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Abstract: Developmental genetic studies of Antirrhinum majus demonstrated that two transcription
factors from the MYB gene family, RADIALIS (RAD) and DIVIRICATA (DIV), interact through
antagonism to regulate floral dorsoventral asymmetry. Interestingly, similar antagonistic interaction
found among proteins of FSM1 (RAD-like) and MYBI (DIV-like) in Solanum lycopersicum is involved
in fruit development. Here, we report the reconstruction of the phylogeny of I-box-like and R-R-type
clades, where RAD- and DIV-like genes belong, respectively. We also examined the homology of
these antagonistic MYB proteins using these phylogenies. The results show that there are likely
three paralogs of RAD-/I-box-like genes, RAD1, RAD2, and RAD3, which originated in the common
ancestor of the core eudicots. In contrast, R-R-type sequences fall into two major clades, RR1 and RR2,
the result of gene duplication in the common ancestor of both monocots and dicots. RR1 was divided
into clades RR1A, RR1B, and RR1C, while RR2 was divided into clades RR2A/DIV1, RR2B/DIV2,
and RR2C/DIV3. We demonstrate that among similar antagonistic interactions in An. Majus and
So. lycopersicum, RAD-like genes originate from the RAD2 clade, while DIV-like genes originate from
distantly related paralogs of the R-R-type lineage. The phylogenetic analyses of these two MYB clades
lay the foundation for future comparative studies including testing the evolution of the antagonistic
relationship of proteins.

Keywords: RADIALIS-like genes; DIVIRICATA-like genes; gene duplication; angiosperms;
phylogeny; antagonism of proteins; MYB gene family

1. Introduction

The MYB gene family comprises three members, A-, B- and c-MYB [1,2], found in many
vertebrates, that are involved in the regulation of cell proliferation, differentiation, and apoptosis [3].
Homologs of MYB genes have also been identified in insects, fungi, and slime molds [4]. The first
plant MYB gene, C1, was isolated from Zea mays, and it encodes a c-MYB-like transcription factor
involved in anthocyanin biosynthesis [5]. Plant MYB proteins were found to be involved in the
regulation of many developmental processes including the biosynthesis of anthocyanin and flavonoids,
trichome differentiation, the determination of cell shapes, and the regulation of cell proliferation and
cell cycles [5–9].

In plants, the MYB genes have also been found in the regulation of the development of floral
symmetry in the Lamiales [10]. In the zygomorphic flowers of Antirrhinum majus L., the two dorsal
petals are significantly enlarged compared to the lateral and ventral petals, and the single dorsal stamen
is aborted [11]. Two genes, CYCLOIDEA (CYC) and DICHOTOMA (DICH), belonging to the CYC/TB1
clade of the TCP transcription factor family, were found to promote the dorsal identity of zygomorphic
flowers [11–14]. RADIALIS (RAD), a member of the MYB gene family, was found to be the downstream
target of CYC and DICH [15–17]. Plants of the double cyc/dich or the single rad mutants produce
flowers that have entirely or partially lost their dorsal identity [11,16]. The dorsal petals assume the
ventral petal identity and the aborted dorsal stamen becomes functional [11]. DIVARICATA (DIV),
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a member of a different MYB lineage, promotes ventral floral identity [18]. A single div mutant causes
the loss of the ventral petal identity [18,19]. In the cyc/dich/div triple mutant, where the function of
both the dorsal and ventral identity genes was lost, all petals resume the lateral petal identity [18,19].

Recently, antagonism involving three MYB-like proteins was found to be a mechanism regulating
floral symmetry in the flowers of Antirrhinum [10]. Despite the role of DIV in controlling ventral
petal identity, its mRNA is transcribed across the floral meristem [18,19]. RAD was found to be
the dorsal factor inactivating DIV, but not at the transcriptional level [10,19]. Interestingly, it was
found that RAD and DIV do not directly interact with each other, but compete for their protein target,
DIV-and-RAD-interacting-factors (DRIFs), also members of the MYB family [10]. In particular, DIV and
DRIFs show overlapping expression patterns and can form heterodimer complexes that bind to the
DNA of DIV, suggesting the regulation of its transcription. RAD inhibits the interaction between DIV
and DRIFs in the dorsal regions of the flowers of Antirrhinum by either binding directly to a DRIF
protein in the nucleus or/and by sequestering the DRIF proteins in the cytoplasm [10]. Therefore, RAD
acts as the antagonist that blocks the binding of DIV, the agonist, with the DRIFs, which is required for
regulating ventral symmetry in the flowers of Antirrhinum.

Similar antagonistic relationships involving three MYB homologs were reported in the fruit
development of Solanum lycopersicum L. [20]. The fruit SANT/MYB binding protein1 (FSB1),
a DRIF homolog, was found to form a protein complex with the transcription factor MYBI, a DIV
homolog. The fruit SANT/MYB-like (FSM1) protein, a RAD homolog, competes for FSB1 with MYBI.
The function of FSM1 is to reduce fruit size and preferentially restrict differential cell expansion [20].
Ectopic expression of FSM1 results in a reduction in organ size by negatively affecting cell expansion.
In contrast, FSB1 positively regulates differential cell expansion through a physical interaction with
MYBI [20]. This is analogous with the competition between RAD and the DIV-DRIF complex in the
dorsal regions of the flowers of Antirrhinum. The function for the FSM1–FSB1–MYBI complex in tomato
controls cell expansion, while RAD–DRIF–DIV similarly also controls cell expansion by regulating
dorsoventral flower asymmetry in snapdragon [10,20].

Previous works indicated frequent gene duplications during the evolution of RAD- and DIV-like
genes [21,22]. Three paralogs of the RAD lineage, RAD1, RAD2, and RAD3, as well as three paralogs
of the DIV lineage, DIV1, DIV2, and DIV3, are recognized [21,22]. The gene duplications that gave
rise to these paralogs were predicted to have occurred around the diversification of the Pentapetalae.
Therefore, there may exist antagonistic relationships among the homologs of RAD–DRIF–DIV in
diverse lineages of the core eudicots. DRIFs, one of the three factors involved in this antagonistic
interaction, belong to an ancient MYB-like gene family with several homologs also found in the
moss Physcomitrella patens [10]. Two paralogs of DRIFs resulting from gene duplication at least in
the common ancestor of monocots and dicots are named Group 1 and 2 [10]. The DRIF1 and DRIF2
of An. majus belong to Group 1, while the only DRIF-like protein (SlFSB1) found in So. lycopersicum
belongs to Group 2. Therefore, in the antagonized systems in An. majus and So. lycopersicum, the DRIF
homologs involved belong to two paralogous clades.

Here, we report on the evolution of the I-box-like and R-R-type lineages where RAD- and DIV-like
genes belong, respectively, and aim to (1) reconstruct the phylogeny of the two MYB lineages using
the maximum likelihood (ML) and Bayesian algorithms, (2) clarify the phylogenetic relationships of
the paralogs, and (3) identify the homology of RAD- and DIV-like genes that form the antagonistic
relationships in An. majus and So. lycopersicum. We also focus on RAD-like gene evolution in
Solanaceae, where lineage-specific gene duplications were identified. We demonstrate that, among
similar antagonistic interactions in An. Majus and So. lycopersicum, RAD-like genes originate from the
closely related ortholog, while DIV-like genes originate from distantly related paralogs. Furthermore,
the phylogenies of the I-box-like and R-R-type lineages generated in this study will guide future works
in understanding the functional divergence of these MYB lineages.
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2. Results

2.1. RAD-Like Genes from Solanaceae

Sixteen sequences of RAD-like genes were discovered in this study (GenBank numbers
MF398572-MF398587) (Table 1). We show that our cloning method can recover all of the RAD2
paralogs identified from the genome data of P. hybrida and So. lycopersicum (Table 1).

Table 1. Species sampled for the RAD2 clade with collection locations, voucher information, sequence
name, phylogenetic placement, and number of clones sequenced.

Species Family Location Voucher Sequence Names Clades # of Clones
Sequenced

Petunia sp. Solanaceae VCU Greenhouse
Zhang_Lab_23

(VCU)

Petunia sp RAD1 RAD2A 12

Petunia sp RAD2 RAD2A 20

Petunia sp RAD3 RAD2B 8

Lycium
ruthenicum

Murray.
Solanaceae

Taxkorgan Tajik
Autonomous

County, Xinjiang,
China

CPG13183
(PE)

Lycium ruthenicum
Murr RAD RAD2A 20

Atropa
belladonna L. Solanaceae

Hotel Elites, Nathia
Gali, Northwest

Frontier Province,
Pakistan

CPG13594
(PE)

Atropa belladonna
Linn RAD RAD2B 20

Schizanthus
pinnatus Ruiz

& Pav.
Solanaceae VCU Greenhouse

Zhang_Lab_20
(VCU)

Schizanthus
pinnatus RAD1 RAD2B 21

Schizanthus
pinnatus RAD2 RAD2A 22

Schizanthus
grahamii Gillies Solanaceae VCU Greenhouse

Zhang_Lab_19
(VCU)

Schizanthus
grahamii RAD1 RAD2A 21

Schizanthus
grahamii RAD2 RAD2B 19

Nicotiana
obtusifolia

M.Martens
& Galeotti.

Solanaceae VCU Greenhouse
Zhang_Lab_11

(VCU)

Nicotiana
obtusifolia RAD1 RAD2A 14

Nicotiana
obtusifolia RAD2 RAD2A 16

Solanum
lycopersicum L. Solanaceae VCU Greenhouse

Zhang_Lab_21
(VCU)

Solanum
lycopersicum

microtom RAD1
RAD2A 17

Solanum
lycopersicum

microtom RAD2
RAD2B 13

Evolvulus sp. Convolvulaceae VCU Greenhouse
Zhang_Lab_18

(VCU)

Evulupus sp RAD1 RAD2B 20

Evulupus sp RAD2 RAD2A 17

Ipomoea tricolor
Cav. Convolvulaceae VCU Greenhouse Zhang_Lab_22

(VCU)
Ipomoea tricolor

RAD1 RAD2A 20

Virginia Commonwealth University (VCU) is in Richmond, VA, USA. VCU, Virginia Commonwealth University
Herbaria; PE, Institute of Botany, Chinese Academy of Sciences Herbarium, Beijing, China.

2.2. Diversity and Phylogeny of I-Box-Like MYB Genes

A total of 274 RAD-like coding DNA sequences (CDSs) were found in 101 species representing
28 families and 15 orders of dicots (Solanales, Vitales, Brassicales, Malvales, Malpighiales,
Ranunculales, Lamiales, Saxifragales, Rosales, Fabales, Proteales, Cucurbitales, Myrtales, Dipsacales,
and Sapindales) and monocots (Table S1). Among these sequences, 79 CDSs belong to
17 species of seven genera of Solanaceae, which includes the FSM1 from So. lycopersicum [20].
For Arabidopsis, six RAD homologs, At4g39250 (Arabidopsis_thaliana_RL1, NM_120086.2), At2g21650
(Arabidopsis_thaliana_RL2, NM_127736.3), At4g36570 (Arabidopsis_thaliana_RL3, BT011255.1), DQ395345
(Arabidopsis_thaliana_RL4, NM_001084443.1), At1g19510 (Arabidopsis_thaliana_RL5, NM_101808.4),
and At1g75250 (Arabidopsis_thaliana_RL6, NM_001084356.2), were included.
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A phylogeny of RAD-like genes was constructed based on 53 sequences from four species of
Arabidopsis (A. thaliana, A. halleri, A. lyrata, and A. salsuginea), six species of Solanum (So. melongena
So. pennellii, So. lycopersicum, So. pimpinellifolium, So. peruvianum, and So. tuberosum), and Oryza sativa
(Figure 1). The phylogeny indicated that sequences from O. sativa form a monophyletic clade.
However, the phylogenetic relationships among the three previously identified RAD1, RAD2, and
RAD3 clades [21] were not fully resolved. The RAD2 clade is likely monophyletic while the RAD1 and
RAD3 clades are not (Figure 1, also see below). The RAD2 clade consists of Arabidopsis thaliana RL1 and
Arabidopsis thaliana RL2 and species of Solanum, which were further divided into two Solanum-specific
clades, RAD2A and RAD2B. The FSM1 of So. lycopersicum was placed in the RAD2A clade. It is unclear,
however, how the other sequences of Solanum should be placed within the RAD1 clade represented
by Arabidopsis thaliana RL3 and Arabidopsis thaliana RL4 and with the RAD3 clade represented by
Arabidopsis thaliana RL5 and Arabidopsis thaliana RL6 (Figure 1) [21].

Another phylogeny of RAD-like genes was reconstructed based on 274 CDSs, including 258 from
blast results and 16 in this study (Figure 2, Table S1). All eight species from seven families of monocots
form a monophyletic clade and were used to root the phylogeny. RAD2 forms a monophyletic
clade, while both RAD1 and RAD3 were not fully resolved (Figures 1 and 2). RAD2 comprises
representatives from eleven orders: Vitales, Rosales, Malvales, Fabales, Cucurbitales, Sapindales,
Malpighiales, Brassicales, Solanales, Lamiales, and Dipsacales (Figure 2 and Table S1). Most of the
solanaceous and convolvulaceous RAD-like sequences fell into the RAD2 clade, which is further
divided into two clades, RAD2A and RAD2B (Figures 1 and 2; Figure S1). The unrooted phylogeny
including only RAD2 of Solanaceae and Convolvulaceae further indicates that two paralogs have been
likely formed at least in the common ancestor of the two families (Figure S1). Further gene duplication
and gene losses likely also occurred, which led to Nicotiana and Petunia having additional paralogs in
RAD2A (Figure 2, Figure S1). RAD2 sequences from the two species of Schizanthus, the first branching
clade of Solanaceae [23], are more closely related to the sequences from Convolvulaceae, which might
be due to the limited sampling. The FSM1 of So. lycopersicum expressed in fruit is grouped in the
RAD2A clade, while the RAD of A. majus is also in the RAD2 clade.

2.3. Diversity and Phylogeny of R-R-Type MYB Genes

One thousand and seventy-five CDSs that represent both R-R-type and CCA1-like genes
from 109 species representing 34 different families from 22 orders of plants (16 of dicots, four of
monocots, and two of mosses) were recovered (Table S2). For A. thaliana, the BLASTn results nine
R-R-type, i.e., At1g49010 (AY519528.1), At2g38090 (AY519529.1), At3g11280 (AY550308.1), At5g01200
(AY519530.1), At5g05790 (AY519531.1), At5g08520 (AY519532.1), At5g58900 (AY519533.1), At5g23650
(DQ056685.1), and At5g04760 (AB493736.1) and one CCA1-like gene, i.e., At3g16350 (AY519512.1) [24].
For Solanaceae, we recovered 124 CDSs, namely DIV-, MYB- or MYB1R1-like genes, from 12 species in
four genera, including the MYBI of So. lycopersicum.

An R-R-type gene phylogeny was first reconstructed based on 52 CDSs from O. sativa japonica,
A. thaliana, and five species of Solanum (So. melongena, So. lycopersicum, So. pennellii, So. peruvianum,
and So. tuberosum) (Figure 3). All sequences fell into two clades, RR1 and RR2/DIV. The RR2/DIV
clade represented the DIV clade identified by Howarth and Donoghue [22]. Each of these two clades
contained sequences from O. sativa, A. thaliana, and Solanum.
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Figure 1. Phylogeny of I-box-binding/RADIALIS-like genes of four species of Arabidopsis, six species of 
Solanum, and Oryza sativa based on Bayesian and maximum likelihood (ML) inferences. All 
sequences from O. sativa formed a monophyletic clade was used to root the phylogeny. Based on the 
clade defined by Boyden et al. (2012), [21], only the RAD2 clade was monophyletic and contained 
sequences from Arabidopsis and Solanum. There are two paralogs in the RAD2 clade, i.e., RAD2A and 
RAD2B, which resulted from a gene duplication that Arabidopsis was not involved. RAD1 and RAD3 
are paraphyletic. Bayesian posterior probabilities and bootstrap frequencies ≥40% depicted close to 
the branches, respectively. 

Figure 1. Phylogeny of I-box-binding/RADIALIS-like genes of four species of Arabidopsis, six species of
Solanum, and Oryza sativa based on Bayesian and maximum likelihood (ML) inferences. All sequences
from O. sativa formed a monophyletic clade was used to root the phylogeny. Based on the clade
defined by Boyden et al. (2012), [21], only the RAD2 clade was monophyletic and contained sequences
from Arabidopsis and Solanum. There are two paralogs in the RAD2 clade, i.e., RAD2A and RAD2B,
which resulted from a gene duplication that Arabidopsis was not involved. RAD1 and RAD3 are
paraphyletic. Bayesian posterior probabilities and bootstrap frequencies ≥40% depicted close to the
branches, respectively.
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Figure 2. Phylogeny of I-box-binding/RADIALIS-like genes based on Bayesian and ML inferences. 274 
CDSs of I-box-binding/RADIALIS-like genes from both monocots and dicots were analyzed. All 
sequences from monocots formed a monophyletic group was used to root the phylogeny. RAD2 
formed a monophyletic clade. At least one gene duplication was identified in the common ancestor 
of Solanaceae and Convolvulaceae. RAD1 and RAD3 clades are paraphyletic. Bayesian posterior 
probabilities and bootstrap frequencies ≥40% depicted close to the branches, respectively. 

Figure 2. Phylogeny of I-box-binding/RADIALIS-like genes based on Bayesian and ML
inferences. 274 CDSs of I-box-binding/RADIALIS-like genes from both monocots and dicots were
analyzed. All sequences from monocots formed a monophyletic group was used to root the
phylogeny. RAD2 formed a monophyletic clade. At least one gene duplication was identified
in the common ancestor of Solanaceae and Convolvulaceae. RAD1 and RAD3 clades are
paraphyletic. Bayesian posterior probabilities and bootstrap frequencies ≥40% depicted close to
the branches, respectively.
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Figure 3. Phylogeny of R-R-type genes of five species of Solanum, Arabidopsis thaliana, and Oryza 
sativa based on Bayesian and ML inferences. Two major clades, RR1 and RR2, were identified, each of 
which includes sequences from Arabidopsis, Oryza, and Solanum. Bayesian posterior probabilities and 
bootstrap frequencies ≥40% depicted close to the branches, respectively. 

The R-R-type gene phylogeny was also reconstructed based on 298 CDSs from 75 species of 23 
families (Figure 4, Table S2). The unrooted tree indicated that the RR1 and RR2/DIV clades were 
monophyletic (Figure 4). RR1 was further divided into three clades i.e., RR1A, RR1B, and RR1C. The 
RR1A clade included sequences from 12 orders of dicots (Myrtales, Fabales, Sapindales, Vitales, 
Brassicales, Rosales, Malvales, Malpighiales, Ranunculales, Caryophyllales, Apiales, and Solanales). 
The RR1B clade had representatives from monocots and five orders of dicots (Myrtales, Brassicales, 
Fabales, Apiales, and Solanales). RR1C clade had representatives from monocots and six orders of 
dicots (Caryophyllales, Myrtales, Brassicales, Rosales, Fabales, and Solanales). For Arabidopsis, 
AT5g04760 was placed in the RR1A clade, AT5G08520 and At5g23650 in the RR1B clade, and 
AT1G49010 in the RR1C clade. For the RR2/DIV clade, previously identified DIV2 and DIV3 clades 

Figure 3. Phylogeny of R-R-type genes of five species of Solanum, Arabidopsis thaliana, and Oryza sativa
based on Bayesian and ML inferences. Two major clades, RR1 and RR2, were identified, each of
which includes sequences from Arabidopsis, Oryza, and Solanum. Bayesian posterior probabilities and
bootstrap frequencies ≥40% depicted close to the branches, respectively.

The R-R-type gene phylogeny was also reconstructed based on 298 CDSs from 75 species
of 23 families (Figure 4, Table S2). The unrooted tree indicated that the RR1 and RR2/DIV
clades were monophyletic (Figure 4). RR1 was further divided into three clades i.e., RR1A,
RR1B, and RR1C. The RR1A clade included sequences from 12 orders of dicots (Myrtales, Fabales,
Sapindales, Vitales, Brassicales, Rosales, Malvales, Malpighiales, Ranunculales, Caryophyllales,
Apiales, and Solanales). The RR1B clade had representatives from monocots and five orders of dicots
(Myrtales, Brassicales, Fabales, Apiales, and Solanales). RR1C clade had representatives from monocots
and six orders of dicots (Caryophyllales, Myrtales, Brassicales, Rosales, Fabales, and Solanales).
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For Arabidopsis, AT5g04760 was placed in the RR1A clade, AT5G08520 and At5g23650 in the RR1B
clade, and AT1G49010 in the RR1C clade. For the RR2/DIV clade, previously identified DIV2 and
DIV3 clades formed monophyletic clades [22]. The sequences of A. thaliana, At2g38090, At5g01200,
At5g58900, belonged to DIV1, while At3g11280 and At5g05790 belonged to DIV2. Arabidopsis lacked
the DIV3 copy based on previous work [22]. The MYBI of So. lycopersicum expressed in fruit was
grouped in the RR1A of RR1 clade, while the DIV of A. majus was likely in RR2A/DIV1 of the
RR2 clade.
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Figure 4. Phylogeny of R-R-type genes based on Bayesian and ML inferences. Two hundred and
ninety-eight CDSs of R-R-type genes from both monocots and dicots were analyzed. They formed two
major clades, RR1 and RR2/DIV, each of which contained sequences from monocots and dicots. The RR1
clade was further divided into three groups, RR1A, RR1B, and RR1C. For the three RR2/DIV clades
identified by Howarth and Donoghue [22] only the DIV2 and DIV3 are monophyletic. The Arabidopsis
sequences include AT2G38090, AT5G01200, and AT5G58900 identified as DIV1, which is not a clade in
this phylogeny. Bayesian posterior probabilities and bootstrap frequencies ≥40% depicted close to the
branches, respectively.
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2.4. Testing the Tree Topology for R-R-Type Genes

We further examined whether either of the two clades of R-R-type genes, RR1 including RR1A,
RR1B, and RR1C; and RR2 including RR2A, RR2B, and RR2C, are monophyletic. Our results
indicate that the tree topology number one, of which the subclades RR1A, RR1B, and RR1C formed a
monophyletic RR1 clade, and the subclades RR2A, RR2B, and RR2C formed a monophyletic RR2 clade,
is the most likely phylogeny [p > 0.5; Kishino-Hasegawa test (KH) = 0.794, Shimodaira-Hasegawa
test (SH) = 0.997, and Approximately Unbiased test (AU) = 0.872] (Figure S2, Table 2). All the other
tree topologies, except for the tree topology number nine, which have the RR2A subclade grouped
within the RR1 clade, were rejected. However, the tree topology number nine is not strongly supported
(0.2 < p < 0.5; KH = 0.206, SH = 0.343, and AU = 0.213) compared to the tree topology number one
(Figure S2, Table 2).

Table 2. Comparison of the statistics of the phylogenetic hypotheses.

Tree Topology l δ
p Values

KH SH AU

1: [A-B-C] [D-E-F] −34754.03 0.00 0.794 0.997 0.872
2: [B-C] [A-D-E-F] −34775.47 21.45 0.037 * 0.284 0.048 *
3: [A-C] [B-D-E-F] −34801.25 47.22 <0.001 * 0.029 <0.001 *
4: [A-B] [C-D-E-F] −34808.97 54.95 <0.001 * 0.014 <0.001 *
5: [A] [B-C-D-E-F] −34820.49 66.46 <0.001 * 0.003 <0.001 *
6: [B] [A-C-D-E-F] −34820.49 66.46 <0.001 * 0.003 <0.001 *
7: [C] [A-B-D-E-F] −34820.49 66.46 <0.001 * 0.003 <0.001 *
8: [A-B-C-D-E-F] −34820.49 66.46 <0.001 * 0.003 <0.001 *

9: [A-B-C-D] [E-F] −34774.05 20.02 0.206 0.343 0.213
10: [A-B-C-E] [D-F] −34818.22 64.19 <0.001 * 0.004 <0.001 *
11: [A-B-C-F] [D-E] −34818.03 64.00 <0.001 * 0.007 <0.001 *
12: [A-B-C-D-E] [F] −34820.49 66.46 <0.001 * 0.003 <0.001 *
13: [A-B-C-D-F] [E] −34820.49 66.46 <0.001 * 0.003 <0.001 *
14: [A-B-C-E-F] [D] −34820.49 66.46 <0.001 * 0.003 <0.001 *

A = RR1A, B = RR1B, C = RR1C, D = RR2A, E = RR2B, and F = RR2C. l = Log-likelihood scores. δ = the log-likelihood
differences to the best tree. * denotes statistical significance at the 0.05 level.

2.5. Motif Analyses

We also analyzed the nucleotide sequences, which cover the diverse lineages of the I-box-like and
R-R-type from A. thaliana and O. sativa, and the representatives from An. majus and So. lycopersicum,
to identify protein motifs. Our results largely agree with the study of Chen et al. [24], which analyzed
the motifs for the I-box-like, R-R-type, and CCA1-like MYB genes. We found that the I-box-like genes
have only one motif, while the R-R-type genes have two motifs, i.e., R-R (A), and R-R (B). R-R (A)
locates at the N-terminal of the R-R-type genes, and shows high similarity to the I-box-like genes
(Figure 5). R-R (B) locates at the C-terminal of the R-R-type genes, and is distinct in amino acid
sequences compared to the R-R (A) and the only motif of I-box-like genes.

On the other hand, the results of our motif analyses also show differences compared to the results
of Chen et al. [24]. For I-box-like genes, our analyses identified a single motif that is 33 amino acids
in length. In contrast, the same motif based on Chen et al. [24] contains 56 amino acids, which has
eight and 15 extra amino acids at the N- and C-terminal, respectively. For R-R-type genes, our results
indicate that R-R (A) is 21 amino acids in length, while Chen′s results [24] include 59 amino acids
for the same motif, which has eight and 30 extra amino acids at the N- and C-terminal, respectively.
Our results suggest that R-R (B) is 50 amino acids in length. However, the same motif based on the
work of Chen et al. [24] has 53 amino acids, which has five extra amino acids at the N-terminal but
lacks two amino acids at the C-terminal. One possible reason for the discrepancy between the two
studies is that the Multiple Expectation maximizations for the Motif Elicitation (MEME) methods
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applied in our study only consider the continued amino acid sequences for a motif and no gap in the
sequences is allowed.
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3. Discussion

3.1. Phylogenetic Positions of RAD- and DIV-Like Genes in the Plant MYB Lineage.

MYB proteins contain a conserved MYB domain, which usually comprises one to three imperfect
repeats, namely R1, R2, R3 [4,24]. Each of these repeats comprises about 52 amino acid residues that
encode a helix-loop-helix structure involved in DNA binding [4,25]. MYB genes have been found in all
eukaryotes [4,26].

Phylogenetic analysis indicates that the MYB genes of plants, which is sister to all animal MYB
genes, form a monophyletic clade [25]. MYB genes in plants are structurally and functionally more
variable compared to MYB genes in vertebrates [25,27]. Based on the MYB domain structures,
the MYB proteins of plants can be classified into three major groups: R1R2R3-MYB with three
adjacent repeats, R2R3-MYB with two adjacent repeats, and MYB-related proteins, a heterogeneous
group, often containing a single MYB repeat [7,24,25,28–30]. The R2R3-MYB group is thought to
be derived from the R1R2R3-MYB group, which occurs in all major lineages of land plants [27].
Based on the phylogenetic analysis and the protein domain structure, MYB-related proteins were
further divided into five subfamilies: CCA1-like, CPC-like, TBP-like, I-box-binding-like (abbreviated
I-box-like), and R-R-type [24,30]. Based on Chen et al. [24], A. thaliana has five I-box-like genes,
i.e., At1g75250, At1g19510, At2g21650, At4g39250, and At4g36570, and nine R-R-type genes,
i.e., At1g49010, At2g38090, At3g11280, At5g01200, At5g05790, At5g08520, At5g58900, At5g23650,
and At5g04760. Boyden, Donoghue, and Howarth [21] indicated that RAD-like genes belong to the
I-box-like clade. Our analyses further indicate that the I-box-like lineage is synonymous with RAD-like
genes (Figures 1 and 2). Furthermore, Howarth and Donoghue [22] focused on the evolution of
DIV-like genes in core eudicots especially in Dipsacales, and indicated that the DIV-like genes belong
to an R-R-type lineage. Our analysis of R-R-type genes showed that the gene duplication occurred at
least in the common ancestor of dicots and monocots, giving rise to two paralogs, the RR1 and RR2
clades (Figures 3 and 4), of which the RR2 clade is synonymous with the DIV-like lineage [22].
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3.2. Evolution of the I-Box-Like Subfamily

Boyden, Donoghue, and Howarth [21] indicated that RAD-like genes consist of three major clades:
RAD1, RAD2, and RAD3, which were speculated to result from genome duplications associated
with the origin of core eudicots. The RAD1 clade has Arabidopsis AT4G36570 and DQ395345 of
Clade I, defined in Reference [24], and RAD2 and RAD3 have the Arabidopsis sequences from Clade III
(AT2G21650 and AT4G39250 belong to the RAD2, and AT1G19510 and AT1G75250 belong to RAD3).
Our analysis recognized RAD2 as a monophyletic clade (Figures 1 and 2). Furthermore, there are two
RAD2 paralogs involving Solanaceae and Convolvulaceae, RAD2A and RAD2B, which likely resulted
from a gene duplication at least in the common ancestor of these two plant families. On the other hand,
the RAD1 and RAD3 clades were not fully resolved based on our analyses. Our phylogenetic analyses
indicated that the RAD of A. majus belongs to the RAD2 clade, while FSM1 is placed in the RAD2A
clade, suggesting that RAD and FSM1 belong to the same orthologous lineage.

3.3. Evolution of the R-R-Type Subfamily

The R-R-type genes have two imperfect repeats of the MYB domain, namely R-R (A) and R-R
(B) [24]. The N-terminal MYB repeat R-R (A) was found to be closely related to the MYB repeats of the
I-box-like genes, and the C-terminal MYB repeat R-R (B) was closely related to those of certain CCA1-like
genes based on the positions of the introns and shared motifs [24]. The phylogeny of R-R-type genes
based on nine sequences of A. thaliana and seven of O. sativa japonica suggests several gene duplications
in the common ancestor of the monocots and dicots, but the phylogenetic relationships of the predicted
paralogs were unresolved in that study [24]. The work by Howarth and Donoghue [22] focused on
the evolution of DIV-like genes in core eudicots, especially in Dipsacales, which showed duplications
giving rise to three DIV-like clades in the core eudicots, DIV1, DIV2, and DIV3. Our blast and
phylogenetic analyses indicated that most of the sequences named DIV-like genes belong to the
R-R-type subfamily, while most of the sequences named as MYB1R1-like genes belong to the CCA1-like
gene family (Table S2). Each of the two R-R-type subclades, RR1 and RR2, was further divided
into three paralogs, which likely resulted from genome duplication in the common ancestor of core
eudicots [22]. RR1 consists of RR1A, RR1B, and RR1C, while RR2/DIV is composed of RR2A/DIV1,
RR2B/DIV2, and RR2C/DIV3 (Figures 3 and 4) [22]. We found that the DIV of An. majus belongs to
the DIV1 of the RR2/DIV clade [22], while the MYBI of tomato belongs to the RR1A of the RR1 clade.

3.4. Evolution of the Antagonism among RAD-DRIF-DIV and FSM1-FSB1-MYBI in An. majus and So.
lycopersicum, Respectively

Based on an analysis of amino acid sequences, the two MYB domains of DIV had different
functions with the C-terminal domain similar to known DNA binding MYB proteins, while the
N-terminal domain was associated with protein-protein interactions (Figure 5) [19,31]. In contrast,
RAD has a single MYB domain that is predicted to act through a mechanism involving protein–protein
interactions (Figure 5) [16]. As the members of MYB-related subfamilies, I-box-like and R-R-type genes
were previously placed in the same clade by Riechmann and Ratcliffe [30], which suggested that they
might be closely related paralogs. One possible hypothesis proposed for the evolution of these two
MYB-related subfamilies is that I-box-like genes evolved through the loss of the MYB domain at the
C-terminal end [24,32]. RAD-DRIF-DIV and FSM1-FSB1-MYBI therefore represent the recruitment of
homologous genes from similar MYB lineages in the development of floral zygomorphy in An. majus,
and the development of fruit in So. lycopersicum [10].

In summary, I-box-like and R-R-type lineages have experienced extensive gene duplication that
predated the diversification of the core eudicots. Our work further clarified the evolution of these two
MYB subfamilies, which will help the future inquiry into the functional studies of the paralogs of the
I-box-like and R-R-type genes that may have been involved in the evolution of molecular antagonism.
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4. Materials and Methods

4.1. Cloning RAD-Like Genes from Species of Solanaceae and Convolvulaceae

Primers incorporated with degenerate polymorphic sites based on the alignment of
RAD-like sequences, especially the RAD2 clade from Solanaceae and Lamiales, were used
for amplifying the genes from species of Solanaceae and representatives of Convolvulaceae.
The locations of our primers referred to the study by Boyden, Donoghue, and Howarth [21].
These primers, i.e., forward primer 5′-AACAAGGCITTTGARARGGCWTYRGC-3′, and reverse primer
5′-GGRAARGGBAYIMYACCAIDITCAAT-3′, successfully amplified RAD-like genes from both the
basal and derived clades of Solanaceae (Schizanthus pinnatus Ruiz & Pav, Schizanthus grahamii Gillies,
Petunia sp., Nicotiana obtusifolia M. Martens & Galeotti, Solanum lycopersicum L., Lycium ruthenicum
Murray, and Atropa belladonna L.) and species of Convolvulaceae (Evolvulus sp. and Ipomoea tricolor Cav.)
(Table 1). PCR reactions were performed using GoTaq® G2 Hot Start Polymerase (Promega, Madison,
WI, USA), as follows: 95 ◦C for 5 min, 95 ◦C for 45 s, 55 ◦C for 45 s, and 72 ◦C for 1 min and 30 s,
repeated for 39 cycles, with a final step at 72 ◦C for 10 mins. PCR products were then purified through
gel extraction using Wizard SV Gel and PCR Clean-Up System from Promega. The purified PCR
products were used as a template for the second round of PCR following the same PCR program
described above. The purified second round PCR products were used in ligation and transformation
with pGEM-T Easy Vector System I from Promega. At least 50 clones were screened for each species.
The sequences of the clones were determined using Sanger sequencing by GENEWIZ (115 Corporate
Boulevard, South Plainfield, NJ, USA).

4.2. Gene Mining

The RAD- and DIV-like genes were obtained through blasting RAD and DIV CDSs of A. majus
(GenBank accession numbers: AY954971.1 and AY077453.1, respectively) against the databases,
including NCBI BLASTn (available online: http://www.ncbi.nlm.nih.gov/BLAST/), Phytozome 11
(available online: https://phytozome.jgi.doe.gov), Sol Genomics Network (available online: https:
//solgenomics.net), and Rice Genome Annotation Project (available online: http://rice.plantbiology.
msu.edu).

4.3. Alignment and Phylogenetic Analyses

The DNA matrices of the coding sequences were aligned using Geneious version 7.1.9
(PO Box 5677, Wellesley St, Auckland 1010, New Zealand). The MUSCLE algorism that refers to the
protein sequence alignment for building nucleotide sequence alignment was applied. Each DNA matrix
was analyzed by using the Bayesian and ML inferences, which were implemented in RAxML_HPC2,
and MrBayes version 3.2.6 on XSEDE, respectively, at the CIPRES Science Gateway V. 3.3. [33–36].
For ML analyses, a random seed value for rapid ML bootstrapping was estimated on each dataset. The
GTRCAT model was chosen for the bootstrapping analysis based on the program recommendation
because GTRCAT shows lower computational costs and memory consumption for the ML method [34].
The models used for the Bayesian analyses were estimated using jmodeltest 2.1.10 [37,38]. The Akaike
Information Criterion (AIC) [39] was used to determine the best-fit model for each DNA sequence
matrix, i.e., K80 (K2P) + g model for the I-box-like/RAD gene phylogeny including Arabidopsis, Solanum,
and Oryza alone, JC + g model for the large RAD phylogeny, GTR + i + g model for the R-R-type
gene phylogeny including Arabidopsis, Solanum, and Oryza alone, and GTR + i + g model for the
large R-R-type gene phylogeny. We used the Metropolis-coupled Markov chain Monte Carlo method
as implemented in MrBayes to run four chains. We ran five million generations for each chain,
and sampled every 1000 generations with a burn-in of the first 2000 trees.

http://www.ncbi.nlm.nih.gov/ BLAST/
https://phytozome.jgi.doe.gov
https://solgenomics.net
https://solgenomics.net
http://rice.plantbiology.msu.edu
http://rice.plantbiology.msu.edu
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4.4. Phylogeny Assessment for R-R-Type Genes

We generated 14 tree topologies manually based on our Bayesian tree to test the alternate
hypotheses. To produce these topologies, first the RR2A clade was set as monophyletic. Second, we
collapsed the relationships among the subclades in RR1 and RR2 clades. Finally, the subclades were
subsequently moved around as indicated in Figure S2. The log-likelihoods for each tree topology were
calculated using TREE-PUZZLE (ver. 5.3.rc16) [40] with the HKY model of evolution [41] and four
rate categories for the discrete Gamma distribution. The log-likelihoods information estimated for
the 14 topologies from TREE-PUZZLE was then entered into CONSEL (ver. 0.20) [42] to generate the
bootstrap replicates for each tested tree. The p-values of KH [43], SH [44], and AU tests [45] were
subsequently calculated based on the bootstrap samples [42]. The confidence of the 14 trees was then
assessed by the p-values [42]. If the p-value estimated for a tree was <0.05, the topology was rejected; if
the p value > 0.5, the topology was preferred [45,46].

4.5. Motif Analyses

Motif analyses based on nucleotide sequences were carried out for I-box-like and
R-R-type genes. For I-box-like genes, we included six sequences of A. thaliana, i.e., At4g39250
(Arabidopsis_thaliana_RL1, NM_120086.2), At2g21650 (Arabidopsis_thaliana_RL2, NM_127736.3),
At4g36570 (Arabidopsis_thaliana_RL3, BT011255.1), DQ395345 (Arabidopsis_thaliana_RL4,
NM_001084443.1), At1g19510 (Arabidopsis_thaliana_RL5, NM_101808.4), and At1g75250
(Arabidopsis_thaliana_RL6, NM_001084356.2); eight sequences of O. sativa, i.e., (Oryza_sativa_RAD1,
LOC_Os01g44390.2), 9640.m03280 (Oryza_sativa_RAD2, LOC_Os12g33950), 9631.m01422
(Oryza_sativa_RAD3, LOC_Os03g14810), 9631.m06332 (Oryza_sativa_RAD4, LOC_Os03g63890),
9633.m03415 (Oryza_sativa_RAD5, LOC_Os05g37040), 9633.m03416 (Oryza_sativa_RAD6,
LOC_Os05g37050), 9635.m02514 (Oryza_sativa_RAD7, LOC_Os07g26150.1), and 9640.m03280
(Oryza_sativa_RAD8, LOC_Os12g33950); one sequence of An. majus, i.e., RAD; and one sequence of
So. Lycopersicum, i.e., FSM1.

For R-R-type genes, we included nine sequences of A. thaliana, i.e., At1g49010 (AY519528.1),
At2g38090 (AY519529.1), At3g11280 (AY550308.1), At5g01200 (AY519530.1), At5g05790 (AY519531.1),
At5g08520 (AY519532.1), At5g58900 (AY519533.1), At5g23650 (DQ056685.1), and At5g04760
(AB493736.1); seven sequences of O. sativa, i.e., 9632.m05667 (LOC_Os04g58020), 9629.m00414
(LOC_Os01g04930), 9629.m06276 (LOC_Os01g63460), 9629.m06374 (LOC_Os01g64360), 9633.m03417
LOC_Os05g37060), 9633.m03487 (LOC_Os05g37730), and 9631.m06132 (LOC_Os03g62100);
one sequence of An. majus, i.e., DIV; and one sequence of So. lycopersicum, i.e., MYBI.

The nucleotide sequences of these CDSs were translated into amino acid sequences by Mesquite
version 3.2 [47]. We used the MEME algorithm, which extends the Expectation Maximization (EM)
algorithm for identifying motifs in unaligned amino acid sequences [48]. The MEME algorithm is
designed to discover novel and ungapped motifs in a set of homologous sequences [48]. To use
this function, we uploaded and analyzed the I-box-like and R-R-type amino acid sequences at http:
//meme-suite.org/index.html [49]. For the MEME options, we set the numbers of motifs to be found
as three, and each motif occurred only one time in each testing sequence.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/9/1961/s1.
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