
not require real-time predictions.
The experiments with sleep quality metrics in Task Night show

that the choice of scoring algorithm can highly influence the
interpretation of people’s sleep behavior. For example, while the
mean sleep efficiency of our cohort is 58% (as shown by the

Fig. 1 Pearson’s r correlation coefficients between the results of
different metrics for Task Night (shown in Table 1) (n= 41)
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Table 2. Results (Mean ± 95% confidence interval) for Task Night&Day

Method Accuracy Specificity Precision Sensitivity F1

Baselines

Manual annotations 86.6 ± 2.2 81.4 ± 2.9 71.0 ± 4.0 98.6 ± 1.0 81.6 ± 3.0

Device algorithm 76.6 ± 2.8 68.9 ± 3.7 58.6 ± 3.9 94.0 ± 1.7 71.2 ± 3.2

Always wake 69.2 ± 1.8 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Always sleep 30.8 ± 1.8 0.0 ± 0.0 30.8 ± 1.8 100.0 ± 0.0 46.7 ± 2.2

Traditional algorithms

Sazonov9 82.7 ± 2.0 85.9 ± 2.5 70.9 ± 4.4 75.5 ± 4.2 71.7 ± 3.9

Oakley
θ= 1032

81.4 ± 2.3 79.1 ± 3.1 65.9 ± 4.0 86.8 ± 2.9 73.7 ± 3.3

Scripps Clinic21 77.4 ± 2.9 69.2 ± 3.9 59.5 ± 4.0 95.9 ± 1.5 72.4 ± 3.2

Oakley
θ= 4032

76.2 ± 2.7 68.4 ± 3.7 58.1 ± 3.8 94.1 ± 1.6 70.9 ± 3.1

Cole-Kripke6 74.6 ± 2.9 64.9 ± 4.0 56.4 ± 3.8 96.6 ± 1.3 70.2 ± 3.2

Oakley
θ= 8032

71.6 ± 2.9 60.5 ± 3.9 53.3 ± 3.6 96.7 ± 1.1 67.8 ± 3.1

Sadeh5 70.8 ± 3.2 58.7 ± 4.3 52.7 ± 3.7 98.2 ± 1.1 67.6 ± 3.3

Webster28 70.3 ± 3.2 58.0 ± 4.3 52.2 ± 3.6 98.1 ± 1.1 67.2 ± 3.2

Group average 75.6 ± 3.9 68.1 ± 8.4 58.6 ± 5.6 92.7 ± 6.6 70.2 ± 2.0

Rescoring rules applied to traditional algorithms

Resc. Oakley
θ= 10

86.2 ± 1.9 90.8 ± 2.3 79.5 ± 4.4 75.8 ± 4.0 76.0 ± 3.7

Resc. Scripps Clinic 85.8 ± 2.3 84.9 ± 3.1 73.7 ±4.5 87.6 ± 2.6 78.8 ± 3.3

Resc. Oakley
θ= 40

85.3 ± 2.3 83.6 ± 3.1 72.0 ± 4.3 89.0± 2.2 78.6 ± 3.2

Resc. Cole-Kripke 84.8 ± 2.4 82.0 ± 3.3 70.8 ± 4.4 91.0 ± 2.1 78.6 ± 3.2

Resc. Oakley
θ= 80

82.9 ± 2.6 78.3 ± 3.5 67.2 ± 4.3 93.2 ± 1.7 77.0 ± 3.2

Resc. Sadeh 82.6 ± 2.8 77.7 ± 3.8 67.1 ± 4.5 93.4 ± 1.9 76.9 ± 3.4

Resc. Sazonov 82.5 ± 1.9 95.1 ± 1.5 80.2 ± 6.2 53.5 ± 5.6 62.4 ± 5

Resc. Webster 82.2 ± 2.8 77.1 ± 3.8 66.4 ± 4.4 93.8 ± 1.8 76.5 ± 3.3

Group average 84.0 ± 1.4 83.7 ± 5.4 72.1 ± 4.5 84.7 ± 11.6 75.6 ± 4.5

Machine learning algorithms

Extra trees 86.7 ± 2.2 88.3 ± 2.6 76.0 ± 4.8 82.3 ± 5.3 77.3 ± 4.8

Logistic regression 83.7 ± 2.6 79.1 ± 3.4 67.9 ± 4.3 94.3 ± 3.1 77.6 ± 3.6

Linear SVM 82.3 ± 2.7 76.7 ± 3.6 65.9 ± 4.2 95.4 ± 2.7 76.6 ± 3.5

Perceptron 79.7 ± 2.5 75.1 ± 3.3 62.7 ± 4.0 90.2 ± 2.6 72.9 ± 3.4

Group average 83.1 ± 4.6 79.8 ± 9.4 68.1 ± 9.0 90.5 ± 9.5 76.1 ± 3.5

Rescoring rules applied to machine learning algorithms

Resc. logistic regression 87.4 ± 2.2 87.4 ± 2.6 76.3 ± 4.4 87.2 ± 4.4 79.7 ± 4.2

Resc. linear SVM 86.9 ± 2.2 86.1 ± 2.8 75.0 ± 4.5 88.5 ± 3.8 79.7 ± 3.9

Resc. perceptron 86.0 ± 2.1 87.4 ± 2.7 75.5 ± 4.5 82.8 ± 4.0 77.4 ± 3.8

Resc. extra trees 85.4 ± 2.0 93.8 ± 1.9 80.9 ± 5.7 64.3 ± 6.5 69.3 ± 6.1

Group average 86.4 ± 1.5 88.7 ± 5.54 76.9 ± 4.3 80.71 ± 17.81 76.5 ± 7.9

Deep-learning algorithms

LSTM 100 88.2 ± 2.0 88.9 ± 2.5 78.5 ± 4.3 86.4 ± 3.9 80.8 ± 3.6

CNN 100 87.7 ± 2.3 86.6 ± 2.9 76.2 ± 4.4 90.1 ± 4.1 80.8 ± 4.0

CNN 50 87.6 ± 2.2 87.7 ± 2.7 76.7 ± 4.4 87.4 ± 4.2 80.1 ± 4.0

LSTM 50 86.4 ± 2.2 86.2 ± 2.9 74.9 ± 4.4 86.8 ± 3.2 79.1 ± 3.4

CNN 20 85.9 ± 2.2 86.1 ± 2.8 74.0 ± 4.4 85.5 ± 4.1 77.8 ± 3.9

LSTM 20 85.8 ± 2.2 87.2 ± 2.8 75.2 ± 4.5 82.5 ± 4.0 77.2 ± 3.8

Group average 86.9 ± 1.1 87.1 ± 1.1 75.9 ± 1.7 86.5 ± 2.6 79.3 ± 1.6

Rescoring rules applied to deep-learning algorithms

Resc. CNN 100 87.6 ± 2.0 90.9 ± 2.2 80.4 ± 4.4 80.0 ± 5.0 78.1 ± 4.5

Resc. LSTM 100 87.5 ± 1.9 92.2 ± 2.0 81.8 ± 4.3 76.3 ± 5.0 77.0 ± 4.4

Resc. CNN 50 87.2 ± 1.9 92.1 ± 2.1 81.4 ± 4.3 75.9 ± 5.3 76.4 ± 4.8

Resc. LSTM 50 86.9 ± 1.9 91.5 ± 2.2 80.7 ± 4.4 75.8 ± 4.6 76.4 ± 4.0

Resc. CNN 20 86.0 ± 2.0 92.5 ± 2.0 81.1 ± 4.6 70.6 ± 5.4 73.3 ± 5.0

Resc. LSTM 20 84.7 ± 1.9 93.6 ± 2.0 82.1 ± 4.7 63.6 ± 5.5 69.3 ± 5.1

Group average 86.7 ± 1.2 92.1 ± 1.0 81.3 ± 0.7 73.7 ± 6.1 75.1 ± 3.4

Methods within each group are sorted by their mean accuracy score. Highest results for each category are marked in bold (n= 363)
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ground-truth), the device algorithm reports a sleep efficiency of
73%. An algorithm that systematically overestimates sleep
efficiency might fail to identify and report sleep-related diseases.
Conversely, an algorithm that systematically underestimates sleep
efficiency might cause too many false-positive, which can lead to
unnecessary clinical evaluations. Noteworthy, the traditional
formulas showed a larger variance in terms of WASO (from
26min to 149min) and sleep efficiency (from 54 to 82%) than ML
and DL algorithms. For sleep efficiency, ML algorithms vary only
from 61 to 66%, while the DL algorithms vary from 64 to 67%.
Finally, significant improvements in the clinical metrics can be
achieved by new algorithms. When using the device algorithm,
the average absolute error of sleep efficiency compared to the
ground truth is 17pp, while the average error for WASO is 53 min.
By using the best DL algorithm, LSTM 100, the sleep efficiency
error goes down to <10pp (70% better) while WASO error goes
down to 44min (20% better).
The Task Night, which studies sleep-wake scoring algorithms to

be exclusively used during sleep, and Task Night&Day, which
studies sleep-wake algorithms to be used on a 24-h period, are not
the only possibilities with this dataset. Other tasks, such as
predicting the sleep and awake onset, which are essential for the
assessment of sleep quality, are left as future work as there is a
wide range of potential sleep quality metrics. Nevertheless, the
results of Task Night and Night&Dday show that those tasks have
significant differences. For example, our experiments show that
the use of Webster’s rescoring rules should be limited to the
traditional algorithms for Task Night, while they worked well for
most of the algorithms for Task Night&Day, avoiding over-
estimation of sleep. Based on our results, we advocate that the
algorithm of modern actigraphy devices and wearables could
adaptively switch from an algorithm specialized for the night (as in
Task Night) to another specialized for the day (as in Task
Night&Day) depending on the time of the day.
A primary limitation of our work is that, although the MESA

Sleep study includes a diverse population from different
ethnicities, it is exclusively composed of adults. An ideal cohort
for sleep-wake scoring should include other populations, such as
toddlers, kids or adolescents, as well as, people with disorders that
affect movements, such as Parkinson’s disease,24 or specific sleep
disorders, such as insomnia,25 sleep apnea or restless legs
syndrome. The expansion of the cohort proposed in our work is
highly desirable and appreciated, but is left as future work.
Additionally, actigraphy as a device is incapable of discriminating
the different sleep stages (e.g., sleep stage 1, stage 2, stage 3, and
REM sleep). Another minor limitation is that the nights for which
the participants undergo PSG are usually easier to interpret than
nights “in the wild” as PSG imposes a normal sleep and wake time,
which may be absent for some of these subjects. An additional
constraint of this study is that it is based only on one actigraphy
device (Philips Actiwatch Spectrum). We need to be aware that the
device used can impact the generalization of the results. Although
some studies use consumer-grade devices, there are concerns
with the accuracy of these devices, among other factors.26

Finally, given the great importance of sleep to health and
human functioning, developing accurate analytic approaches for
actigraphy data is the key to precisely determine sleep quality.
This is also important given the increasing use of wearable devices
that use different algorithms to assess and optimize sleep.

METHODS
The methodology used in this study has several components, which are
introduced in this section. The main component of this study is the MESA
Sleep dataset. In a dataset such as this one, researchers usually devise and
evaluate new algorithms to score nocturnal sleep-wake epochs. For our
study, we identified this common task as Task Night and proposed to
extend the benchmark of such algorithms to a 24-h period, our Task

Night&Day. The use of large datasets opens the possibility of validating,
comparing and evaluating new approaches, in particular, machine learning
algorithms. This section also describes the state-of-the-art approaches
validated in this work and evaluation metrics used in our experiments.

MESA sleep dataset
The MESA Sleep17,18 experiments were conducted using the Compumedics
Somte System to record PSG data and the Actiwatch Spectrum, Philips
Respironics to record actigraphy data. The data was acquired in six field
centers that are located at different places across the United States.
Institutional review board approval was obtained at each participating center
and written informed consent was obtained from all participants.17,18,27

In this work, we used the synchronized PSG and actigraphy data for
1817 subjects out of the initial 2237 subjects that participated in the MESA
Sleep study. The data from the other 420 subjects were discarded because
of at least one of the following reasons: (1) PSG and actigraphy studies did
not occur concurrently;20 (2) data failed the minimal actigraphy or PSG
quality standard (i.e., <3 h of useable data);20 (3) PSG recorded for over
16 h. This last criterion was adopted in this work to increase the quality of
the dataset by making it consistent w.r.t. all participants. This resulted in
the removal of only nine participants.
The PSG and actigraphy records were synchronized in 30-s epochs, and

the 1817 subjects were randomly split into a training set of 1454 subjects
—80% of the subjects—and a test set of 363 subjects—the other 20%. The
training set was used to tune and optimize model hyperparameters, i.e.,
the set of tunable parameters that control the quality of the model (e.g.,
number of leaves in a tree, the learning rate of an algorithm) in terms of
training accuracy, generalization performance and prevention of over/
under-fitting, while the test set was used to obtain the results reported in
this work. A summary of the statistics for the training and test set are
shown in Table 3.

Sleep-wake tasks
In this work, we propose two complementary tasks using the synchronized
PSG and actigraphy data of the MESA Sleep dataset.

Task Night. Traditionally, actigraphic sleep-wake scoring algorithms are
compared to PSG gold standard with overnight experiments only (e.g., refs
5,6,28). For instance, apart from the Granovsky algorithm13 of Table S1, all
others were devised and optimized for scoring sleep-wake patterns during
the period that PSG is also used. We name this typical task—the direct
comparison of actigraphy algorithms with PSG—as Task Night. Note that
this is also the usual setting in validation studies (e.g., refs 7,8,22). As
common in the literature, the activity counts are adjusted to 30-s epochs
and synchronized to the PSG signals. The PSG-identified sleep periods
(sleep phases 1, 2, 3, 4, and rapid eye movement (REM)) were scored as
sleep, while awake periods were scored as wake. These two non-
overlapping periods are coded here into numerical scores: 1 for sleep
and 0 for wake. With recordings starting when the PSG equipment was
turned on, and finishing when the PSG was turned off, a total of 2,266,659
30-s epochs were recorded from the 1817 subjects. Thus, our training
dataset (80% of the whole cohort) comprised of over 1.75 million samples.

Task Night&Day. During night time, traditional actigraphy scoring
algorithms are known for their high sensitivity (i.e., algorithms score most
of the actual sleep as sleep) and low specificity (i.e., a limited proportion of
all epochs are classified as wake8,29). During the day, actigraphy scoring
algorithms over detect naps, as epochs with low activity tend to be scored
as sleep.30,31 In Task Night&Day, we propose to investigate the behavior of
different scoring algorithms both during night and day by extending the
Task Night data to include epochs before and after the use of PSG. We
include all actigraphy data recorded up to 8 h before and after PSG was
conducted. While PSG annotations are the gold standard used in Task
Night, these annotations are not provided to individuals during the day.
Instead of simply assuming that individuals are awake in the 8 h after PSG
was conducted, we take advantage of the manual annotations that are
provided in the original MESA dataset. The expert annotations were
collected following a clinical research protocol in which the expert is
instructed to set the beginning and end of the rest interval based on
multiple signals, which include drops/increases in activity counts, as well as
event markers, sleep diaries, and light levels.19,20 Two experts scored the
MESA dataset with an inter-scorer reliability larger than 90% (n= 19).19,20

We assume that all epochs during naps in the day period were sleep epochs.
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Figure 2 shows the activity counts for one subject (MesaID 345) randomly
selected from the dataset. The data lying between the yellow lines
correspond to Task Night: it is the time range when both actigraphy and
PSG were used. The extended data outside this range (up to 8 h before and
after PSG) is also used in Task Night&Day. Note that in this example, the
subject started using the actigraphy device just a few hours before the sleep
period was recorded with the PSG.

Scoring algorithms
In this section, we start by discussing the role of traditional sleep-wake
scoring algorithms. We also present the rescoring rules, a set of rules to
amend known shortcomings of the traditional algorithms, as well as
machine learning approaches. All the reviewed algorithms are system-
atically evaluated in our experiments.

Traditional algorithms. A number of sleep-wake scoring algorithms were
devised in the previous 40 years. These scoring algorithms aim to estimate
whether the user wearing the actigraphy device was asleep or awake at a
given epoch T based on the activity counts measured by the actigraphy
device.
In this work, we study six of these algorithms: Webster,28 Cole-Kripke

algorithm,6 Sadeh,5 Oakley,32 Sazonov,9 Scripps Clinic.21 The historical
information about each one of these algorithms, as well as their details,
is described in the Supplementary Material. Also note that Table S1
summarizes and compares the datasets used to devise the traditional
algorithms to the dataset used in this work.

Rescoring rules. Webster et al.28 detected that the most common error in
their scoring method was scoring wake as sleep. They proposed a set of
simple rescoring rules to correct for such systematic errors. Their set of
rules were posteriorly validated by different researchers.33

In this work, we systematically evaluate their set of rules by applying
them to each of the evaluated scoring methods. Their five rules can be
defined as: (R1) after at least four epochs scored as wake, the first epoch
scored sleep is rescored wake; (R2) after at least ten epochs scored as
wake, the first three epochs scored sleep are rescored wake; (R3) after at
least 15 epochs scored as wake, the first four epochs scored sleep are
rescored wake; (R4) six epochs or less scored sleep surrounded by at least
ten epochs (before or after) scored as wake are rescored wake; and (R5) ten
epochs or less scored as sleep surrounded by at least 20 epochs (before or

after) scored as wake are rescored wake. These five rules were applied
sequentially from (R1) through (R5) as previously done by Cole et al.6.

Machine learning algorithms. Machine learning (ML) and deep-learning
(DL) techniques have been successively used in many domains, including
sleep science,11,13 to discover and classify patterns in the data. These
techniques aim to learn with data, i.e., they create a mathematical model
after a number of learning examples (training set). These learned models
can be used to make predictions when a new set of data is used (test set).
Tilmanne et al.,11 for example, investigated the use of two ML techniques,
Multilayer Perceptrons and Decision Trees, as sleep-wake scoring
algorithms, finding them more accurate than Sazonov and Sadeh’s
algorithms. Granovsky et al.13 employed a state-of-the-art DL technique,
Convolutional Neural Networks (CNN),34 to score sleep-wake stages based
on actigraphy data of 35 chronic cluster headache patients. Granovsky
et al. results are promising, although, different from all other related work,
their evaluation was not conducted with PSG as ground truth, thus not as
fine-grained.
In this work, we evaluate both ML and DL techniques. We investigate a

variety of ML techniques: Logistic Regression,35 Support Vector Machines
(SVM),36 Extra Trees37, and Perceptron,38 all of which have been successfully
employed in tasks in the bioinformatics domain, such as protein function
prediction,39,40 gene regulatory network inference41–43 and human activity
prediction.44 In case of DL techniques, we investigate Convolutional Neural
Networks (CNN), which can capture local contextual features, and long
short-term memory (LSTM)45 recurrent network, which can not only capture
local information but also retain long-term dependencies.
The feature set used by the ML techniques follows previous work.11 We

manually devised a total of 370 features based on the raw signal extracted
from the actigraphy device. For the current epoch T, apart from the raw
value and natural logarithm value of the activity count at T, features are
based both on a centered and non-centered (i.e., considering only activity
counts in previous epochs) sliding window of N epochs (with 1 ≤ N < 20).
For each sliding window, we calculated summary statistics such as the
mean, variance and standard deviation of the activity counts of the window.
Owing to the fact that the DL techniques used—CNN and LSTM—are

able to infer new features from the data, their input is a window of a fixed
size (either 20, 50 or 100) containing the raw signal from the actigraphy
device. When we run multi-layered CNNs with multiple filters, we capture
non-linear interactions between adjacent raw activity counts and obtain a
new vector space representation for the raw signals. Similarly, with LSTMs,
we abstract long-term and short-term raw activity-based non-linear
dependencies in a new vector space, which helps to discriminate sleep
stage from wake state.
A full list and examples of the features set used in this work is presented

in the Supplementary Material.

Evaluation metrics
In this work, we adopted commonly used metrics to evaluate the
performance of the scoring algorithms: accuracy, sensitivity, specificity,
precision, F1 score, area under the receiver operating curve, and area under
the precision-sensitivity curves. As done in other works in the litera-
ture,8,11,12,22 the sleep-wake scoring task is treated as a binary classification
in which the positive label is sleep and the negative label is awake. This
way, an algorithm with a high score for precision, for example, is an
algorithm that correctly classifies sleep epochs as sleep. A detailed
description of the metrics is shown in the Supplementary Material. Tests of
statistical significance were conducted with a two-tailed t-test.46

In particular, for Task Night, we investigated two additional metrics for
sleep quality, which are of clinical relevance. They are the number of
minutes wake after sleep onset (WASO) and the sleep efficiency. Sleep
efficiency is calculated as the percentage of sleep epochs in the entire
record. We used the first epoch recorded as sleep by PSG as sleep onset
epoch for WASO, whereas we used the entire record to calculate sleep
efficiency. Both metrics are frequently used in the literature.6,22,47,48

Table 3. Summary statistics of the MESA Sleep dataset

Dataset Total Female Male White Chinese Black Hispanic Age (mean ± Std.) Min. age Max age

Training 1454 799 (55%) 539 (37%) 157 (11%) 404 (28%) 354 (24%) 655 (45%) 69.36 ± 9.18 55 94

Test 363 186 (51%) 177 (49%) 126 (35%) 44 (12%) 102 (28%) 91 (25%) 69.24 ± 8.79 54 92

Fig. 2 Activity counts by time for MesaID 345. Each point
corresponds to the activity count measured by the actigraphy
device for an interval of 30 s. The yellow lines mark the borders of
the data used for Task Night—the start and end of PSG period (in
this case, from 9:15 p.m. to 09:24 a.m.). The extended period before
and after the use of PSG (from 9:00 p.m. to 6:00 p.m. in the next day)
is the data used for Task Night&Day
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We also calculated the mean absolute error (MAE) between WASO and
sleep efficiency across participants for each algorithm, comparing the
performance of an algorithm with the ground truth data.

Baseline
In our experiments for both Task Night and Night&Day, we use four
different baselines for comparison: (1) Device algorithm: the proprietary
algorithm of the actigraphy device used in the MESA Sleep experiments—
MESA documentation states that Oakley θ= 40 was the algorithm used by
the device;20 (2) Manual Annotation: the manual annotation made by an
expert without knowledge of the PSG annotations, solely based on the
device algorithm, participant’s sleep journals and variables such as the
activity patterns and the time of the day19,20 – the same used in Task
Night&Day for the day period; (3) Always Sleep: an algorithm that classifies
any epoch as Sleep; and (4) Always Wake: an algorithm that classifies any
epoch as Wake. Additionally, for Task Night, we show the performance of an
oracle method that always predicts the correct labels (Ground Truth). This is
useful to inspect the expected values for WASO and sleep efficiency metrics.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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