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INTRODUCTION 
 

Despite dramatic progress in the understanding of 

cancer biology and clinical management, lung cancer 

remains a devastating disease and ranks 1st in both 

incidence rate and mortality of cancer worldwide [1]. In 

China, lung cancer is also the 4th most substantial 

cancer burden [2]. Several factors may help to explain 

the high mortality of lung cancer, including diagnosis in 

the late stage, a high propensity for metastasis, and 

inherent drug resistance. Therefore, it remains 

imperative to discover efficient diagnostic and 

prognostic biomarkers and therapeutic targets. 

 
The oncogene activated Cdc42-associated kinase 1 

(ACK1), also known as a nonreceptor tyrosine kinase 2 

(TNK2), is mapped to chromosome 3q29 and encodes a 

universally distributed cytoplasmic tyrosine kinase. 

ACK1 acts as a cytoplasmic effector of activated 

receptor tyrosine kinases (RTKs). Upon stimulation 
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ABSTRACT 
 
Activated Cdc42-associated kinase 1 (ACK1) is an oncogene in multiple cancers, but the underlying 
mechanisms of its oncogenic role remain unclear in non-small cell lung cancer (NSCLC). Herein, we 
comprehensively investigated the ACK1-regulated cell processes and downstream signaling pathways, as well 
as its prognostic value in NSCLC. We found that ACK1 gene amplification was associated with mRNA levels in 
The Cancer Genome Atlas (TCGA) lung cancer cohort. The Oncomine databases showed significantly elevated 
ACK1 levels in lung cancer. In vitro, an ACK1 inhibitor (dasatinib) increased the sensitivity of NSCLC cell lines 
to AKT or MEK inhibitors. RNA-sequencing results demonstrated that an ACK1 deficiency in A549 cells 
affected the MAPK, PI3K/AKT, and Wnt pathways. These results were validated by gene set enrichment 
analysis (GSEA) of data from 188 lung cancer cell lines. Using Cytoscape, we dissected 14 critical ACK1-
regulated genes. The signature with the 14 genes and ACK1 could significantly dichotomize the TCGA lung 
cohort regarding overall survival. The prognostic accuracy of this signature was confirmed in five 
independent lung cancer cohorts and was further validated by a prognostic nomogram. Our study unveiled 
several downstream signaling pathways for ACK1, and the proposed signature may be a promising prognostic 
predictor for NSCLC. 
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with extracellular growth factors [heregulin, insulin, 

epidermal growth factor (EGF), or platelet-derived 

growth factor (PDGF)], ACK1 can interact with 

activated transmembrane RTKs and undergo auto-

phosphorylation at Tyr284, consequently conveying 

extracellular signals to the intracellular effectors [3–5]. 

ACK1 has been found to participate in the regulation of 

certain fundamental cellular processes, including 

proliferation, migration, invasion, and epidermal-

mesenchymal transition (EMT) [6]. 

 

ACK1 is a multidomain structural protein, comprising 

tyrosine kinase, SH3, CRIB proline-rich, and ubiquitin-

association (Uba) domains [4]. These functional domains 

confer ACK1 the capacity to bind to a variety of protein 

molecules and execute complicated functions in terms  

of the context of a specific milieu [4, 7]. To date,  

many interacting partners have been identified for  

ACK1, including clathrin, WW domain-containing 

oxidoreductase (Wwox), Grb2, EGF receptor (EGFR), 

AKT1, ubiquitin, androgen receptor, and Nedd4-1/2 E3 

ligases [5, 8–12]. ACK1 has been linked to different 

types of cancer, including prostate cancer [5], ovarian 

cancer, breast cancer, pancreatic cancer, and lung cancer 

[13]. ACK1 gene alterations (i.e., amplification, deletion, 

and mutation) have been detected in various human 

cancers, ranging from 4% to 27% [4]. The oncogenicity 

of ACK1 is primarily attributed to its phosphorylation 

and activation of crucial pro-survival kinases and 

hormone receptors at different tyrosine residues [3, 4, 12, 

14]. ACK1 may phosphorylate AKT at an evolutionarily 

conserved tyrosine residue at the 176th position (Tyr176) 

to induce PI3K-independent AKT activation [11]. 

Moreover, ACK1 phosphorylates androgen receptor 

(AR) at Tyr267 and Try363 to stimulate the progression 

of prostate cancers [3]. However, mechanistic studies of 

ACK1 are very limited and the signaling pathways 

affected by ACK1 warrant extensive investigation. 

 

Several innovative features can be found in this study. 

First, we showed that inhibiting ACK1 by dasatinib 

might sensitize NSCLC cells to MK-2206 (AKT 

inhibitor) and selumetinib (MEK1/2 inhibitor). Second, 

by integrating in-house RNA-sequencing (RNA-seq) 

data and public datasets, we found that ACK1 might 

regulate the MAPK, PI3K/AKT, and Wnt pathways. 

Finally, instead of ACK1 alone, we developed a 

prognostic signature based on ACK1-related genes that 

can independently predict clinical outcomes in NSCLC. 

 

RESULTS 
 

The implication of ACK1 in NSCLC 

 

Increasing evidence indicates that ACK1 may be an 

oncogene involved in various types of cancer. The 

genetic alterations of ACK1 are displayed in Figure 1A, 

and ACK1 amplification was significantly associated 

with its transcription levels in TCGA lung cancer 

cohorts (Figure 1B). We also examined ACK1 gene 

expression levels in lung cancer tissues and normal 

tissues using the Oncomine database. Significantly 

increased ACK1 expression levels were observed in 

most of the studies (Figure 1C). Figure 1D presents 

images of immunohistochemical staining of ACK1 in 

lung cancer tissues (Human Protein Atlas Database). 

 

An in vitro study showed that the ACK1 inhibitor, 

dasatinib could significantly suppress the proliferation 

of NSCLC A549 cells. The combination of dasatinib 

and selumetinib (MEK inhibitor) more potently 

suppressed A549 cell proliferation than either inhibitor 

alone at 48 and 72 hours after treatment. However, the 

synergistic inhibition of cell proliferation was observed 

to a lesser extent for dasatinib and MK-2206 (AKT 

inhibitor) in the A549 cells (Figure 2A). These drugs 

were also tested in H23 and H358 cell lines. As shown 

in Figure 2B, 2C, the efficiency of drugs was cell line-

dependent, indicating the importance of precision 

medicine. 

 

Identification of differentially expressed genes 

(DEGs) with RNA-seq after silencing of ACK1 gene 

 

Results from other teams and ours have shown the 

suppression of NSCLC cell proliferation by diverse 

ACK1 inhibitors. However, the downstream signaling 

cascades of ACK1 remain mostly unknown. In this study, 

we knocked down the ACK1 gene in A549 cells with the 

lentivirus delivery system (Figure 3A) and checked the 

affected downstream signaling pathways. The lentiviruses 

carrying shRNA-KD2 exhibited the highest knockdown 

efficiency and were used to infect A549 cells for RNA-

seq. Approximately 21.78 M data were generated for each 

of 6 samples on average using the BGISEQ-500 platform. 

In total, 17,159 genes were detected in 6 samples, among 

which 16,127 were found in both ACK1-negative control 

(NC) and ACK1-knockdown (KD) samples (Figure 3B). 

After analysis of our RNA-seq data following a 

previously published method [15], we finally obtained 

1,076 differentially expressed genes (DEGs) (fold change 

≥2 and adjusted P value <0.001). A volcano plot (Figure 

3C) depicts the distribution of DEGs, and a heatmap 

(Figure 3D) indicates that DEGs could properly cluster 

samples into NC and KD groups. 

 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment analyses of 

DEGs 

 

DEGs were subjected to GO enrichment analysis and 

KEGG pathway annotation. DEGs were significantly 
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Figure 1. The implication of ACK1 in NSCLC. Genetic alterations of the ACK1 gene in the TCGA-LUAD and TCGA-LUSC cohorts (A) 

(https://www.cbioportal.org). The association between ACK1 gene copy number and mRNA expression levels (B). Significantly elevated 
mRNA expression levels of the ACK1 gene in lung cancer in comparison with normal tissues in the independent cohorts from the Oncomine 
database (C). Immunohistochemistry of ACK1 in lung cancer (D, Human Protein Atlas). Abbreviation: FC, fold change. 

https://www.cbioportal.org/
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Figure 2. Inhibitory efficiency of ACK1 inhibitor alone or in combination with MK-2206/selumetinib on NSCLC cell lines. 
Proliferation assay of the A549 cell line (A), H358 cell line (B), and H23 cell line (C) treated with drugs as indicated. Combined therapy 
performed significantly better than single agents in suppressing cell survival. * and ** denoted P<0.05 and P<0.01, respectively. Data are 
represented as the mean ± SD. 
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Figure 3. Knockdown (KD) of ACK1/TNK2 in A549 cells, followed by RNA-seq. ACK1 was silenced using three lentivirus-mediated 

shRNAs (A). The shRNA showing the highest efficiency of the ACK1 gene knockdown was used for subsequent experiments. Overlapping 
genes were identified in the negative control (NC) and KD groups (B). The volcano plot (C) indicated the significantly up- and downregulated 
genes after the silencing of ACK1 [absolute value of log2 (fold change) ≥1, P<0.001]. Based on differentially expressed genes (DEGs), three NC 
and three KD samples (shACK1/TNK2) were well clustered (D). Gene Ontology enrichment analysis of DEGs (E). KEGG pathway annotation of 
DEGs (F). 
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enriched in tissue development, developmental process, 

cell differentiation, cellular developmental process, and 

regulation of signaling (Figure 3E).  KEGG pathway 

annotation revealed that DEGs were mainly distributed 

in signaling molecules and interactions, signal 

transduction, cancers: overview, cancers: specific types, 

immune system, and endocrine system (Figure 3F). 

 

Protein-protein interaction (PPI) network 

construction and module analysis 

 

We first constructed a PPI network of DEGs using the 

Search Tool for the Retrieval of Interacting Genes 

(STRING) database with a minimum required 

interaction score. The tightly assembled network 

suggested that these DEGs were biologically 

functionally connected, but not randomly scattered (data 

not shown). The resulting data describing the 

coordinates of nodes in the network were imported into 

Cytoscape (version 3.4.0) for further analysis. 

 

Hub gene selection and analysis 

 

Using the CytoHubba Cytoscape plug-in, we identified 

219 hub genes with degrees ≥10, 107 genes with 

degrees ≥15, and 57 genes with degrees ≥20. We 

analyzed the biological processes of 219 hub genes 

using the Cytoscape plug-in, Biological Networks Gene 

Ontology tool (BiNGO) (version 3.0.3). As shown in 

Figure 4A, the yellow spots, in which genes were 

mostly enriched, indicated that these genes were 

involved primarily in DNA replication, DNA repair, 

cell cycle, and cellular response to stress. Another 

ClueGo plug-in of Cytoscape revealed that these genes 

mainly fell into malignancy-related pathways, including 

the MAPK, cAMP, Wnt, and PI3K-Akt signaling 

pathways, pathways in cancer, and axon guidance 

(Figure 4B). The enriched scores and -log10 of FDR are 

shown in Figure 4C. Hub genes enriched in Wnt and 

MAPK signaling pathways are visualized in Figure 4D, 

4E, respectively. 

 

In addition, we retrieved RNA-seq data for 188 lung 

cancer cell lines from the Cancer Cell Line 

Encyclopedia (CCLE) database and dichotomized the 

cancer cell lines by the average expression levels of the 

ACK1. Gene set enrichment analysis (GSEA) performed 

between the ACK1high and ACK1low groups confirmed 

the enrichment of ACK1-regulated genes in the MAPK, 

Wnt, NSCLC, and axon guidance pathways (Figure 

5A). Heatmaps were plotted to depict the mRNA 

expression profile of 57 hub genes with degrees ≥20 in 

LUAD and LUSC samples compared with the 
respective normal tissues (Supplementary Figure 1). We 

further carried out principal component analysis (PCA), 

a dimension reduction method, to compare the mRNA 

expression profiles of the 57 hub genes between lung 

cancer and normal tumor tissues. PCA could 

discriminate tumor samples from normal tissues in the 

TCGA-LUAD (Figure 5B) and TCGA-LUSC (Figure 

5C) cohorts. These results suggest that these 

differentially expressed hub genes are adequate to 

define tumor samples. 

 

Detection of the most significant molecular complex 

 

Using the Molecular Complex Detection (MCODE) 

plug-in of Cytoscape, we identified the most significant 

module composed of 14 nodes. The names, 

abbreviations, and functions of the node genes are 

shown in Table 1. More than half of the node genes are 

involved in the ubiquitination process. The 14 essential 

genes captured an extra 50 tightly co-expressed genes in 

TCGA-LUAD (https://www.cbioportal.org), as shown 

in Figure 5D. KEGG enrichment analysis revealed that 

these 64 genes mainly related to ubiquitin-mediated 

proteolysis, proteasome, and pathways in cancer (Figure 

5E). GSEA analysis of the CCLE database further 

validated that ACK1 was associated with ubiquitin-

associated proteolysis and pathways in cancer in lung 

cancer cells (Figure 5F). 

 

Prognostic values of gene signature in the most 

significant module 

 

ACK1/TNK2 alone was not sufficient to significantly 

stratify patients according to clinical outcomes in 

LUAD and LUSC (Supplementary Figure 2). We 

wondered whether the combination of ACK1/TNK2 and 

the 14 key genes can improve prognostic prediction. A 

total of 490 LUAD and 488 LUSC patients with 

survival data were obtained from the TCGA project. 

The association of the 15 genes with lung cancer 

survival was first evaluated by univariate Cox 

regression analysis. Genes with a hazard ratio (HR) <1 

or >1 were viewed as protective or risk genes, 

respectively. The risk score was calculated for each case 

based on the expression of each gene and its correlation 

with survival. The patients were divided into high- and 

low-risk groups with the median risk score as the cutoff 

value. In the heatmaps of gene expression, the risk 

genes were preferentially expressed in the high-risk 

groups and vice versa in both the LUAD (Figure 6A) 

and LUSC (Figure 6B) cohorts. A comparison of 

mRNA expression of individual genes between two 

groups was conducted for LUAD (Figure 6C) and 

LUSC (Figure 6D). 

 

Univariate (upper panel) and multivariate (lower panel) 
Cox regression analyses were conducted in LUAD 

(Figure 6E). The risk score was an independent 

prognostic predictor in LUAD [hazard ratio 

https://www.cbioportal.org/
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Figure 4. Analysis of 219 hub genes with degree ≥10. GO biological process analysis using the BinGo plug-in of Cytoscape (A). KEGG 

pathway analysis using the ClueGo plug-in of Cytoscape (B). Volcano plot of the enriched pathways with P values and enrichment scores (C). 
Altered genes in the Wnt signaling pathway (D). Altered genes in the MAPK signaling pathway (E). Orange and cyan rectangles indicate the 
upregulation and downregulation of genes, respectively, after the ACK1 gene knockdown. Only DEGs (fold change ≥2 and adjusted P value 
<0.001) are colored. 
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Figure 5. Analysis of the ACK1 signaling pathways. RNA-seq data of 188 lung cancer cell lines were retrieved from the CCLE 

database. GSEA was performed after dividing cell lines into ACK1high and ACK1low groups by the average ACK1 expression level (A). 
Principal component analysis (PCA) of the 57 hub genes (degree≥20) was carried out in the TCGA-LUAD (B) and TCGA-LUSC (C) versus 
normal tissues. The most significant 14-gene module was derived from DEGs, which captured 50 coexpressed genes in the TCGA-LUAD 
cohort (D). Most of the 64 genes were enriched in the ubiquitin-mediated proteolysis and the proteasome (E), which was validated by 
GSEA using CCLE lung cancer cell data (F). 
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Table 1. Functions of 14 key genes in the most significant module. 

 

(HR)=1.259, 95% confidence interval (CI)=1.139-

1.393]. Similar results were observed for LUSC (Figure 

6F). The distribution of the risk scores and survival 

statuses of patients is exhibited for LUAD (Figure 7A) 

and LUSC (Figure 7B). The risk scores successfully 

defined LUAD (Figure 7C, log-rank test, P<0.0001) and 

LUSC (Figure 7D, log-rank test, P=0.0156) into 

subgroups with significantly different survival rates. 

Receiver operating characteristic (ROC) curves were 

adopted to determine the predictive efficiency of the 

prognostic signature. The areas under the curve (AUC) 

of the risk score were 0.633 and 0.607 for LUAD 

(Figure 7E) and LUSC (Figure 7F), respectively. The 

combination of risk score and stage could achieve a 

better prognostic accuracy than either factor alone, and 

the combined AUCs were 0.716 in LUAD and 0.654 in 

LUSC. We also tested the predictive power of this 

prognostic classifier in six independent lung cancer 

cohorts [16]. The gene signature successfully classified 

lung cancer patients into subgroups with significantly 

distinct survival for the NCI (HR=1.85, 95% CI=1.43-

2.41, P<0.0001), KOHNO (HR=4.33, 95% CI=1.89-

9.92, P<0.001), Hou (HR=3.28, 95% CI=1.69-6.39, 

P<0.001), BILD (HR=2.35, 95% CI=1.39-3.99, 

P<0.01), and Zhu (HR=3.09, 95% CI=1.27-7.51, 

P=0.013) cohorts, except for the PAPONI cohort 

(Figure 8). 

Construction of a nomogram 
 

Moreover, we generated a nomogram to assess the 

performance of the risk score in combination with the 

clinical characteristics of NSCLC patients in predicting 

the prognosis (Figure 9A). The concordance index  

(c-index) values, which measure the level of agreement 

between predicted probabilities and the actual  

survival statuses, were 0.7 and 0.6 for LUAD and 

LUSC, respectively. The calibration curves for 3- and 5-

year survival were also plotted for LUAD and LUSC 

(Figure 9B–9E). 

 

DISCUSSION 
 

ACK1 is a nonreceptor tyrosine kinase, the deregulation 

of which may drive hallmarks of cancer, including cell 

proliferation, migration/metastasis, and EMT. The 

oncogenicity of ACK1 is mostly due to its 

phosphorylation and activation of crucial pro-survival 

kinases and hormone receptors at different tyrosine 

residues, as well as inactivation of tumor suppressors in 

cancer cells. 
 

The implications of ACK1 in lung cancer were first 

reported decades ago. A relatively high frequency of 

ACK1 amplification in primary lung cancer was 

No. Gene symbol Full name Function 

1 SOCS3 suppressor of cytokine signaling 3 A suppressor of cytokine signaling family.  

2 SOCS1 suppressor of cytokine signaling 1 A suppressor of cytokine signaling family.  

3 TRIM36 tripartite motif containing 36 a member of the tripartite motif (TRIM) 

family, consisting three zinc-binding domains, 

a RING, a B-box type 1 and a B-box type 2, 

and a coiled-coil region. 

4 TRIM69 tripartite motif containing 69  

5 SMURF2 SMURF2 SMAD specific E3 ubiquitin protein ligase 2 

6 LONRF1 LONRF1 LON peptidase N-terminal domain and ring 

finger 1 

7 HERC6 HERC6 HECT and RLD domain containing E3 

ubiquitin protein ligase family member 6 

8 RNF182 RNF182 ring finger protein 182 

9 FBXW7 FBXW7 E3 ubiquitin protein ligase 

10 UBE2V1 ubiquitin-conjugating enzyme E2 variant 1 It can cause transcriptional activation of the 

human FOS proto-oncogene. 

11 UBE2S ubiquitin-conjugating enzyme E2S  A member of the ubiquitin-conjugating 

enzyme family.  

12 FBXL16 F-box and leucine-rich repeat protein 16 F-box proteins interact with ubiquitination 

targets  

13 NEDD4 NEDD4 E3 ubiquitin protein ligase 

14 FBXO41 F-box protein 41 Involved in phosphorylation-dependent 

ubiquitination.  
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Figure 6. Prognostic values of the gene signature comprising ACK1 and the 14 genes of the most significant module in the 
TCGA lung cancer patients. Patients were classified into low (green) and high (red) risk groups according to risk scores. Heatmaps of 15 

gene expression profiles in the low and high risk LUAD (A) and LUSC (B) patients. Comparison of the 15 gene expression levels between high 
(blue) and low (red) risk groups in LUAD (C) and LUAD (D). Univariate (upper panel) and multivariate (lower panel) Cox regression analyses in 
LUAD (E) and LUSC (F). 
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observed, coincident with augmented ACK1 mRNA 

levels [13]. ACK1 overexpression was more frequently 

detected in late-stage than in early-stage tumors. 

However, the oncogenic and prognostic roles of ACK1 

in lung cancer warrant in-depth investigation. In this 

study, we validated ACK1 amplification and the 

association between ACK1 mRNA expression and copy 

number variation. The independent lung cancer cohort 

 

 
 

Figure 7. Prognostic values of the 15-gene signature in the TCGA lung cancer patients. The distribution of risk scores and survival 
statuses of patients in the LUAD (A) and LUSC cohorts (B). Kaplan-Meier survival curves of patients defined by low and high risk scores in 
LUAD (C) and LUSC (D). ROC curves with different characteristics of patients, as indicated in LUAD (E) and LUSC (F). 
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Figure 8. Validation of the prognostic power of risk scores in the independent lung cancer cohorts. Kaplan-Meier survival 

curves of 6 independent lung cancer cohorts (A). Performance of risk scores in the NCI (B), KOHNO (C), HOU (D), BILD (E), and ZHU (F) 
cohorts. 
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Figure 9. Prognostic nomogram for TCGA lung cancer cohorts. Nomogram for evaluating the survival probability of TCGA-LUAD 

patients (A). The calibration curves for predicting patient survival in TCGA-LUAD (B, D) and TCGA-LUSC (C, E). Overall survival (OS) derived 
from the nomogram is plotted on the x-axis, and actual OS is displayed on the y-axis. A plot approaching the 45° dashed line would show an 
ideal calibration model indicating the perfect concordance between the predicted probabilities and the actual survival. 
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further verified significantly increased ACK1 expression 

levels in cancer tissue compared with those in normal 

tissue. 

 

ACK1 has been considered a novel therapeutic cancer 

target. By screening 1,447 available drugs for their 

abilities against ACK1, Phatak et al. found that 

dasatinib directly bonded to ACK1 and inhibited its 

activity at a half-maximal inhibitory concentration 

(IC50) concentration as low as 1 nm [17]. However, the 

efficiency of dasatinib as a single agent was un-

satisfactory in a clinical phase study [18]. Because 

cancer is a complex disease that frequently results from 

the deregulation of different signaling pathways, 

combined therapies may be a better strategy than single 

agents. Cubitt et al. generated a system to test the 

synergistic effects of various combination therapies in 

several sarcoma cell lines with targeted and cytotoxic 

drugs [19]. Dasatinib in combination with MK-2206 

(AKT inhibitor) outperformed single agents in the 

suppression of cell proliferation. The combination of 

saracatinib (Src inhibitor) and selumetinib (MEK-1/2 

inhibitor) was also tested, but showed no promise [19]. 

Inhibition of ACK1 reduced the migration and invasion 

of KRAS mutant lung adenocarcinoma [20]. Moreover, 

ACK1 stabilizes EGFR, and knockdown of ACK1 

increases the sensitivity of renal carcinoma cells to 

gefitinib [6]. In the current study, we tested the 

combination of dasatinib with either MK-2206 or 

selumetinib in three NSCLC cell lines. We found that 

combination therapy did show promise in inhibiting 

cancer cell proliferation, but the effects were time-, 

dosage-, and cell line-dependent. Recently, dasatinib 

was shown to enhance the sensitivity of KRAS mutant 

cells to trametinib (MEK1/MEK2 inhibitor) in different 

cancer types, including H23 and H358 NSCLC cell 

lines. Mechanistic studies revealed that dasatinib-

mediated inhibition of YAP/TAZ signaling might be 

responsible for the synergistic inhibitory effects of these 

two agents on cancer cells [21]. However, the 

underlying mechanisms, especially downstream signal 

cascades affected by ACK1, remain largely unclarified. 

 

We next attempted to scrutinize the signaling pathways 

impacted by the silencing of ACK1 in A549 cells  

using RNA-seq. Our KEGG enrichment analysis 

identified several signaling pathways under the 

regulation of ACK1 in NSCLC, including the MAPK, 

cAMP, Wnt, and PI3K-Akt signaling pathways. These 

results were supported by our GSEA analysis of the 

RNA-seq data of 188 lung cancer cell lines 

downloaded from the CCLE database. Consistent with 

our finding, silencing of ACK1 inhibited the 
phosphorylation of ERK and AKT (Ser473), as well as 

the proliferation of renal cancer-derived cells, and 

reversed the EMT [6]. 

In mouse embryonic fibroblasts (MEFs), normal prostate 

cells, and MCF-7 cells, in response to EGF stimuli, 

ACK1 directly interacted with AKT and phosphorylated 

the latter at Tyr176 in the kinase domain [11]. 

Phosphorylated AKT moved to the plasma membrane 

and was further phosphorylated at Ser473. Conversely, 

knockdown of ACK1 resulted in a decreased Ser473 

phosphorylation of AKT [11]. It was further 

demonstrated that activation of the RTK/ACK1/AKT 

pathway promotes the trafficking of both endogenous 

pTyr284-ACK1 and pTyr176-AKT to the nucleus [11]. 

Nuclear pTyr176-AKT enhanced cell cycle progression 

and inhibited apoptosis by phosphorylating FoxO 

transcription factors and subsequently inhibiting 

transcriptional activation of target genes (e.g., p21, 

p27KIP1, and Bim-1) [11, 22]. Breast cancer patients 

with high expression levels of Tyr176-phosphorylated 

AKT and Tyr284-phosphorylated ACK1 were 

significantly more likely to have unfavorable outcomes 

[11]. ACK1 was also shown to promote the 

phosphorylation and nuclear localization of STAT3 in 

cultured human embryonic kidney HEK293T cells and 

the positive correlation between ACK1 and the levels of 

tyrosine-phosphorylated STAT3 was validated in primary 

lung adenocarcinoma (ADC) cells [23]. Intriguingly, 

many DEGs were also enriched in axon guidance in the 

current study. Although the pathological relevance of the 

neural signaling is not clear in NSCLC, ACK1 is indeed 

highly expressed in the brain [24]. ACK1 plays a role in 

neurotrophin signaling. In the developing brain, once 

activated by neurotrophins, ACK1 sequentially triggers 

AKT phosphorylation to fuel cell proliferation and 

migration [25]. 
 

MCODE was used to extract the most significant 

module from the complicated network of 1,076  

DEGs. The majority of molecules in this module are 

related to ubiquitination, which was also evidenced by 

our results derived from the CCLE. Consistent with  

this finding, several studies revealed the implication  

of ACK1 in the ubiquitination process [6, 8, 26].  

ACK1 possesses a ubiquitin-associated (Uba) domain at 

the carboxyl terminus, via which ACK1 binds to 

ubiquitins in both poly- and mono-forms. ACK1 

regulates EGFR degradation [8]. Upon EGF stimuli, 

phosphorylated EGFR at the tyrosine residue forms a 

complex with ACK1 and cotranslocated into EEA-1-

positive vesicles [8]. This interaction facilitated ACK1 

to mediate EGFR degradation through the Uba domain 

[8]. Moreover, the involvement of HECT E3 ubiquitin 

ligases Nedd4-1 and Nedd4-2 in ACK1 ubiquitination 

and degradation was also demonstrated [9, 10]. 

Moreover, ACK1 amplification was shown to 
contribute to cell proliferation and colony formation in 

gastric tumorigenesis by boosting the ubiquitination and 

degradation of p53 [26]. 
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Moreover, the prognostic value of ACK1 has also 

evoked attention. Hu et al. reported that the high 

expression level of ACK1 was significantly associated 

with poor survival in NSCLC. Tan et al. found that 

ACK1 expression levels were significantly elevated in 

lung adenocarcinoma compared with nontumor tissues 

[20] Intriguingly, in 210 Singaporean lung adeno-

carcinomas, ACK1 expression in the adjacent nontumor 

tissues, but not in the tumors, was an independent 

predictor of prognosis [20]. Additionally, the 

association between ACK1 and survival also failed to 

be established in the TCGA LUAD and LUSC cohorts. 

The discrepancies in survival results across studies 

may result from differences in sample size, sampling, 

immunohistochemistry staining conditions, and 

quantitative methods. Taken together, these results 

suggest that ACK1 alone may not be a potent predictor 

of prognosis in NSCLC. On the other hand, several 

studies have demonstrated that the expression 

signature of a panel of relevant genes might be able to 

serve as prognostic classifiers in cancer [27–31].  

In this study, we found that ACK1, in combination 

with 14 DEGs in the most significant module, could 

define TCGA-LUAD into two subgroups with 

significantly different survival. A similar prognostic 

potential of these genes was observed in TCGA-

LUSC. The prognostic value of this signature of 15 

genes was further validated in five independent lung 

cancer study populations, as well as in the prognostic 

nomogram. 

 

Several limitations of the study should be noted. First, 

in vitro and in vivo evidence should be provided in the 

future to support the implication of ACK1 in NSCLC. 

Second, due to the retrospective design, the results of 

this study should be explained cautiously. Third, the 

predictive accuracy of the prognostic model should be 

validated in different NSCLC cohorts before it can be 

applied in the clinical setting. 

 

CONCLUSIONS 
 

Our results suggest that combination therapy based  

on the inhibition of ACK1 can suppress lung cancer 

cell proliferation in a cell line-dependent manner. 

MAPK, Wnt, and PI3K-AKT may be under the control 

of ACK1 in lung cancer and ACK1 may partially 

regulate target proteins by facilitating the 

ubiquitination process. Finally, a prognostic gene 

signature can be developed with the ACK1 and related 

genes. 

 

MATERIALS AND METHODS 
 

NSCLC cell lines A549, H23, and H358 were 

maintained in Dulbecco’s modified Eagle’s medium 

(Gibco, Thermo Fisher Scientific, USA) supplemented 

with 1% non-essential amino acids (Gibco, Thermo 

Fisher Scientific, USA) and 5% fetal calf serum (FCS) 

(Gibco, Thermo Fisher Scientific, USA). Moreover, 10 

units/ml of penicillin-G and 10 mg/ml streptomycin 

were added to the medium to combat contamination. 

Cells were grown under common conditions with 5% 

carbon dioxide at 37° C. 

 

Drug sensitivity assay 

 

A549 cells were seeded in 96-well plates at a density of 

2x103/well and maintained in an incubator overnight. 

After the removal of the culturing medium, and the cells 

were fed with fresh medium containing dasatinib, 

selumetinib, and MK-2206 (MedChemExpress LLC.  

Monmouth Junction, USA) alone, or in combination. 

Cell viability was measured by the Dojindo cell 

counting kit-8 (CCK-8, GlpBio, USA) at 24, 48, and 72 

hours. 

 

ACK1 knockdown and quantitation in NSCLC A549 

cell line 

 
To silence ACK1 expression in the A549 cell line, 

lentivirus carrying ACK1/TNK2-RNAi (tgCTTCCT 

CTTCCACCCAATT, GeneChem, Shanghai, China) 

was introduced into the A549 cells (ACK1-KD). 

Empty lentivirus vectors were used to infect an  

extra set of A549 cells as a negative control (NC). 

Upon reaching 90% confluence in the flasks, cells 

were washed with PBS and harvested with TRIzol 

reagent (Invitrogen, Thermo Fisher Scientific, USA). 

Total RNA was extracted following the 

manufacturer’s manual. ACK1 transcript levels in 

ACK1-KD and NC cells were examined using real-

time PCR. The primer pair used to amplify the human 

ACK1 gene is given as follows: forward primer, 5’- 

AGCCTCACCTGCCTCATTG -3’, and reverse 

primer, 5’- GCACTTCACAGCCACACTC -3’. 

Additionally, a fraction of GAPDH was amplified by 

PCR as an internal control with the following primers: 

forward primer, 5’- TGACTTCAACAGCGACAC 

CCA -3’, and reverse primer, 5’- CACCCTGTTGCT 

GTAGCCAAA-3’. 

 
rRNA depletion and transcriptome sequencing 

 
The StepOnePlus System (Applied Biosystems, 

Thermo Fisher Scientific, USA) and the Agilent 2100 

Bioanalyzer (Agilent Technologies, USA) were used 

to measure the amount and integrity of the sample 

libraries for quality control. The integrity of RNA 

samples was determined by the values of the RNA 

integrity number (RIN). The average RIN is 9.52 for 

these samples. 
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The RNAiso Plus Kit (TAKARA, Japan) was adopted 

to purify the total RNA from ACK1-NC and ACK1-

KD A549 cells followed by DNase I digestion. rRNAs 

were eliminated from the total RNA using the 

RiboMinus Eukaryote Kit (Qiagen, USA) to obtain 

pure mRNA. The resulting RNAs were further shred 

using Ambion Fragmentation Solution (Thermo 

Fisher Scientific, USA). The mRNA pieces were used 

as a template to produce cDNAs. Finally, the 

BGISEQ-500 platform was used to carry out RNA 

sequencing for six samples. The DEGs between the 

ACK1-NC and ACK1-KD groups were determined 

(fold change ≥2 and adjusted P value <0.001). 

 

Protein-protein interaction (PPI) network 

construction and module analysis 

 

We analyzed the functional interactions between 

DEGs to interrogate the downstream signaling 

cascades of ACK1 in NSCLC tumorigenesis. A PPI 

network was generated using the STRING 

(http://string-db.org) (version 10.0) online database 

[32], with a minimum required interaction score. For 

further analysis, the network was imported into 

Cytoscape (version 3.4.0), which is an open-source 

bioinformatics software platform used to visualize 

molecular interaction networks [33]. 

 

Identification of hub genes and analysis 

 

The hub genes were defined as molecules with degrees 

≥10, using cytohubba, a Cytoscape plug-in. Hub genes 

were subjected to the biological process analysis and 

visualized using the Biological Networks Gene 

Ontology tool (BiNGO) plug-in (version 3.0.3) of the 

Cytoscape [33]. Unsupervised hierarchical clustering 

of 57 hub genes was constructed using R software. 

PCA was used to study the expression patterns of the 

57 hub genes in normal tissues and lung cancer in 

TCGA cohorts using the gmodels package for R. The 

overall survival and disease-free survival analyses of 

the ACK1 genes in the TCGA lung cohort were 

performed using the Kaplan-Meier curve 

(http://gepia.cancer-pku.cn/). 

 

GSEA for exploration of ACK1-mediated signaling 

pathway 

 

The gene expression matrices of 1,457 cell lines were 

downloaded from the CCLE website (https://portals. 

broadinstitute.org/ccle). R software was used to extract 

a dataset of 188 lung cancer cell lines and to process the 

data. The average ACK1 expression level was used as a 
cutoff value to divide lung cancer cells into the 

ACK1high and ACK1low groups. GSEA was carried out in 

the two groups. 

Identification of the most significant module from 

DEGs 

 

The MCODE plug-in (version 1.4.2) of Cytoscape was 

designed to gather the PPI network derived from 

topology to discover densely bonded molecules [33]. 

The PPI networks were first recapitulated using 

Cytoscape, and the most significant module in the PPI 

networks was detected using MCODE. The following 

criteria were applied: MCODE scores >5, degree 

cutoff=2, node score cutoff=0.2, max depth=100, and k-

score=2. A network of the genes in the most significant 

module and their coexpressed genes was analyzed using 

the cBioPortal online platform (http://www.cbioportal. 

org). We also conducted the KEGG and GO analyses of 

genes in this module using the WEB-based Gene Set 

AnaLysis Toolkit (http://www.webgestalt.org/) [34, 35]. 

 

Assessment of prognostic values of gene expression 

profiles 

 

In brief, the prognostic index (PI), i.e., the risk score, 

was computed for each case, using the following 

formula: PI= β1x1+β2x2+...+βpxp [16], where xi and βi 
respectively represent the gene expression value and 

risk coefficient derived from the Cox fitting mode [16]. 

Cases were ranked according to risk scores, and a cutoff 

risk score was used to separate cases into two subgroups 

with distinct survival. The risk scores were calculated 

for the TCGA and GEO datasets using R software or an 

online tool SurvExpress (http://bioinformatica.mty. 

itesm.mx:8080/Biomatec/SurvivaX.jsp) [16]. The log-

rank test was employed to check the significant 

difference in the survival between subgroups. The 

nomogram was developed with the rms package for R. 

 

Statistics 

 

One-way ANOVA was adopted to compare the 

differences in cell survival among groups treated with 

different drugs. Kaplan-Meier survival curves were 

plotted to describe the survival status of lung cancer 

patients with time. A log-rank test was used to check 

the significance between groups. All statistics were 

performed with IBM ® SPSS version 24 or R software 

version 3.6.1. A P value of less than 0.05 was 

considered statistically significant. 

 

Availability of data and material 

 

The TCGA-LUAD and LUSC datasets were obtained 

from the TCGA portal (https://portal.gdc.cancer.gov/). 

Gene expression matrixes of lung cancer cell lines were 
obtained from the CCLE website (https://portals. 

broadinstitute.org/ccle). Other data are available upon 

request. 

http://string-db.org/
http://gepia.cancer-pku.cn/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
http://www.cbioportal.org/
http://www.cbioportal.org/
http://www.webgestalt.org/
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
https://portal.gdc.cancer.gov/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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ACK1: activated Cdc42-associated kinase 1; TNK2: 

non-receptor tyrosine kinase 2; RTKs: receptor tyrosine 

kinases; EGF: epidermal growth factor; PDGF: platelet-

derived growth factor;  EMT: epidermal-mesenchymal 

transition; Uba: ubiquitin-association; LUAD: Lung 

adenocarcinoma; LUSC: lung squamous cell carcinoma; 

DEGs: Differentially expressed genes; GEO: Gene 

Expression Omnibus; TCGA: The Cancer Genome of 

Atlas; KEGG: Kyoto Encyclopedia of Genes and 

Genomes; STRING: Search Tool for the Retrieval of 

Interacting Genes; GSEA: Gene Set Enrichment 

Analysis; CCLE: Cancer Cell Line Encyclopedia; 

qPCR: Quantitative PCR; OS: Overall survival; 

BiNGO: the Biological Networks Gene Ontology tool; 

MCODE: Molecular Complex Detection; TNM: 

Tumor-node-metastasis; CIs: Confidence intervals; KM: 

Kaplan–Meier; MSigDB: Molecular Signatures 

Database; cDNA: Complementary DNA; CNV: Copy 

number variation; c-index: The concordance index; 

MEFs: mouse embryonic fibroblasts. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Expression profiles of 57 hub genes with degree ≥20 in LUAD (A) and LUSC (B). 
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Supplementary Figure 2. Kaplan-Meier survival analysis for estimating the prognostic capacity of the ACK1 in TCGA lung 
cohorts. Risk group stratification by the ACK1 expression levels with respect to the overall survival of LUAD (A) and LUSC (B). Risk group 

stratification by the ACK1 expression levels with respect to disease-free survival of LUAD (C) and LUSC (D). 


