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Epithelial to mesenchymal transition transcription factors (EMT-TFs) such as SNAI2 have been found to be
expressed endogenously in epidermal stem and progenitor cells and downregulated upon differentiation. The
presence of SNAI2 in progenitor cells is necessary to repress the expression of differentiation genes by binding
directly to their promoters. SNAI2 is downregulated upon differentiation which allows expression of differentia-
tion genes. Furthermore overexpression of SNAI2 can block the differentiation process suggesting that the levels
of SNAI2 are crucial to epidermal cell fate decisions. To address on a genomewide level the genes that are impact-
ed by changing the levels of SNAI2, we performedmicroarray analysis on SNAI2 knockdown and overexpressing
epidermal progenitor cells. Here we provide detailed methods and analysis on these microarray data which has
been deposited in Gene Expression Omnibus (GEO): GSE55269.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications
Organism/cell line/tissue
 Homo sapiens/primary human neonatal keratinocytes
from foreskin
Sex
 Male

Sequencer or array type
 Affymetrix Human Genome U133 Plus 2.0 Array

Data format
 Raw and processed

Experimental factors
 Primary human keratinocytes knocked down or

overexpressing SNAI2 compared to control shRNA
or LACZ overexpressing retroviral vectors.
Experimental features
 We performed microarray analysis on control and
SNAI2 knockdown cells to determine differentially
expressed genes. Furthermore we also performed
the same analysis on control LACZ overexpressing
and SNAI2 overexpressing cells to determine gene
expression changes with increased SNAI2 levels.
Consent
 N/A

Sample source location
 La Jolla, CA, USA
Direct link to deposited data

The deposited data can be found at: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE55269.
n Diego 9500 Gilman Drive La

. This is an open access article under
Experimental design, materials and methods

Tissue culture

Primary human neonatal keratinocytes were derived from newborn
foreskin as previously described [1,2]. Alternatively keratinocytes can
also be purchased from a variety of vendors including Cell Applications,
Lonza, and ATCC. Cells were cultured in KCSFM (Life Technologies) sup-
plemented with bovine pituitary extract (BPE) and epidermal growth
factor (EGF). Amphotropic phoenix cells (ATCC) were cultured in 10%
fetal calf serum in DMEM.

Retroviral gene transfer

3 μg of each retroviral construct (overexpression or knock-
down) was transfected (Fugene 6) into phoenix cells plated on 6
well plates. Viral supernatants were collected 48 h after transfec-
tion and placed on keratinocytes. Polybrene (5 μg/ml) was added
and cells were spun for 1 h at 1000 rpm. After spinning, the cells
were washed once in 1× PBS and then replaced with KCSFM. Cells
were transduced a total of two times on consecutive days [3].
Cells were transferred to a larger dish a day following the last
transduction. Puromycin (2 μg/ml) was added to cells transduced
with the pSuper Retro vector to express shRNAs targeting SNAI2
or control [4,5]. No puromycin was added to cells transduced
with the LZRS retroviral vector to overexpress control (LACZ) or
SNAI2 [5].
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RNA isolation

Total RNA was isolated from cells expressing control shRNAs and
shRNAs to knockdown SNAI2. RNA was also harvested from control
LACZ and SNAI2 overexpressing cells. Cells were harvested 7 days
post-transduction using the GeneJet RNA purification kit (Thermo
Scientific). RNA quality and quantity were determined by using a
NanoDrop 2000 (Thermo Scientific). One microgram of total RNA
was reverse transcribed and quantitative PCR was performed to con-
firm microarray results. Samples were normalized to GAPDH.

Microarray and gene expression analysis

Microarray analysis was performed on biological duplicate samples.
Labeling of cDNA and hybridization to Affymetrix HG-U133 2.0 plus ar-
rays were performed at the University of California, San Diego's Gene
Chip Core Facility. The samples included: 1) GSM1333055, keratinocytes
with control shRNA replicate 1, 2) GSM1333056, keratinocytes with
control shRNA replicate 2, 3) GSM1333057, keratinocytes with SNAI2
shRNA replicate 1, 4) GSM1333058, keratinocytes with SNAI2 shRNA
replicate 2, 5) GSM1333059, keratinocytes overexpressing LACZ
control replicate 1, 6) GSM1333060, keratinocytes overexpressing
LACZ control replicate 2, 7) GSM1333061, keratinocytes overex-
pressing SNAI2 replicate 1, and 8) GSM1333062, keratinocytes over-
expressing SNAI2 replicate 2. All samples were normalized through
the Robust Multi-array Average (RMA) which utilizes a correction
method based on the distribution of perfect match values among
the probes through median polish [6,7]. Differentially expressed
genes were identified using significance analysis of microarrays 3.0
with a false discovery rate of less than 5%, an average fold change
of ≥2 in any group, and an average raw expression of ≥100 in any
group [8].

R workflow for differential gene expression analysis

Below is a detailed workflow for RMA normalization as well as de-
termining differentially expressed genes using the parameters stated
in “Microarray and gene expression analysis” written in R.

Step 1. Normalization
library(affy)
library(siggenes)
library(samr)
library(annotate)
library(hgu133plus2.db)
library(gplots)
get.geneb-function(row)
rowb-unlist(row)
genenameb-get(row[1], hgu133plus2SYMBOL)
return (genename)
ttest.rowb-function(row)
rowb-unlist(row)
y=row[1:2]
y=unlist(y)
n=row[3:4]
pvalue=t.test(y,n)$p.value
return (pvalue)
meanY.rowb-function(row)
rowb-unlist(row)
y=row[1:2]
y=unlist(y)
n=row[3:4]
meanY = mean(y)
return (meanY)
meanN.rowb-function(row)
rowb-unlist(row)
y=row[1:2]
y=unlist(y)
n=row[3:4]
meanN = mean(n)
return (meanN)
stdY.rowb-function(row)
rowb-unlist(row)
y=row[1:2]
y=unlist(y)
n=row[3:4]
stdY = sd(y)
return (stdY)
stdN.rowb-function(row)
rowb-unlist(row)
y=row[1:2]
y=unlist(y)
n=row[3:4]
stdN = sd(n)
return (stdN)
mean_gene_valueb-function(col){
colb-unlist(col)
colb-as.numeric(col)
mean_valueb-tapply(col, wholegenelistf, mean)
return (mean_value)
setwd(“/Users/gsen/Desktop/ConZNF2”) This is where your
files are stored on your desktop
normdatab-justRMA()
write.exprs(normdata,file=“normalized.txt”,sep = “\t”)
ab-read.delim(“normalized.txt”, header=T, sep=“\t”, as.is=T)
colnames(a)[1]=“AffyID”
aab-a[,2:ncol(a)]
meanYlistb-apply(aa, 1, meanY.row)
meanNlistb-apply(aa, 1, meanN.row)
aa=cbind(aa, meanYlist)
colnames(aa)[ncol(aa)]=“meanY”
aa=cbind(aa, meanNlist)
colnames(aa)[ncol(aa)]=“meanN”
aa=cbind(a[,1], aa)
colnames(aa)[1]=“AffyID”
# delete low response probes
aab-aa[((aa$meanYN6.64)|(aa$meanNN6.64)),]
aa$meanYb-NULL
aa$meanNb-NULL
write.table(aa,file=“normalized.txt”,sep=“\t”,row.names=
FALSE, quote=FALSE)

Step 2. SAM analysis
ab-read.delim(“normalized.txt”, header=T, sep=“\t”, as.is=T)
aab-a[,2:ncol(a)]
colnames(aa)[1]=“1”
colnames(aa)[2]=“1”
colnames(aa)[3]=“2”
colnames(aa)[4]=“2”
aab-as.matrix(aa)
yyb-colnames(aa)[1:4]
AffyIDb-a[,1]
data=list(x=aa,y=yy, geneid=AffyID, logged2=TRUE)
#data=list(x=aa,y=yy,geneid=
as.character(1:nrow(x)),genenames=
paste(“g”,as.character(1:nrow(x)), logged2=TRUE)
samr.objb-samr(data, resp.type=“Two class unpaired”,
nperms=100)
delta.tableb-samr.compute.delta.table(samr.obj,nvals=
100)
delta.table
# decide delta value from delta.table so that the FDR is less
than 5%
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delta = 0.319
fdc = 2
# only if you want to see the plot
samr.plot(samr.obj,delta, min.foldchange=fdc)
siggenes.tableb-samr.compute.siggenes.table(samr.obj, delta,
data, delta.table, min.foldchange=fdc, all.genes=FALSE,
compute.localfdr=FALSE)
#check out the table to see how many genes are up and how
many down
#siggenes.table$ngenes.up
#siggenes.table$ngenes.lo
siggenesb-siggenes.table$genes.up
siggenesb-rbind(siggenes, siggenes.table$genes.lo)
siggenesb-data.frame(siggenes)
write.table(siggenes,file=“sigprobes.txt”,sep=
“\t”,row.names=FALSE, quote=FALSE)
siggenesb-read.delim(file=“sigprobes.txt”,sep=“\t”, head-
er=T, as.is=T)
siggenes.allinfob-a[(siggenes$Row-1),]
siggenes.allinfob-cbind(siggenes.allinfo,
siggenes$Fold.Change)
colnames(siggenes.allinfo)[ncol(siggenes.allinfo)] =
“Fold.Change”
write.table(siggenes.allinfo,file=“sigprobes.txt”,sep=
“\t”,row.names=FALSE, quote=FALSE)
con.testb-siggenes.allinfo
con.test$Fold.Change=log(con.test$Fold.Change)/log(2)
wholelistb-apply(con.test,1,get.gene)
con.testb-cbind(wholelist, con.test)
#con.test[,1]=wholelist
colnames(con.test)[1] = “GeneID”
dim(con.test)
write.table(con.test,file=“sigprobes.txt”,sep=
“\t”,row.names=FALSE, quote=FALSE)
con.test.geneb-con.test[!apply(is.na(con.test), 1, any),]
wholegenelistb-con.test.gene[,1]
wholegenelistfb-factor(wholegenelist)
# if you want to use mean of all probes for same gene
con.test.meangeneb-
apply(con.test.gene[,3:6],2,mean_gene_value)
Fig. 1. Plot showing genes that are differentially expressed between SNAI2 knockdown
and control samples after RMAnormalization and analysis for differential gene expression
using SAM and greater than or equal to two fold change.
write.table(con.test.meangene,file=“siggenes.txt”,sep=
“\t”,row.names=TRUE, quote=FALSE)
dim(con.test.meangene)

Assessment of microarray data

After normalization and SAM analysis with two fold change to
identify differentially expressed genes a Samr plot can be used to
determine the quality of the data set. Fig. 1 shows the differentially
expressed genes between SNAI2 knockdown and control cells. In
red are genes upregulated and in green are genes downregulated
upon SNAI2 knockdown.

Validation of microarray data by qRT-PCR

In order to validate themicroarray data, qRT-PCRwas performed on
identified differentially expressed genes. These genes included differen-
tiation induced transcripts such as IVL, TGM1, SPRR1A, and GRHL3which
were upregulated in SNAI2 knockdown cells (Fig. 2).

Discussion

We describe here a data set containing the effects of differing
levels of SNAI2 on epidermal cell fate choices. This includes microar-
ray data with loss and gain of SNAI2 expression. Furthermorewe also
provide the R code for analysis of this data set or other data sets using
the Affymetrix U133 Plus 2.0 arrays. This analysis uses Robust Multi-
array Average normalization as well as Significance Analysis of Mi-
croarrays to identify differentially expressed genes. With loss of
SNAI2, epidermal progenitor cells prematurely expressed differenti-
ation genes. In contrast gain of SNAI2 expression inhibited baseline
differentiation expression. These data suggest that SNAI2 is critical
for epidermal progenitor function [5].
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