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Although the competitive advantages brought by intelligent manufacturing technology for enterprises have been preliminarily
shown, a lack of matched management capacity still greatly limits its effect. *is paper focuses on the cost management capacity
problem of intelligent manufacturing enterprises. *e multiscale cost data model is established on the basis of the three-di-
mensional cost system model, which contains actual cost, standard cost, and testing cost. According to the scale transformation
theory, we propose the dynamic updating mechanism of standard cost. *e key cost center identification methods, respectively,
for the production performance assessment scenario (KCCI_PPA) and the business decision-making scenario (KCCI_BDM) are
also put forward, which could overcome the subjective determination limitation of initial observation scale in the traditional
variable-scale data analysis method. Experiments with both industrial statistical and enterprise real datasets verify the efficiency
and accuracy of the proposed KCCI_PPA and KCCI_BDM method.

1. Introduction

With the deep integration of the new generation information
technology and advanced manufacturing techniques, huge
economic advantages brought by the transformation and
upgrading of traditional manufacturing industry have been
shown. Undoubtedly, intelligent manufacturing becomes a
significant field for the newest-round strategic competition
between countries around the world [1, 2].

For manufacturing enterprises, intelligent manufactur-
ing refers to not only the intelligent products and
manufacturing paradigms but also all the industrial and
innovation chain-related management activities including
enterprise strategies planning, operating, and organizing [3].
Li et al. [4] divided the sources of industrial (manufacturing)
big data into three aspects: (1) the real-time manufacturing
resource data collected through the industrial Internet of
*ings (IoT), (2) the manufacturing systems and computer
aid data in the product lifecycle (including product design,
material allocation, marketing, and supply chain), and (3)
and the Internet data collected from open websites, such as

public government information platform, e-commerce
platforms, and social networking platforms [5, 6].

However, the advanced intelligent manufacturing
techniques have pushed the production pattern to become
more flexible and customized, which puts forward higher
requirements for enterprise management capacity [7], es-
pecially for the energy-intensive manufacturing enterprises.
*erefore, how to establish a sustainable data-driven in-
telligent manufacturing framework with real-time moni-
toring of energy consumption, assessment management, and
optimisation of energy efficiency, as well as reduction of
energy cost considering demand response, plays an im-
portant role in achieving the circular economy [8]. It can be
seen that cost management has become one of the key
factors that affects the intelligent management decision-
making level of manufacturing enterprises.

Manufacturing enterprises achieve production task goals
mainly relying on the manufacturing process composed of
certain organically related production and operation links. It
is the intelligent techniques that greatly improve the quality
and efficiency between every link and make the integration
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of links in the manufacturing processes of great importance
[7, 9].

*erefore, this paper takes these closely related pro-
duction and operation links of the manufacturing process as
the key cost management objects (key cost centers) and
studies the key cost center identification problem and cost
management methods for intelligent manufacturing
enterprises.

*e main contributions are as follows. Firstly, we extend
the cost management dimensions into three correlated as-
pects (which are actual cost, standard cost, testing cost) and
build the cost system model for intelligent manufacturing
enterprises. According to the scale transformation theory,
the multiscale cost model is established to represent the
bilateral multiple scale cost system. In order to ensure the
time effectiveness of the standard cost, a dynamic updating
mechanism is proposed. Considering the practical demands
of production performance assessment and business deci-
sion-making, the key cost center identification methods are
put forward.

*e remainder of the paper is organized as follows.
Section 2 presents the literature review of two aspects, the
cost management method of manufacturing enterprises, as
well as the scale transformation theory and variable-scale
data analysis method. *e main multiscale cost data model,
dynamic cost updating mechanism, and key cost center
identification method are proposed in Section 3. We present
our experiment analysis that verifies the effectiveness of the
proposed approach in Section 4. Section 5 discusses the
conclusions of the whole paper.

2. Literature Review

2.1. CostManagementMethods ofManufacturing Enterprises.
*e activity-based costing method is one of themost popular
cost management tools for enterprises in the 20th century,
which aims to provide managers with multidimensional,
real-time, and accurate production cost information
[7, 10–12]. As for the manufacturing process, the activity-
based costing method points out that the cost objects
consume activities while activities consume resources
[13–15]. *erefore, activity is regarded as the basic cost unit
in the cost calculation system, and detailed cost drivers are
applied for the cost allocation process.

Although the supervision of the whole production
process under the intelligent manufacturing production
mode has the potential to provide certain data and infor-
mation for the implementation of the activity-based costing
method, the following profound changes in the cost drivers
(such as the direct labor cost approaches zero and the
proportion of energy consumption and data increases
gradually) still pose challenges to the efficiency and flexibility
of the activity-based costing system [16, 17]. Consequently, it
could not meet the requirements of flexible production for
management adaptability.

From the perspective of cost management for intelligent
manufacturing enterprises, this paper takes the entity that
managers could implement cost control strategies in the
manufacturing process as the cost center. It can be seen that

the cost center includes not only the operation links in the
manufacturing process but also the resources and organi-
zation units consumed in the production of each link.

*e iron and steel manufacturing enterprise is taken as
an example. Figure 1 shows part of the cost centers in the
iron and steel production process. Since different operation
links can be integrated through the relationship between
material use and information flow, cost centers also have
multiple levels accordingly, such as the highest-level parent
cost center sintering process, the middle class level child cost
center sintering workshop (I), and the lowest-level meta cost
center iron ore.

2.2. Variable-Scale Data AnalysisMethods. According to the
human problem solving theory [18, 19], managers’ or ex-
perts’ decision-making process could be divided into five
stages: (1) the decision problem recognition and classifica-
tion, (2) problem solving space representation, (3) problem
solution searching and application, (4) solution evaluation,
and (5) satisfied solution storage. During the second stage,
experts are able to rapidly find all the relevant dimensions
with multiple decision analysis hierarchies to form the
problem solving space [20]. Compared with newcomers,
experts could change and transform these decision analysis
hierarchies more efficiently when searching satisfactory
solutions among their problem solving space [21].

Variable-scale data analysis [22] is the data mining
method for intelligent decision-making, whichmakes uses of
the scale (decision analysis hierarchy) transformation ap-
proach to obtain satisfying results through simulating hu-
man decision-making process. In order to represent human
decision analysis hierarchies, the scale space model (see
Figure 2) utilizes the concept chain (CC) to describe one
observation dimension, where different analysis hierarchies
are corresponding to different concepts (scale) with partial
order relation. On the other hand, the value space (VS)
storages all the possible management object values under
each analysis hierarchy (scale). Wang et al. [23] improved
the scale space model by proposing the maximum value
regulation on the value space, which enables the model to
represent temporal observation scale for solving time-sen-
sitive decision-making problems.

Since managers always consider multiple dimensions
during one decision-making process [24, 25], the multiscale
data model is established via combining scale space models
of all candidate observation dimensions with raw man-
agement object data, which preliminary forms the complete
representation of problem-solving space. And the data
characteristics change gradually with the data analysis hi-
erarchy [22].

As for the cost management problem of manufacturing
enterprises, not only the management dimensions own
multiple analysis hierarchy (such as the actual cost di-
mension commonly has daily cost, monthly cost, and annual
cost three scales [26, 27]) but many management objects like
manufacturing process also have various hierarchies (see
Section 2.1). *erefore, the traditional multiscale data model
whose objects only exists single-scale could not fully meet
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the requirement of problem-solving space representation for
intelligent manufacturing management.

Even though the multiscale data model has already
provided the data structure foundation for decision-making,
what makes the whole data analysis process intelligently and
automatically is the scale transformation mechanism [21].
*ere are three main phrases of the scale transformation
mechanism, i.e., the scale transformation strategies, scale
transformation principles, and scale transformation effect
evaluation.

According to managers’ decision-making preference, the
variable-scale data analysis provides two types of scale
transformation strategies [22]. If estimating the current data
analysis hierarchy is still quite far from the optimal scale, the
radical (optimistic) scale transformation strategy would
select the analysis hierarchy that could change the data
distribution with the fastest speed for scale transformation
while if estimating the current data analysis hierarchy is
close to the optimal scale, the conservative (pessimistic) scale

transformation strategy would select the analysis hierarchy
that could change the data distribution with the slowest
speed for scale transformation.

In order to maintain the consistency of scale transfor-
mation process, the single-strategy principle [23] announces
that only one-type scale transformation strategy is allowed to
be utilized during once scale transformation of the multi-
scale data model. Since the customized production model
pushes intelligent manufacturing enterprises to adopt a
more refined cost management solution, the conservative
scale transformation strategy would be taken in our research
(see Section 3.2).

*e evaluation of scale transformation effect plays a
significant role in the variable-scale data analysis [22]. It
should consider not only the quality of local algorithm
results on each scale but also the consistency of results
between different analysis hierarchies. According to the
granular computing theory [28, 29], the knowledge gran-
ularity could clearly measure the amount of information
among different analysis hierarchies, which helps evaluate
the scale transformation process [30, 31].

*erefore, this paper studies the key cost center iden-
tification based on the variable-scale data analysis to im-
prove the cost management capacity of intelligent
management enterprises.

3. Research Methods

3.1. Multiscale Cost Data Model. *e traditional cost man-
agement methods of manufacturing enterprises (see Section
2.1) put more emphasis on the actual production cost in-
formation (i.e., actual cost) and focus more on the real-time
and completeness of the cost data collection process.
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Figure 1: Example of the multiple level cost centers.
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According to the production performance assessment and
business decision support (prediction) demands of intelli-
gent manufacturing enterprises, this paper extends the cost
management scope to three dimensions, i.e., actual cost,
standard cost, and testing cost and proposes the cost system
model (see Figure 3).

In the cost system model, the actual cost aims to ac-
curately reflect the real cost of the whole production and
manufacturing process, while the testing cost is respon-
sible for supporting managers to estimate or predict the
possible manufacturing cost under certain production and
business environment. However, the unit price and unit
consumption (which is the amount of resources con-
sumption by producing unit product) of the actual cost
and testing cost are completely different, which fail to do
any comparison and organization. *e third type of cost,
standard cost, is introduced to comprehensively reflect the
planning and actual price as well as consumption of the
production and manufacturing process, so as to support
making cost management decisions in various production
and operation scenarios by only maintaining one set of
standard cost.

If the actual cost or testing cost of a cost center deviates
tremendously from its standard cost, it could have great
impact on the relevant material purchasing plan and sales
schedule. *erefore, this paper takes this kind of cost center
as the key cost center (KCC).

Section 2.1 shows that the cost management object of
manufacturing process is composed of cost centers with
multiple levels and cost management dimensions. It is the
standard cost (dimension) that determines the management
adapt capacity of the cost system for intelligent
manufacturing enterprises. In order to satisfy the analysis
and prediction requirements of the current actual cost and
the testing cost, the key of the standard cost updating work is
to dynamically update the observation scale of its cost items
(including the standard unit price and standard unit
consumption).

According to the scale space model of the scale trans-
formation theory (see Section 2.2), the multiscale cost data
model is established to represent the scale feature of cost
centers and standard cost dimension.

Definition 1 (Multiscale Cost Center-Cost Item Data
Model). *e multiscale cost center-cost item data model
DS− S � (US, AS, VS, f) is a bilateral multiscale data model,
where US � U1, U2, . . . , Un􏼈 􏼉 is the multilevels cost center
set, AS � A1, A2, . . . , Am􏼈 􏼉 represents the cost item set with
multiple (temporal) scales, and the information function
f(f: US × AS⟶VS) follows the maximum value regu-
lation, which is f(vr

t ) � max(vr
0, vr

1, . . . , vr
t ), Ar ∈ AS.

Table 1 depicts the multiscale cost center-cost item data
model based on the structure example of cost centers in
Figure 1. *e cost center set US consists of three levels, the
parent cost center (PCC), child cost center (CCC), and meta
cost center (MCC). *e cost item set AS owns the standard
unit price Ar, standard unit consumption Aj, and standard
cost Ak three dimensions, and every dimension has two
observation scales. For example, v1r

110(v1r
110 ∈ V

S) represents

the standard unit price value of cost center MCC1
11 under the

observation scale Ar
0.

3.2. Dynamic Updating Mechanism of Standard Cost.
Since the multiscale cost center-cost item data model has
already been able to describe the multiple scale feature of the
standard cost, this section further studies the updating
mechanism of the standard cost for intelligent manufacturing
management.

After the field investigation of an intelligent upgrading
manufacturing enterprise in China (see Section 4), it is
found that managers decide the planning unit price and
consumption by considering customers’ personal demands
and enterprise production capacity, to obtain the appro-
priate planning cost. In real producing and operating cir-
cumstances, the fluctuation of unit price caused by market
price and other factors often have a direct impact on
managers to revise or replan the unit consumption in the
batching scheme, which provides the practical experience for
the basic idea of standard cost updating.

Definition 2 (Scale Transformation Adjustment
Coefficient). *e scale transformation adjustment coeffi-
cient ξ is to measure the difference between the actual unit
price Act(pi) and the planning unit price Plan(pi) of a cost
center in the actual production process:

ξ �
Act pi( 􏼁 − Plan pi( 􏼁

Plan pi( 􏼁
, (1)

where Act(pi)(Act(pi)> 0) represents the actual unit price
of the cost center at time ti. Plan(pi)(Plan(pi)> 0) repre-
sents the planning unit price of the cost center at time ti.
Since there is only one initial planning cost for a cost center,
we could obtain that Plan(pi) � Plan(p0) � Std(p0).

Std(p0) is the standard unit price at the initial time t0.
Similarly, the standard unit consumption Std(q0) is also
equal to the planning unit consumption Plan(q0) at the
initial time t0.

*rough Definition 2, it can be observed that the scale
transformation adjustment coefficient ξ satisfies
ξ ∈ (−1, +∞). Given an upper limit ξmax, the scale adjust-
ment coefficient ξ ≥ ξmax indicates that the planning unit

Standard
Cost

• Different unit price
• Unit consumption 

might be the same
Cost

System
Testing

Cost
Actual
Cost

• Different unit price
• Same unit consumption

•Different unit price and consumption

Figure 3: *e multidimensional cost system.
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price of the cost center is obviously not in line with the actual
situation. In order to guarantee the effectiveness of the
standard cost, the standard unit price of cost centers needs to
be revised. *e (time) scale transformation mechanism of
the standard cost updating process is shown in Figure 4.

Since the initial standard cost is just the planning cost,
the initial observation scale of all the cost items is [t0, t1].
After collecting the actual unit price at time ti(i> 1), cal-
culate the scale transformation adjustment coefficient ξ at
time ti. If there is a cost center that exists ξ > ξmax, it indicates
that the current actual unit price is far more than the
planning unit price. *e scale up transformation process
should be taken and update the new observation scale to
[t0, ti]. Otherwise, if the scale transformation adjustment
coefficient ξ ≤ 0, it means that the actual unit price performs
better than the planning unit price. In order to help man-
agers keep the fairness and consistency when making cost
management decisions, the scale down transformation
process should be taken and recover the observation scale to
the initial settings [t0, ti]. Finally, calculate the standard cost
at time ti through the standard unit price and consumption
on the updated time scale.

Compared with the traditional variable-scale data
analysis process (see Section 2.2), the difference of standard
cost scale transformation is that the observation scale of
standard cost could be dynamically generated over time,
which is not obtained by the subjective determination of all
the candidate observation scales according to managers’
business experience. *erefore, it expands the scale trans-
formation approach especially for the temporal numerical
data.

3.3. Key Cost Center Identification Method for Intelligent
Manufacturing Enterprises. According to the dynamic
updating mechanism of standard cost, this section studies
the key cost center identification problem in two significant
management scenarios (which are the production perfor-
mance assessment and business decision-making) for in-
telligent manufacturing enterprises.

Definition 3 (Cost Center Judgement Coefficient): *e cost
center judgement coefficient is to measure the difference
between the actual cost Act(ci) or testing cost Test(cw) to the
standard cost Std(ci) of a cost center:

λAct �
Act ci( 􏼁 − Std ci( 􏼁

Std ci( 􏼁
, (2)

λTest �
Test cw( 􏼁 − Std ci( 􏼁

Std ci( 􏼁
, (3)

where Act(ci)(Act(ci)> 0) represents the actual cost of the
cost center at time ti, Std(ci)(Std(ci)> 0) represents the
standard cost of the cost center at time ti, and
Test(cw)(Test(cw)> 0) represents the testing cost of the cost
center at any future time tw(w> i).

FromDefinition 3, it can be seen that both the cost center
judgement coefficient λAct and λTest, respectively, in the
production performance assessment and business decision-
making scenario satisfy λAct, λTest ∈ [−1, +∞).

Since the much lower actual cost (compared with the
standard cost) could achieve better performance in the as-
sessment process, given the upper limit λActmax, identify all the
cost centers with the judgement coefficient λAct > λAct

max as the
key cost centers and formulate differentiated cost control
strategies for them.

According to the dynamic updating mechanism of
standard cost (see Figure 4), this paper firstly proposes the
key cost center identification method for the production
performance assessment (KCCI_PPA) based on the vari-
able-scale data analysis.

*e time complexity of the key cost center identification
method for the production performance assessment
(KCCI_PPA) is O(nm), where n is the number of meta cost
centers and m is the number of cost center levels.

Taking the meta cost center MCC1
11 in Table 1 as an

example, if the calculated cost center judgement coefficient
λAct
111 of MCC1

11 satisfies λ
Act
111 ≥ λ

Act
max, while its higher level cost

center CCC1
1 and PCC1 still exist, the actual cost calculation

(which is Act(CCC1
1) � 􏽐

2
i�1 MCC1

1i) and key cost center

Table 1: Example of the multiscale cost center-cost item data model.
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judgement process for higher level cost centers should be
implemented.

Since setting strict conditions on the standard cost is
more effective when making analysis of the testing cost,
given the upper limit λTestmax, identify all the cost centers with
the judgement coefficient λTest > λTestmax as the key cost centers
in the business decision-making process, and the appro-
priate marketing strategies should be designed on them.

Taking account of the basic idea ofAlgorithm 1, the key cost
center identification method for the business decision-making
scenario (KCCI_BDM) is also put forward (see Algorithm 2).

*e time complexity of the key cost center identification
method for the business decision-making (KCCI_BDM) is
O(nm), where n is the number of meta cost centers and m is
the number of cost center levels.

Take as an example the meta cost center MCC1
11 in

Table 1. If predicting the market price of MCC1
11 might reach

p111 in the near future or planning to provide certain price
p’
111 concessions for customers, the testing price of MCC1

11
could be decided. Hence, the present testing cost
Test(MCC1

11) could be obtained through multiplying p111
or p’

111 by the standard consumption of MCC1
11.

4. Expeiment Results and Discussions

In this section, both the industrial statistical data and en-
terprise real data would be utilized to verify the effectiveness
and operability of the proposed key cost center identification
methods.

4.1. Experiment Design and Data Collection. *e experiment
of the production performance assessment scenario aims to
verify the proposed method KCCI_PPA by using the daily
real cost data of August in 2018 from an intelligent
upgrading iron and steel enterprise in China, which contains

256 meta cost centers, 5 child cost centers, and 2 parent cost
centers, with 106 transactions in total. Furthermore, the cost
deviation rate (DRate) is applied for evaluating the stability
of the proposed KCCI_PPA method as follows:

DRate � 1 −
1

λAct
+ 1

. (4)

*e experiment of the business decision-making sce-
nario aims to verify the proposed method KCCI_BDM
under the global energy crisis circumstances by combining
the above iron and steel enterprise real cost data with the
2019 to 2020 reference price collected from the China in-
dustrial statistics yearbook, China steel industry yearbook,
and World steel statistics.

4.2. Experiment Results Analysis. Table 2 shows the key cost
center identification results ListAct of enterprise real data (see
Section 4.1) obtained by the KCCI_PPA, under the pa-
rameter threshold of the scale transformation adjustment
coefficient λActmax � 1.5. Due to space constraints, this section
only shows the simulation results of the first ten days of
August in 2018.

It can be seen that there are three key cost centers per
day on average in the ListAct, which only takes 1.14% of the
total cost centers. *e experiment results illustrate that the
KCCI_PPA method is able to accurately identify the key
cost centers that fail to pass the production performance
assessment. *e algorithm is operable in practical
circumstances.

Figure 5 further depicts the dynamic relation between
the observation scale of standard cost and the scale
transformation adjustment coefficient during the simula-
tion process of production performance assessment using
enterprise data. At the beginning, the observation scale
[t0, t1] refers to initial planned cost to the cost of August

Input: The actual unit price at 
time ti

Calculate the scale transformation 
adjustment coefficient of every cost center

Update the new standard unit 
price to the maximum actual 

unit price from time t0 to ti

Update the new standard unit 
consumption to the actual unit 

consumption at time ti

Scale down transformation

Update the standard unit price 
at time ti to the planning unit 

price at time t0

Update the standard unit 
consumption at time ti to the 
planning unit consumption at 

time t0

Calculate the standard 
cost at time ti

Y

N

Y

N

Output: The standard cost at 
time ti

Scale up transformation

ξ ≥ ξmax?

ξ ≤ 0?

Figure 4: *e scale transformation mechanism of the standard cost updating process.
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1st. Since the scale transformation adjustment coefficient
0< ξ � 0.0774< ξmax on August 2nd, the observation scale
remains the same. Combined with Table 2, it is found that
there are only meta cost centers in the algorithm identi-
fication results, and the maximum number (fourteen) of
key cost centers appears on August 3rd. Also, the obser-
vation scale has been enlarged to [t0, t3] due to
ξ � 1.2063> ξmax. After the scale up transformation on
August 3rd, the number of key cost centers stays in an
obvious downward tendency and reaches zero till August
10th; the initial observation scale [t0, t1] is also restored
owning to ξ � −0.0073< 0, which proves the effectiveness
of the proposed KCCI_PPA.

Comparative experimental results of the dynamic
standard cost updating mechanism are shown in Figure 6.
It can be noticed that obviously the range of deviation rate
under fixed standard cost (see Figure 6(a)) is quite larger
than the deviation rate of all cost centers under the
updated dynamic standard cost (see Figure 6(b)). Espe-
cially on August 9th, the difference of extreme values

under the fixed standard cost (17.4175) reaches nearly six
times over the difference under the dynamic standard cost
(2.9764), which demonstrates the stability of the dynamic
standard cost updating mechanism in market price
fluctuation.

Table 3 shows the key cost center identification results
ListTest with the scale transformation adjustment coefficient
λTestmax � 0.8 obtained by the KCCI_BDM, under various
business conditions. Due to space constraints, only the top 5
key cost centers are displayed in each scenario.

According to the statistical annual report data in Section
4.1, when predicting the testing unit price of all meta cost
centers rises by 5.7%, based on the standard cost on August
10th, the KCCI_BDMmethod could obtain thirty-seven key
cost centers in total, including parent cost center PCC1 and
child cost center CCC1

2. So, it could help managers make cost
risk prevention and control strategies, especially for those
higher-level key cost centers.

Moreover, when predicting the testing unit price of a
meta cost center in the sintering process rises to 550 yuan/t,

Step 1. Calculate the actual cost Act(ci) via equation (a) in Algorithm 1 and the judgement coefficient λAct of all the meta cost
centers via equation (2).

(a) Act(ci) � Act(pi)∗Act(qi).

Step 2. If there is(are) meta cost center(s) that satisfies(y) λAct ≥ λActmax, put all the meta cost center(s) into the key cost center list
ListAct and continue Step 3; otherwise, go to Step 5.
Step 3. If the higher level cost center exists, calculate its actual cost through adding the actual cost of all meta centers and continue
Step 4 otherwise, go to Step 5.
Step 4. Calculate the judgement coefficient λAct of all the higher level cost centers, and put all the cost centers that satisfy λAct ≥ λActmax
into ListAct.
Step 5. Calculate the scale transformation adjustment coefficient ξ of every meta cost center via equation (1).
Step 6. Start the scale transformation process of the standard cost.
Step 6.1. If there is the meta cost center that satisfies ξ ≥ ξmax, start the scale up transformation process by generating the new

observation scale [t0, ti] and update the standard cost following the mechanism in Figure 4. Go to Step 7.
Step 6.2. If there is the meta cost center that satisfies ξ ≤ 0, start the scale down transformation process by recovering the

observation scale to the initial scale [t0, t1] and update the standard cost following the mechanism in Figure 4. Go to Step 7.
Step 7. Output the key cost center list ListAct.

ALGORITHM 1:KCCI_PPA (Act(pi), Act(qi), ξmax, λ
Act
max)// Act(pi) is the actual unit price at time ti, Act(qi) is the actual unit consumption

at time ti, ξmax represents the upper threshold of the scale transformation adjustment coefficient, and λActmax represents the upper threshold of
the cost center judgement coefficient.

Step 1. Calculate the testing cost Test(cw) via equation (a) in Algorithm 2 and the judgement coefficient λTest of all the meta cost
centers via equation (3).

(a) Test(cw) � Test(pw)∗ Std(qi).

Step 2. If there is(are) meta cost center(s) that satisfies(y) λTest ≥ λTestmax, put all the meta cost center(s) into the key cost center list
ListTest and continue Step 3; otherwise, go to Step 5.
Step 3. If the higher level cost center exists, calculate its testing cost through adding the testing cost of all meta centers, and
continue Step 4; otherwise, go to Step 5.
Step 4. Calculate the judgement coefficient λTest of all the higher level cost centers, and put all the cost centers that satisfy
λTest ≥ λTestmax into ListTest.
Step 5 Output the key cost center list ListTest.

ALGORITHM 2: KCCI_BDM (Test(pw), Std(pi), Std(qi), λ
Test
max)// Test(pw) is the testing unit price at time tw, Std(pi) is the actual unit price

at the current time ti, Std(qi) is the actual unit consumption at the time ti, and λTestmax represents the upper threshold of the cost center
judgement coefficient.
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Table 2: *e key cost center identification results for the production performance assessment scenario (ListAct).

Date Key cost center Std(ci) Act(ci) λAct

Aug. 1st

MCC1
27 2.2846 5.9289 1.5952

MCC2
134 1.0440 3.8440 2.6819

MCC2
234 1.0440 3.8440 2.6819

MCC2
334 1.0440 3.8440 2.6819

Aug. 2nd

MCC1
18 0.6709 5.0054 6.4610

MCC1
28 0.6709 5.0253 6.4908

MCC2
134 1.0440 3.7959 2.6358

MCC2
234 1.0440 3.7959 2.6358

MCC2
334 1.0440 3.7959 2.6358

Aug. 3rd

MCC1
18 0.6709 5.0400 6.5126

MCC1
132 0.5262 1.6146 2.0681

MCC1
28 0.6709 5.0455 6.5209

MCC1
232 0.3676 0.9297 1.5289

Aug. 3rd

MCC2
134 1.0440 7.1517 5.8500

MCC2
136 0.5844 1.6986 1.9064

MCC2
234 1.0440 7.1517 5.8500

MCC2
236 0.5844 1.6986 1.9064

MCC2
330 5.6572 15.5539 1.7494

MCC2
236 1.0440 7.1517 5.8500

MCC2
336 0.5844 1.6986 1.9064

Aug. 7th MCC1
119 1.8397 8.8843 3.8293

MCC1
219 3.3286 9.0631 1.7228

Aug. 8th MCC1
225 15.8268 42.6366 1.6940

Aug. 9th MCC1
121 3.6836 12.3461 2.3516

MCC1
221 3.7814 12.3696 2.2712
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Figure 5: *e simulation results of the observation scale of standard cost-the scale transformation adjustment coefficient (ξmax � 0.8).
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the KCCI_BDM method identifies that the highest-level key
cost center is CCC1

2, and its testing cost exceeds the standard
cost by nearly 82%, which provides data support for man-
agers making purchase plans on the key meta cost center
MCC1

118 and MCC1
218.

5. Conclusions

*e cost management capacity of intelligent manufacturing
enterprises has become one of the major factors that de-
termines whether the management level could adapt to the
most advanced production mode. *is paper firstly estab-
lished the cost system for intelligent manufacturing enter-
prises with three types of cost observation dimensions
(actual cost, standard cost, and testing cost) and the mul-
tiscale cost data representation model. In accordance with
the scale transformation theory, the dynamic updating
mechanism of standard cost was proposed, which could
overcome the subjective determination limitation of initial
observation scale in the traditional variable-scale data
analysis method. Finally, the key cost center identification

methods were also put forward considering the practical
management demands of the production performance as-
sessment and business decision-making scenarios for intelli-
gent manufacturing enterprises. Experiment results of the
industrial statistical and enterprise real data show that the
proposed methods KCCI_PPA and KCCI_BDM could accu-
rately and efficiently identify the key cost centers whose actual
or testing cost deviates greatly from the standard cost, so as to
supportmanagers tomake differentiated costmanagement and
risk prevention strategies on various key cost centers.

*e future research will keep focusing on the problem of
the cost management capacity improvement in other in-
dustries, by using the built three-dimensional cost system.
Meanwhile, more contrast experiments will also be designed
in view of different decision-making scenarios (like the
inventory optimisation and material procurement) based on
our proposed methods.

Data Availability

Data used in this study could be accessed upon request.

Table 3: *e key cost center identification results for the business decision-making scenario (ListTest).

Testing scenario Testing object Testing price Key cost
center

Standard
cost

Testing
cost λTest

Predict the testing unit price of
all meta cost centers rise by 5.7%

MCCα
βc

Test(MCCα
βc) � 1.05∗ Std(MCCα

βc)

1 PCC1 1139.2575 2056.4901 0.8051
Where

α ∈ 1, 2{ }, 2 CCC1
2 566.9184 1067.1865 0.8824

β ∈ 1, 2, 3{ }, 3 MCC1
18 0.6709 5.3273 6.9408

c ∈ 1, 2, · · · , 52{ } 4 MCC1
28 0.6709 5.3331 6.9496

5 MCC1
132 0.5262 2.2339 3.2450

Predict the testing unit price of a
meta cost center in the sintering
process increase to 550 yuan/t

MCC1
118

MCC1
218

Test(MCC1
118) � Test(MCC1

218) � 550

1 CCC1
2 566.9184 1026.5373 0.8107

2 MCC1
18 0.6709 5.0400 6.5126

3 MCC1
28 0.6709 5.0455 6.5209

4 MCC1
132 0.5262 2.1135 3.0161

5 MCC1
218 22.7669 89.9249 2.9498
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Figure 6: Comparative experimental results of the dynamic standard cost updating mechanism for the KCCI_PPA. (a) Cost deviation
evaluation results with the fixed standard (planning) cost. (b) Cost deviation evaluation results with the dynamic standard cost.
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