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Perturbation of biological networks is often observed during exposure to xenobiotics,
and the identification of disturbed processes, their dynamic traits, and dose–response
relationships are some of the current challenges for elucidating the mechanisms
determining adverse outcomes. In this scenario, reverse engineering of gene regulatory
networks (GRNs) from expression data may provide a system-level snapshot embedded
within accurate molecular events. Here, we investigate the composition of GRNs
inferred from groups of chemicals with two distinct outcomes, namely carcinogenicity
[azathioprine (AZA) and cyclophosphamide (CYC)] and drug-induced liver injury (DILI;
diclofenac, nitrofurantoin, and propylthiouracil), and a non-carcinogenic/non-DILI group
(aspirin, diazepam, and omeprazole). For this, we analyzed publicly available exposed
in vitro human data, taking into account dose and time dependencies. Dose–Time
Network Identification (DTNI) was applied to gene sets from exposed primary human
hepatocytes using four stress pathways, namely endoplasmic reticulum (ER), NF-κB,
NRF2, and TP53. Inferred GRNs suggested case specificity, varying in interactions,
starting nodes, and target genes across groups. DILI and carcinogenic compounds
were shown to directly affect all pathway-based GRNs, while non-DILI/non-carcinogenic
chemicals only affected NF-κB. NF-κB-based GRNs clearly illustrated group-specific
disturbances, with the cancer-related casein kinase CSNK2A1 being a target gene only
in the carcinogenic group, and opposite regulation of NF-κB subunits being observed in
DILI and non-DILI/non-carcinogenic groups. Target genes in NRF2-based GRNs shared
by DILI and carcinogenic compounds suggested markers of hepatotoxicity. Finally, we
indicate several of these group-specific interactions as potentially novel. In summary, our
reversed-engineered GRNs are capable of revealing dose dependent, chemical-specific
mechanisms of action in stress-related biological networks.

Keywords: gene regulatory networks, network inference, toxicity pathways, hepatotoxicity, transcription
networks

INTRODUCTION

In the last few years, investigation of biological processes disturbed by chemical exposure and its
potential adverse effects has become the main goal in toxicological assessments targeting hazard
identification and/or drug development. This strategy encompasses two steps: the first being
the identification of such processes/pathways and the second, the estimation of dose–response,

Frontiers in Genetics | www.frontiersin.org 1 October 2017 | Volume 8 | Article 142

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2017.00142
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2017.00142
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2017.00142&domain=pdf&date_stamp=2017-10-06
https://www.frontiersin.org/articles/10.3389/fgene.2017.00142/abstract
http://loop.frontiersin.org/people/444807/overview
http://loop.frontiersin.org/people/468595/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-08-00142 October 4, 2017 Time: 16:17 # 2

Souza et al. Network Inference in Chemical Exposure

dynamic relationships that may define the boundaries between
adaptive and adverse responses (Bhattacharya et al., 2011;
Middleton et al., 2017).

Although a substantial amount of mechanistic information
has been gained from applying high-throughput (HT)
technologies (e.g., transcriptomics, proteomics, and
metabolomics) to exposed in vitro models, the ability of
current methods to address the aforementioned challenges
has proven insufficient. Take, for instance, pathway analysis –
omnipresent in HT studies as means to identify biological
processes affected across different conditions. First, functional
annotation does not reflect the diversity of the human genome,
with the repertoire of pathways across multiple databases
being either comprised of general processes (e.g., metabolism,
signaling) or very specific responses (e.g., drug-related pathways)
(Khatri et al., 2012). The choice of arbitrary thresholds for fold
change and/or statistical significance, as well as stratification of
the input gene list by direction of expression are an additional
source of variation that influence the output qualitatively and
quantitatively.

A more realistic portrayal potentially loaded with novel
mechanistic insights can be achieved by reversely engineering
gene regulatory networks (GRNs) using expression data; in
contrast to pathways, GRNs are case specific, referencing multiple
types of physical and biochemical interactions among genes
and gene products (Madhamshettiwar et al., 2012), allowing
more detailed investigations by not (or minimally) relying on
prior knowledge. Previous investigations have attempted to
extract novel biological information from GRNs, the majority
focusing on the predictive value of (sub)networks and their
potential use as biomarkers (Schadt, 2009; Emmert-Streib
et al., 2014), which led to the discovery, for instance, of
striking dissimilarities between networks of smokers with
and without lung cancer (Wang et al., 2011). More than
molecular snapshots of a specific phenotype, GRNs are important
instruments to investigate the interface genotype–environment
(i.e., diet, drugs, and chemical exposure). Early studies with
Saccharomyces cerevisiae have shown that network interactions
undergo critical changes after challenging with a DNA damaging
agent, leading to extensive network rewiring (at least 70%
out of 80,000 tested genetic interactions) (Bandyopadhyay
et al., 2010). Other recent investigations employing low-
throughput gene expression data further indicated that gene–
gene interactions, although compound specific to some extent,
show similar patterns resembling toxic properties across
different chemicals – and incorporating interaction data into
classification algorithms increase prediction accuracy (Yamane
et al., 2016).

Recently, our research group has developed and validated a
tool for inferring GRNs from HT gene expression data during
chemical exposure, taking possible time and dose dependencies
into account (Hendrickx et al., 2016). By using ordinary
differential equations (ODEs), this method establishes a causal
link between external perturbations and gene–gene interactions
within a particular biological process, in addition to identifying
potentially novel interactions. In this study, we aimed to extract
mechanistic information from chemical-induced toxicity by

reversely engineering GRNs using HT gene expression data.
For this, we compare GRNs inferred from groups of chemicals
with distinct adverse effects, namely carcinogenicity and drug-
induced liver injury (DILI), to those generated by exposure
to non-adverse compounds. Through the reconstruction of
gene–gene interactions from four stress-related pathways (TP53,
ER, NRF2, and NF-κB), we aimed to gather causal evidence
for dose dependent, dynamic, and potentially novel biological
information related to chemical exposure.

MATERIALS AND METHODS

Dose–Time Network Identification (DTNI)
Method
Dose–Time Network Identification (DTNI) is a method
for inferring network interactions among genes through
ODEs that relate changes in gene expression over time
and dose and an external perturbation. DTNI requires
measurements from multiple doses and time points – not
necessarily sampled at equal intervals – and expression
values of a reduced gene set (preferentially less than 100
genes). DTNI can be applied to single chemicals but also
allows the use of group-wise approaches – in which a
consensus network is inferred for multiple compounds.
A detailed description of the method, its validation, and script
availability for MATLAB is described elsewhere (Hendrickx et al.,
2016).

Chemical Selection
In order to link network changes to chemical effects, we targeted
compounds with well-known (adverse) effects in humans.
We opted for three groups, two with different mechanisms
of toxicity – carcinogenicity and DILI – and one with no
weight of evidence for human carcinogenicity or DILI. Since
DTNI requires datasets with a minimum of three doses and
three time points, we used the Japanese database TG-GATEs
(Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
system1). TG-GATEs contains microarray data of hundreds of
compounds, generated in vitro (human and rat) and in vivo
(rat), tested at multiple doses and time points. We therefore
mined TG-GATEs for compounds matching the criteria of
full availability of sets (i.e., both replicates and all doses/time
points) and specific classification regarding carcinogenicity
or DILI. To also avoid methodological biases, we aimed
to create groups with fairly equal number of compounds;
based on these constraints, the carcinogenic group comprised
two chemicals [azathioprine (AZA) and cyclophosphamide
(CYC)], while DILI (diclofenac, propylthiouracil, and
nitrofurantoin) and non-carcinogenic/non-DILI (diazepam,
omeprazole, and aspirin) groups contained three chemicals
each (Table 1). Table 1 contains detailed information on
chemicals and evidence for their inclusion in their respective
groups.

1toxico.nibiohn.go.jp/english/
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TABLE 1 | Description of chemical groups used to infer gene regulatory networks
(GRNs).

Chemical abstracts

service (CAS) Group Evidence for inclusion

Azathioprine (446-86-6) Carcinogenic Classified as carcinogenic to

Cyclophosphamide
(6055-19-2)

humans by international agency
for research on cancer (IARC)

Diclofenac (15307-86-5) DILI Use is associated with

Nitrofurantoin (67-20-9) risk of acute liver injury1

Propylthiouracil (51-52-5)

Aspirin (50-78-2) Non-DILI/non- Clinical cases of acute

Diazepam (439-14-5 carcinogenic liver injury are very rare1

Omeprazole (73590-58-6) Not classifiable or not classified as
to its carcinogenicity by IARC

1 Information obtained from LiverTox database (livertox.nih.gov).

Preprocessing of In Vitro Microarray
Datasets
Raw files from each chemical set were downloaded from
TG-GATEs2 and preprocessed (background correction, log2-base
transformation, and normalization) through R scripts provided
on ArrayAnalysis (arrayanalysis.org) (Eijssen et al., 2013). Probes
were annotated using customCDF version 19 with Entrez
identifiers. To obtain differentially expressed genes (DEGs),
we used the R package LIMMA to perform moderated t-test
comparing mean intensities from exposed and time-matched
controls in all three doses tested. Detailed information from
datasets used in this study (accession numbers from microarrays
and respective compounds/dose/time points) is available on
Supplementary Data 1.

Selection of Biological Networks to Be
Assessed by DTNI
Given our goal to identify common features underlying (non-
)toxic mechanisms across chemicals, and DTNI’s requirement
for reduced gene sets, we opted for a group-wise approach for
evaluating how carcinogenic, DILI, and non-carcinogenic/non-
DILI compounds may (differentially) affect networks involved
in toxicological responses. Our selection involves known stress
pathways indicative of DNA damage (TP53), oxidative stress
(NRF2), endoplasmic reticulum (ER) stress, and inflammation
(NF-κB). From KEGG, we retrieved gene components from
pathways ER (166 genes, of which 158 were present in normalized
sets), TP53 (69 genes, of which 68 were present in normalized
sets), and NF-κB (94 genes, of which 89 were present in
normalized sets) – entries hsa04141, hsa04115, and hsa04064,
respectively. NRF2 genes (143, of which 126 were present
in normalized sets) were obtained from WikiPathways (entry
WP2884) (the list of genes for each pathway can be found in
Supplementary Data 1).

To gain insights into the activity of these pathways in the
groups tested, we performed an additional pathway analysis with

2toxico.nibiohn.go.jp/

all DEGs (FDR < 0.05 without fold change thresholds) from
each chemical using the database ConsensusPathDB (CPDB) and
its overrepresentation analysis tool (q-value < 0.05) (Kamburov
et al., 2013).

Network Inference of Selected Networks
through DTNI
For DTNI, we used scripts developed for use on MATLAB
(Hendrickx et al., 2016). For this, we used log2-transformed
ratios from all chemicals within each group as input file.
Then, we performed leave-one-out cross validation (LOOCV)
by excluding data from one compound at a time before
performing a new DTNI. In all cases, parameters from
DTNI were left as default, with a threshold for interaction
strength (p-value) set to 0.05. The final network for each
pathway within a chemical group was obtained after
determining the intersection among the DTNIs (i.e., all
chemicals and LOOCVs). The consensus network for
NF-κB in the DILI group, for instance, was generated
after overlapping the results from DTNI with all three
compounds plus LOOCVs (with a total of four different
runs). Cytoscape was used to generate and visualize the
networks.

Comparison of GRNs across Groups of
Chemicals: Biological Significance
To assess differences across networks generated by DTNI,
we considered four aspects of the inferred GRNs: direct
perturbations to the pathway being analyzed, number
of interactions, genes involved, and overall direction of
expression (up- or downregulation). Furthermore, while
starting nodes (i.e., nodes with only outgoing interactions)
may be used as basis to investigate potential molecular
initiating events (MIEs), target genes may offer a clue
to potential downstream effects. Therefore, those two
categories of genes were investigated in more detail within
the GRNs.

Furthermore, to validate the interactions found by our
method, we used the “induced network modules” tool available
on the database CPDB. For this, we used gene lists from
each pathway as input. We allowed for intermediary nodes
and limited our search to only high-confidence protein
interactions in addition to genetic, biochemical, and gene
regulatory ones. By comparing our inferred GRNs to those
obtained from CPDB, we were able to detect indirect, direct,
and potentially novel interactions. A predicted interaction
was labeled “direct” when the same edge was present in
CPDB and “indirect” when a third node mediated an
interaction between two nodes. Indirect interactions may
appear due to reactions that happen faster than the timescale
measured (e.g., minutes instead of hours) (Hendrickx et al.,
2016). Potentially novel interactions were identified as
direct interactions predicted by DTNI and not present in
CPDB.
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RESULTS

Inferred GRNs Vary across Groups of
Chemicals with Different Toxicities:
Direct Perturbations and Number of
Interactions
GRNs reconstructed from gene expression data showed strong
variation across carcinogenic, DILI, and non-carcinogenic/non-
DILI groups. The number of significant edges (p-value < 0.05)
found for each pathway in each chemical group is summarized in
Table 2. DILI and carcinogenic compounds affected all networks
tested, with the former frequently resulting in the highest
number of gene interactions. In contrast, non-carcinogenic/non-
DILI compounds only affected NF-κB genes. When generating
the networks, we observed that those from DILI are more
connected in comparison with the other groups. TP53 and ER
resulted in sets of unconnected modules in the carcinogenic
group. An overview of such network layouts is represented in
Supplementary Data 1.

The aforementioned results contrast with those from pathway
analysis, which showed that all groups of chemicals affected
biological pathways associated with P53 and NRF2 (Table 3 and
Supplementary Data 1). Protein processing in ER was a hit for
both Carcinogenic and DILI groups, while NF-κB was significant
for non-DILI/non-carcinogenic and DILI groups.

Gene Disturbances in GRNs across
Chemical Groups: Target Genes and
Starting Nodes
Although input gene lists were identical, the resulting
inferred networks showed great variation across chemical
groups. To enable visualization and direct comparison,
pathways were represented as the union of all interactions
predicted in each chemical group, in which edge colors
express different chemical groups (red for carcinogenic,
blue for DILI, and green for non-DILI/non-carcinogenic)
(Figures 1–4).

First, we evaluated similarities in interactions from inferred
networks, and observed that only NF-κB and NRF2 showed an
overlap of two-node interactions in different groups. A negative
interaction between CARD14 and BCL10 was detected in NF-κB
for both DILI and non-DILI/non-carcinogenic groups. For

TABLE 2 | Number of edges obtained after applying DTNI to gene expression
data from primary human hepatocytes exposed to chemicals with distinct toxicity.

Pathway Carcinogenic DILI Non-carcinogenic/non-DILI

ER 22 57 0

NF-κB 20 39 39

NRF2 59 29 0

TP53 8 94 0

Carcinogenic: azathioprine and cyclophosphamide,
DILI: diclofenac, propylthiouracil, and nitrofurantoin,
Non-carcinogenic/non-DILI: diazepam, omeprazole, and aspirin.

TABLE 3 | Number of distinct biological processes affected by groups of
chemicals related to investigated pathways – results from overrepresentation
analysis using differentially expressed genes.

Pathway Carcinogenic DILI Non-carcinogenic/non-DILI

ER 1 1 0

NF-κB 0 2 2

NRF2 3 3 3

TP53 4 4 3

Carcinogenic: azathioprine and cyclophosphamide,
DILI: diclofenac, propylthiouracil, and nitrofurantoin,
Non-carcinogenic/non-DILI: diazepam, omeprazole, and aspirin.

NRF2, we found the negative interactions GCLM-CYP4A11 and
ABCC5-SLC2A1 shared by DILI and carcinogenic groups.

Since only a few interactions were shared among all groups,
we decided to investigate whether this low overlap was due to
distinct starting nodes and/or target genes. These are indicated as
different sections in the networks, with the upper part containing
starting nodes and the lower part the target genes; the latter is
further divided into clusters to highlight genes that are specific
or shared by more than one chemical group. This arrangement
allowed us to detect striking differences among groups. First,
we observed that the only pathway that resulted in shared
target genes among all three groups was NF-κB – TRAF6, a
gene from the TNF receptor associated factor family. Also for
NF-κB, some genes were also shared by DILI and non-DILI/non-
carcinogenic group (GADD45B and BCL10), as well as DILI
and carcinogenic (CXCL12 and CARD10), and carcinogenic and
non-DILI/non-carcinogenic (TNFSF11, RIPK1 and CD14). NRF2
showed the highest overlap, with 12 genes shared between DILI
and carcinogenic compounds: BLVRB, SLC39A4, HGF, SLC39A3,
CBR3, CYP4A11, GSTA1, HSPA1A, SLC2A1, MGST2, SLC5A8,
and RXRA. GTSE1 was the only gene shared between DILI and
carcinogenic chemicals for the TP53 pathway, while EDEM2,
DNJB1, and DNJA1, from the ER pathway, were found shared by
the aforementioned groups.

Overall, we also detected distinct starting nodes, frequently
targeting specific clusters of chemical groups, suggesting that
these potential MIEs may result in different responses within the
same pathway.

Gene Disturbances in GRNs across
Chemical Groups: Validation of Predicted
Interactions and Direction of Expression
To validate the edges predicted by DTNI, we compared our
results to databases sourcing protein, genetic, and gene regulatory
interactions as well as biochemical reactions. The detailed list of
edges analyzed is provided in Supplementary Data 1. At least 40
and 30% of all edges predicted for TP53 and NF-κB, respectively,
were present in CPDB as direct or indirect interactions. The
majority of edges in NRF2 and ER sets, on the other hand, were
labeled as potentially novel.

Since direction of expression is also an important feature to
understand activation/repression of downstream biological
effects, we added expression values to network nodes
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FIGURE 1 | Gene regulatory network (GRN) inferred for members from the endoplasmic reticulum (ER) pathway. Red-colored edges: interactions predicted for
carcinogenic group; Blue-colored edges: interactions predicted for drug-induced liver injury (DILI) group. Cluster in the upper section indicate starting nodes, while
clusters in the lower section are comprised of target genes specific to each chemical group.

FIGURE 2 | Gene regulatory network (GRN) inferred for members from the NF-κB pathway. Red-colored edges: interactions predicted for carcinogenic group;
Blue-colored edges: interactions predicted for drug-induced liver injury (DILI) group; Green-colored edges: interactions predicted for non-DILI/non-carcinogenic
group. Cluster in the upper section indicate starting nodes, while clusters in the lower section are comprised of target genes specific to each chemical group.

representing the average log2-transformed ratio of each
gene. For cross-group comparisons, we partitioned every
node into two or three segments, each containing the average

expression calculated for the highest dose and latest time point –
representing the maximum response across all measurements
(Figures 1–4). With that, we aimed to understand the regulation
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FIGURE 3 | Gene regulatory network (GRN) inferred for members from the NRF2 pathway. Red-colored edges: interactions predicted for carcinogenic group;
Blue-colored edges: interactions predicted for drug-induced liver injury (DILI) group. Cluster in the upper section indicate starting nodes, while clusters in the lower
section are comprised of target genes specific to each chemical group.

of such processes during exposure. Also, by generating individual
chemical group/network graphics interchange format files,
we confirmed these biological interactions as time- and dose
dependent, showing clear oscillatory and/or progressive gene
expression profiles (Supplementary Data 2).

In general, we observed great differences in gene regulation
across chemical groups, especially in group-specific clusters.
Shared genes, on the other hand, usually showed the same
direction of expression with variable intensities. Considering
global expression, we observed that most genes from TP53
pathway were downregulated after exposure to DILI compounds;
the same was observed for NF-κB inferred for non-DILI/non-
carcinogenic group. Both therefore suggest repression of these
processes. On the other hand, widespread activation of NRF2
was indicated by upregulation of most genes in both carcinogenic
and DILI groups, although solute carrier genes SLC2A2, SLC2A6,
SLC2A9, SLC39A10, found to be target genes only in DILI group,
were repressed.

DISCUSSION

The main vision for modern toxicity testing proposes a shift from
apical measurements (i.e., pathological modifications related
to a disease state) in non-human in vivo models toward HT
approaches in vitro. In the present study, we try to address this
challenge with a systematic approach using DTNI, an in silico tool
that models gene expression changes taking into account dose
and time dependencies during chemical exposure.

To investigate the behavior of pathway activation in exposed
models, we investigated the effects of chemicals with different
adverse outcomes (acute organ injury and carcinogenicity)
compared to drugs not implicated in these pathologies. We
aimed to reconstruct pathways based on gene expression data;
for this, we selected four pathways (NRF2, ER, TP53, and NF-κB)
due to their established involvement in mechanisms of toxicity
(Jennings, 2013; Jennings et al., 2013). Our first observation
was that pathway hits did not relate to direct perturbations
to these networks. For instance, even though TP53 and NRF2
were significant in all groups of chemicals, only DILI and
carcinogenic compounds showed direct effect (i.e., activation)
on these networks. On the other hand, direct perturbation
to the NF-κB pathway was only observed for non-DILI/non-
carcinogenic compounds. Interestingly, the inhibition of NF-κB,
in line of our observation of overall repression of these genes,
was confirmed to two components of this group, aspirin and
diazepam. Therefore, it seems that in contrast to pathway hits,
which may reflect indirect effects or common causes, establishing
a causal, direct link between exposure and network perturbations
may offer more accurate evidence for the mechanisms of action
(Woo et al., 2015).

In addition to different levels of perturbation, we also
noticed the distinguishing aspects of GRN composition among
groups. This confirms previous findings on the dynamic traits
of biological networks, where noticeable rewiring was observed
between different disease phenotypes (Mani et al., 2008) and
following chemical exposure (Bandyopadhyay et al., 2010),
with both studies concluding that genetic interactions may be
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FIGURE 4 | Gene regulatory network (GRN) inferred for members from the TP53 pathway. Red-colored edges: interactions predicted for carcinogenic group;
Blue-colored edges: interactions predicted for drug-induced liver injury (DILI) group. Cluster in the upper section indicate starting nodes, while clusters in the lower
section are comprised of target genes specific to each chemical group.

condition dependent. This was evident in our inferred GRNs,
and we suggest that such dissimilarities may be due to distinct
initial perturbations, which in turn lead to alternative routes
within the same pathway. Our results show that edge paths traced
from starting nodes, as well as clusters of target genes, are mostly
group specific (Figures 1–4). This can be illustrated by the GRNs
inferred for genes from the NF-κB pathway (Figure 2). Although
all groups directly affected this process, GRNs indicate that while
non-DILI/non-carcinogenic compounds targeted the inhibition
of NF-KB1 and NF-KBIA, those from the DILI group resulted
in activation of NF-KB2 and RELA. In addition to differences
in direction of expression of these targets, studies have also
shown that some NF-κB units may act independently from each
other, controlling proliferation and immune responses (Ishikawa
et al., 1997, 1998). Therefore, investigation of these branches of
biological events may be crucial to differentiate adverse from
non-adverse outcomes.

Besides these widespread differences, we also detected some
similarities. GRNs inferred for genes from the NRF2 pathway
resulted in the highest overlap of target genes with consistent
direction of expression between carcinogenic and DILI groups
(Figure 3). Among these genes, we identified hepatocyte growth
factor (HGF), known to play a role in tumorigenesis and tissue
regeneration (Huh et al., 2004). Recent studies have shown HGF
to play a role in acute liver injury, by protecting against isoniazid-
and rifampicin-oxidative liver damage (Enriquez-Cortina et al.,
2013). Another interesting target shared by both groups was
enzyme biliverdin reductase B (BLVRB), the gene coding, which
converts biliverdin to bilirubin. Bilirubin, which has long been

regarded as a cytotoxic waste product of heme metabolism, was
recently discovered to possess strong antioxidant activity (Stocker
et al., 1987). CBR3, a gene coding for an enzyme involved in
the biotransformation of carbonyl compounds, was shown to
be involved in predisposition of toxic responses in doxorubicin-
treated patients (Fan et al., 2008). Taken together, these findings
may also suggest that, in an attempt to avoid extreme injury,
cells try to compensate by eliciting potent responders; because
these mechanisms also have deleterious effects, shifts in their
equilibrium may be the tipping point between adaptive and
adverse responses.

Interestingly, NRF2 seemed to be the only GRN denoting
similar toxic effects in DILI and carcinogenic groups.
Perturbations in ER and TP53 pathways by chemicals in the
carcinogenic group were very limited (Figures 1, 4), comprised
mostly by fragmented subnetworks. Since carcinogens AZA and
CYC also share DNA-damaging properties, we expected a large
amount of disturbances in GRNs from both pathways. In view
of this, we hypothesize that due to the different mechanisms
underlying their effects (CYC is an alkylating agent while AZA
is an antimetabolite), common significant interactions could not
be inferred from the available data. The fact that these chemicals
have stronger effects on dividing cells may yet be another cause,
since human hepatocytes show limited proliferative capacity
when cultured (Ramboer et al., 2014).

More importantly, many of the interactions found in our study
were labeled as potentially novel ones. During our validation step,
we noticed that interactions annotated for the NRF2 pathway in
particular were very limited in comparison with the other three
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(only 672 against 1518, 1609, and 1539 in ER, NF-κB, and
TP53, respectively). The fact that TP53 and NF-κB have
been extensively studied over the years due to their clinical
relevance may explain why they showed the highest number
of direct or indirect positive hits (more than 40 and 30% of
all inferred interactions, respectively). Therefore, our results
indicate the need for further studies targeting the validation of
such interactions as means to expand the repertoire of biological
interactions and assess their relevance as potential markers of
toxicity.

It should be pointed out some of the limitations of GRN
methods, in particular ODE-based methods such as DTNI.
Although ODE-based methodology describes time-series data
well, its deterministic nature does not account for statistical
fluctuations in concentrations and kinetic parameters that greatly
influence biological systems (Palmer and Shearwin, 2009). The
generation of a consensus network using multiple compounds
implemented in DTNI partly solves the problem of data
availability, but also constrains chemical selection to substances
with somewhat similar effects whose interactions survive after
steps of LOOCV. It may also result in increased computational
times if a large number of chemicals and input genes are being
assessed.

Nonetheless, our approach demonstrated some
unprecedented mechanistic aspects of GRNs upon exposure

to chemicals with different toxic potential. First, GRNs are
usually condition dependent, indicating distinct molecular
events depending on the type of exposure. To some extent,
however, there are similar gene targets shared by GRNs inferred
for toxic groups – but not present in compounds considered
non-DILI/non-carcinogenic – that may point toward relevant
molecular events indicative of toxicity. Finally, the fact that
disturbances in these molecular targets evolve with increases in
dose reinforces the value of DTNI as an asset in network-based,
HT investigations. Anchoring these dose-dependent events to
apical measurements may therefore reveal molecular signatures
and clarify the tipping points leading to adverse outcomes.
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