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Abstract: A substantial amount of attention has been paid to the development of transparent
electrodes based on graphene and carbon nanotubes (CNTs), owing to their exceptional characteristics,
such as mechanical and chemical stability, high carrier mobility, high optical transmittance, and high
conductivity. This review highlights the latest works on semitransparent solar cells (SSCs) that
exploit graphene- and CNT-based electrodes. Their prominent optoelectronic properties and various
fabrication methods, which rely on laminated graphene/CNT, doped graphene/CNT, a hybrid
graphene/metal grid, and a solution-processed graphene mesh, with applications in SSCs are
described in detail. The current difficulties and prospects for future research are also discussed.
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1. Introduction

Semitransparent solar cells (SSCs), which exhibit eye-catching appearances by creating neutral-
and multi-colors, have recently gained significant interest for their potential use in a variety of
applications, such as power-generating windows for buildings and vehicles, high-efficiency tandem
solar cells, power-generating color filters for displays, and wearable electronics [1–20]. Although the
power-conversion efficiencies (PCEs) of the SSCs are lower than those of their opaque counterparts
owing to a relatively thin photoactive layer and reduced reflections from the top electrode, sunlight can
be harvested from both sides, and the installation of SSCs can be extended to a wide range of areas, both
of which can counteract the low PCE of the SSCs. Achieving neutral-colored semitransparency and
simultaneously generating electricity from the solar cells can be enabled by decreasing the thickness
of the photoactive semiconductor layers and employing transparent conductive films for both the
top and bottom electrodes. For the transparent conductive films, a thin metallic layer that exploits
aluminum (Al), silver (Ag), or gold (Au) capped or sandwiched by highly transparent dielectric
media has been demonstrated. However, easy oxidation of Al causing electrically non-conductive
performance, and the low stability of Ag leading to performance degradation, are the challenges still
to be addressed. In addition, Au is too pricy and has its interband transition at 470 nm, which results
in strong absorption, thus limiting its practical application as the electrode. To resolve the challenges
of the thin metals as the top electrodes, various transparent conductive oxides, such as indium–tin
oxide (ITO), indium–zinc oxide (IZO), and aluminum-doped zinc oxide (AZO), have been employed.
Although such transparent conductive oxides present high transparency and high conductivity as
compared to the thin metals, high temperature during a deposition and a post annealing step is
required, which can damage the underlying photoactive layer. This could be addressed by using
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solution-processed metal nanowires. Additionally, morphological control of the photoactive layer
to produce a window-like appearance has also been explored [5–7]. However, microscale dewetted
islands to produce transparency could induce scattering, and poor surface coverage of the photoactive
layer could result in degraded electrical performance. In addition to neutral-colors, visually appealing,
multi-color-generating solar cells, which can be harmoniously integrated with building envelopes,
automobile surfaces, and existing display systems, have been demonstrated in various types of
solar cells by exploiting surface plasmon resonances (SPRs) in metallic nanostructures, Fabry–Pérot
resonances in multilayer thin-film structures and dielectric mirrors, and via bandgap engineering of
the active semiconductor material [8–17]. As reflective or transmissive colors can be produced by
incorporating various nanoarchitectures in the solar cells and the nanostructures typically involve the
metals, it is highly desired that the nanostructures can also function as the electrode of a solar cell for
easy integration. However, the thickness of the metal in the nanostructures is generally ultrathin to
minimize the absorption loss in the metals, which yields low electrical conductivity. Hence, there is
a strong need for a novel electrode material to improve both the optical and electrical performance
of SSCs.

An enormous amount of effort is being devoted to the development of transparent conductive
films employing thin metallic films, conductive polymers, metal oxides, metal meshes, nanowire
networks, carbon nanotubes (CNTs), and graphene [18–54]. In particular, CNTs and graphene have
received increasing attention because of their excellent optoelectronic properties, such as their high
optical transparency, low sheet resistance, and high mobility. Moreover, they exhibit mechanical
flexibility, environmental stability, and a low cost, thus showing great promise for transparent
electrodes. Owing to these fascinating characteristics, there has been an increase in the number
of studies on fabrication processes, modification methods, and patterning techniques of CNT- and
graphene-based transparent electrodes for diverse optoelectronic devices [55–59].

This article reviews recent advances in the fabrication of transparent electrodes based on
graphene and CNTs, as well as their characteristic performances and application, particularly in
SSCs. Diverse approaches, which involve laminated stacked multilayer graphene, highly doped
single-layer graphene, a hybrid monolayer graphene/metal grid, a solution-processed graphene mesh
network, a laminated freestanding multi-walled CNT network, and p-doped single-walled CNTs,
are examined. This paper concludes with challenges and future perspectives.

2. Graphene Electrode

2.1. Laminated Multilayer Graphene

Electrode materials that are visibly transparent and yet electrically conductive are a key component
of a wide variety of electronic and optoelectronic devices, including solar cells. Doped metal oxides are
the most common materials, such as indium–tin oxide (ITO), which offers a high transparency and low
sheet resistance. However, owing to its chemical instability, its ceramic nature resulting in brittleness,
and the scarcity of indium leading to high cost, C-nanomaterial-based transparent electrodes have
emerged as an attractive alternative to these conventional transparent electrodes. Numerous studies
have been conducted on the development of graphene-based transparent electrodes owing to their
high electrical conductivity, high transparency, chemical stability, flexibility, and mechanical robustness.
In this section, we discuss a laminated multilayer graphene-based transparent electrode for SSCs.

Because it is difficult to achieve a sufficiently low sheet resistance with monolayer graphene,
multilayer graphene films are typically needed to attain a low sheet resistance. Although the
ITO’s bottom electrode is easily replaced by a graphene-based transparent electrode in organic
and perovskite solar cells [60–63], it has been found to be critical to place the transparent top
electrodes without damaging the underlying photoactive layer to create the SSC. Semitransparent
inverted-type polymer solar cells, with the structure of ITO bottom electrode/zinc oxide
(ZnO)/poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/graphene oxide
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(GO)/graphene top electrode, were demonstrated by employing a top-laminated chemical vapor
deposition (CVD)-grown multilayer graphene electrode as shown in Figure 1a [64,65]. In this work,
the graphene top electrode was thermally released during thermal annealing treatment of the
photoactive layer, which can be used to manipulate the nanoscale morphology of the P3HT:PCBM
blend film for improving the PCE of the polymer solar cells. Such a lamination process can be
fully incorporated with the roll-to-roll (R2R) fabrication method for large-scale applications [66–71].
A CVD-grown graphene film is transferred by using a modified R2R process, where only one thermal
release tape is used to obtain a four-layer graphene film, which can reduce the residual impurities
between the graphene films. Figure 1b,c present measured transmission spectra at normal incidence
and measured sheet resistance values of different numbers of graphene film layers, clearly showing
that adding additional monolayer graphene reduces the transmission efficiency by approximately
2–3% and that the increasing the number of the graphene layers yields a low sheet resistance. Figure 1d
displays the transmission spectrum of a fabricated semitransparent polymer solar cell, which exhibits
a high transmission efficiency over wavelengths beyond 700 nm, where the photoactive layer is
transparent. Its optical image exhibits a reddish color. Figure 1e presents the current–voltage curves
and the corresponding external quantum efficiency (EQE) spectra of the standard cell that is completed
with an optically thick Ag electrode and an SSC with the top electrode comprising eight layers of
graphene under light illumination from the ITO side or the graphene side. Nearly 76% of the PCE of
the standard cell, which is approximately 2.5%, is achieved by the semitransparent polymer solar cell
with bifacial functionalities.
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Figure 1. (a) Schematic view of the semitransparent inverted polymer solar cell with a structure
of iridium–tin oxide (ITO)/ZnO/P3HT:PCBM/graphene oxide (GO)/graphene top electrode;
(b) Transmission spectra and (c) sheet resistance for different numbers of graphene film layers
on a glass substrate; (d) Transmission spectrum of the fabricated semitransparent polymer solar
cell, along with a photograph of the device in the inset; (e) J–V characteristics and (f) external
quantum efficiency (EQE) spectra of the standard cell and the semitransparent cell consisting of
eight layers of graphene under light illumination from the ITO side and the graphene side. Reproduced
with permission [64]. Copyright 2014, American Chemical Society; (g) Schematic illustration of the
semitransparent perovskite solar cell with the transparent graphene top electrode; (h) Optical images
of the semitransparent perovskite solar cells having transparent graphene electrodes with different
thicknesses of the perovskite photoactive layers; (i) Average power-conversion efficiencies (PCEs) of
the semitransparent perovskite solar cells with respect to the transmittance at 700 nm. Reproduced
with permission [72]. Copyright 2015, Wiley.
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Owing to the many appealing characteristics of the graphene electrode described
above, a laminated stacked multilayer graphene top electrode has been used to create
semitransparent perovskite solar cells as shown in Figure 1g [72]. The SSC device’s structure
consists of an electron-transporting TiO2 layer, a perovskite semiconductor, a hole-transporting
2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) layer,
poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS), and a graphene top
electrode. A thin layer of PEDOT:PSS film whose Fermi level (5.0 eV) is higher than the Dirac point of
graphene (4.6 eV) is introduced, where more holes are injected into the graphene film by electrostatic
doping, leading to an improved conductivity and hence a low sheet resistance of the graphene
film [73–76]. Moreover, the adhesion between the graphene electrode and the perovskite photoactive
layer can be improved by the PEDOT:PSS during the lamination process. Furthermore, the effect of the
thin PEDOT:PSS layer on the transparency of the graphene electrode is trivial, as PEDOT:PSS is nearly
transparent over the entire visible spectrum. Figure 1h presents optical images of the semitransparent
perovskite solar cells with the two-layer CVD graphene top electrode having a photoactive layer
thickness varying from 150 to 350 nm. The relationship between the transmittance at 700 nm and the
PCE of the SSCs with the graphene electrode is presented in Figure 1i, indicating that approximately
50% of the transmittance at 700 nm and approximately 6% of the PCE are achieved by the SSC device
with a 150-nm-thick photoactive layer. The demonstrated device performances surpass those of
the SSCs in previous works, which is ascribed to the high optical transparency and high electrical
conductivity of the graphene electrode [5,18,43,77–84].

2.2. Highly Doped Single-Layer Graphene

Although a single-layer graphene electrode can provide the highest transmission efficiency,
its electrical conductivity is too poor to be used as an electrode. As described in the previous section,
stacked multilayer graphene films can address the low conductivity. However, minimizing the residual
resists and contaminants remains challenging during the graphene film transfer and stack processes.
Another approach to achieving both a high transparency and high conductivity of the single-layer
graphene film is to exploit effective chemical doping [73,75,85,86]. One example is graphene films
immersed in an HAuCl4 solution, where the metal ions spontaneously decrease, resulting in the
formation of Au nanoparticles (NPs) on the surface of the graphene films so that the surface potential
of the single-layer graphene film can be tuned by controlling the treatment time [75]. In this case,
the graphene film is p-doped, as it has been found that the surface potential of Au is higher than
that of graphene. Figure 2a shows a transmission electron microscopy (TEM) image of the p-doped
single-layer graphene film after chemical doping treatment with HAuCl4. The inset presents the
diffraction pattern of the graphene film, which is found to be polycrystalline. Figure 2b presents a
schematic of semitransparent organic solar cells with a p-doped single-layer graphene top electrode
comprising glass/ITO/ZnO/P3HT:PCBM/PEDOT:PSS/graphene, and Figure 2c shows a photograph
of a fabricated SSC having an active area of 5 mm × 4 mm for a solar-cell device. The device can be
fabricated over such a large area because single-layer graphene is simple to prepare compared with
laminated multilayer graphene films [50,61,64]. Figure 2d shows the relationship between the sheet
resistance of the single-layer graphene film and the chemical doping treatment time, indicating that
treatment for more than 30 min leads to a reduction of approximately 43% in the sheet resistance.
A thin PEDOT:PSS layer is coated on the p-doped graphene film to increase the electrical conductivity
of the graphene top electrode. By introducing Au NPs on the surface of graphene, the absorption
arising from the SPR is observed at 540 nm, reducing the transmittance slightly, as shown in Figure 2e.
Despite the reduction of the transmittance by the SPR, the transparency in the visible range of the
p-doped single-layer graphene film with PEDOT:PSS is still higher (92%) than that of the multilayer
graphene electrodes. Figure 2f,g illustrate the current density (J)–voltage (V) characteristics and the
EQE spectra of the SSC with the graphene electrode and the Au and PEDOT:PSS co-doped graphene
electrode under light illumination from both sides. The PEDOT:PSS doping leads to an enhanced fill
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factor (FF), which is attributed to the reduced sheet resistance of the graphene electrode, and also yields
an improved open circuit voltage (Voc) due to the work-function increase caused by the p-type doping
of the graphene electrode. PCEs of 2.7% and 2.2% are obtained from the SSC under illumination from
the graphene side and the ITO side, respectively.
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Figure 2. (a) TEM image of a single-layer graphene film doped with Au nanoparticles (NPs). The inset
shows the diffraction pattern of the Au-doped graphene film, where red and blue circles correspond
to the diffraction patterns of graphene and Au, respectively; (b) Schematic of the semitransparent
organic solar cell consisting of glass/ITO/ZnO/P3HT:PCBM/PEDOT:PSS/graphene; (c) Photograph
of the fabricated semitransparent solar cell (SSC) with the transparent graphene top electrode;
(d) Sheet resistance of the single-layer graphene with respect to the treatment time in an HAuCl4
solution; (e) Light transmittance of single-layer graphene before and after Au doping, Au-doped
graphene/PEDOT:PSS, and ZnO/ITO films on glass substrates; (f) J–V characteristics measured
on both sides of the semitransparent organic solar cells with a pristine or Au-doped graphene
top electrode under a solar simulator. The dark currents of the devices are presented as well;
(g) EQE profiles measured on both sides of the semitransparent organic solar cell with an Au-doped
graphene/PEDOT:PSS top electrode. The open and solid symbols correspond to the results for the
ITO and graphene sides, respectively. Reproduced with permission [73]. Copyright 2011, American
Chemical Society.

2.3. Hybrid Monolayer Graphene/Metal Grid

Although SSC devices with a highly doped single-layer graphene electrode can be
fabricated over a large area, the conductivity of the single-layer graphene electrode is limited.
Additionally, ensuring the stability of chemically doped graphene electrodes remains a challenge.
To overcome the aforementioned issues of the graphene electrode, a hybrid transparent monolayer
graphene/metal grid was demonstrated as a top electrode for SSCs, exhibiting a significantly
low sheet resistance and very good stability [87]. The semitransparent organic solar-cell
device structure consists of glass/ITO/TiO2/P3HT:PCBM/PEDOT:PSS/single-layer graphene/Au
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grid/Polyethylene terephthalate (PET), where two separate devices (P3HT:PCBM/TiO2/ITO/glass and
PEDOT:PSS/single-layer graphene/Au grid/PET) are prepared and then laminated. Photolithography
with the lift-off technique is used to fabricate the Au grid with different grid dimensions ranging from
50 µm × 50 µm to 300 µm × 300 µm, with a grid line 10-µm wide on a flexible substrate, followed
by a traditional solution method to transfer the CVD-grown single-layer graphene film to the top
of the Au grid [73,88]. Then, part of the device is completed by coating the top of the single-layer
graphene/Au grid with PEDOT:PSS doped with 50 mg/mL D-sorbitol. Finally, the two parts of the
device are laminated together and thermally annealed at 120 ◦C with proper pressure. Both the sheet
resistance and the optical transmittance of the single-layer graphene/Au grid electrode depend on the
Au grid size, and a sheet resistance of 7–30 Ω/sq and a transmission efficiency of 66–84% at 550 nm are
achieved. With Au grid dimensions of 200 µm× 200 µm, a transmission efficiency of 81.4% and a sheet
resistance of 22± 3 Ω/sq at 550 nm are obtained, both of which are comparable to those of the ITO
electrode as presented in Figure 3a. Figure 3b shows a scanning electron microscopy (SEM) image of the
fabricated Au grid hybrid electrode with (left) and without (right) single-layer graphene. The hybrid
transparent single-layer graphene/Au grid electrode features a considerably improved conductivity,
high stability, and mechanical flexibility compared with the monolayer graphene electrode. The J–V
characteristics and incident-photon-to-electron conversion efficiency (IPCE) spectra of the SSC with
the hybrid monolayer graphene/Au grid electrode under illumination from both sides are presented
in Figure 3c,d, respectively. The FF initially increases with the increase of the PEDOT:PSS thickness,
but the FF is reduced when the PEDOT:PSS thickness increases beyond 250 nm, which is attributed
to the rough surface of the PEDOT:PSS causing bad contact of the interface between the photoactive
layer and PEDOT:PSS. The optimized thickness of PEDOT:PSS was found to be 170 nm, which leads
to the lowest series resistance and highest shunt resistance, yielding PCEs of 3.1% and 2.8% from
the ITO side and the graphene side, respectively. The described hybrid transparent electrode can be
employed for both the anode and cathode and can be integrated with the R2R process for large-area
device fabrication.
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Figure 3. (a) Transmission spectra of three different electrodes: ITO/glass, monolayer graphene/PET,
and monolayer graphene/Au grid/PET; (b) Top-view SEM image of the monolayer graphene/Au grid
hybrid transparent electrode, where the size of the Au grid is 200 µm × 200 µm; (c) J–V characteristics
and (d) incident-photon-to-electron conversion efficiency (IPCE) spectra of the semitransparent organic
solar-cell devices measured under illumination from both sides of the semitransparent devices with
a PEDOT:PSS thickness of 170 nm. Reproduced with permission [87]. Copyright 2013, American
Physical Society.
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2.4. Solution-Processed Graphene Mesh

The conductivity of the single-layer graphene film can be significantly enhanced by incorporating
the metal grid as discussed above. However, Au is not a good candidate for the transparent electrode,
because the price of Au is high and vacuum deposition techniques must be used, limiting its
potential for low-cost and large-area applications. Although other metals can be used to reduce
the cost for practical applications, tuning the work function of the hybrid transparent monolayer
graphene/metal grid electrode can be an issue. In addition, Au shows strong absorption of light at
470 nm owing to the presence of the interband transition as well as a low transmission efficiency
in the near-infrared (NIR) wavelength region [89]. Furthermore, the high reflection of the metal
grid generally results in low transparency with non-negligible scattering, which is not desirable
for SSC and tandem solar-cell applications. To address these challenges, a solution-processed
graphene mesh electrode for semitransparent tandem solar cells was demonstrated [90]. To achieve
a sufficiently high electrical conductivity of the graphene mesh electrode, multilayer GO was
spin-casted and then patterned using a standard photolithography technique [91]. Figure 4a presents
a top-view SEM image of the transparent graphene mesh conducting electrode. Figure 4b,c show
the transmission spectra of the graphene mesh with different sheet resistances and the sheet
resistance of the graphene mesh versus the transmittance at 550 nm, respectively, revealing that
a transmittance of 90% (70%) is achieved with a sheet resistance of 8.6 (0.52) kΩ sq−1. Figure 4d
presents a schematic representation of the semitransparent tandem solar cells, where a bulk heterojunction
front subcell comprises graphene mesh/PEDOT:PSS/poly[(4,4′-bis(3-ethyl-hexyl)dithieno[3,2-b:”3′-
d]silole)-2,6diyl-alt-(2,5-(3-(2-ethyl-hexyl)thiophen-2-yl)thiazolo[5,4-d]thiazole] (PSEHTT) (electron
donor)/indene-C60-bisadduct (electron acceptor)/ZnO/PEDOT:PSS (interconnecting layer), and a rear
subcell consists of poly {2,6′4,8-di(5-ethylhexylthienyl)benzo[1–b;3,4-b]dithiophene-alt5-dibutyloctyl-
3,6-bis(5-bromothiophen-2-yl)pyrrolo[3–c] pyrrole-1,4-dione} (PBDTT-DPP)(electron donor)/[6,6]-
phenyl-C71-butyric acid methyl ester (PC71BM) (electron acceptor)/TiO2/Ag nanowire electrode [92–94].
Integrating the two semiconductors with different bandgaps (1.80 and 1.44 eV) allows the absorption
to be broad, up to 900 nm, allowing the semitransparent tandem solar cell to achieve a PCE of 8.02%.
Figure 4e demonstrates the J–V characteristics of a single-junction front subcell exhibiting a PCE of
4.29% with an 80-nm-thick PSEHTT:IC60BA layer, a rear subcell exhibiting a PCE of 5.60% with a
100-nm-thick PBDTT-DPP:PC71BM layer, and tandem solar cell exhibiting a PCE of 8.02%. Figure 4f
displays the EQE spectra of the front subcell, rear subcell, and tandem solar cell, where the tandem
solar cell is measured with two optical-bias light sources at 550 and 700 nm. Both subcells generate
matched photocurrents, which are desired for the tandem solar cells, and the EQE spectra agree well
with the absorption spectra of the front and rear subcells. A semitransparent tandem solar cell with
improved transparency (44.90%) compared with previous works is achieved, without affecting the
PCE [95–97].
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Figure 4. (a) Top-view SEM image of the graphene mesh; (b) Transmission spectra of the graphene mesh
with the different sheet resistances; (c) Sheet resistance of the graphene mesh with respect to the light
transmittance at 550 nm for various graphene mesh thicknesses; (d) Schematic of the semitransparent
tandem cell; (e) J–V characteristics of front, rear, and tandem cells (light projected from the graphene
mesh or Ag nanowires (NWs)); (f) EQE profiles measured under relevant bias illumination conditions.
Reproduced with permission [90]. Copyright 2014, Wiley.

2.5. All-Graphene Electrodes

Recent studies have also demonstrated the fabrication of SSCs with graphene transparent
electrodes as both the anode and cathode, which can potentially improve the optical transparency,
mechanical flexibility, and stability of SSCs [98,99]. Additionally, C-based SSC devices can be
inexpensive and eco-friendly. Figure 5a presents a schematic view of semitransparent organic solar
cells with all-graphene electrodes comprising two-layer stacked graphene [98]. Although ZnO—a
n-type oxide semiconductor—can lead to n-type doping of the graphene film, direct coating of ZnO on
graphene is found to have a destructive effect and therefore yields a high sheet resistance. To protect
the graphene film, a thin layer of PEDOT:PSS is coated on top of the graphene, followed by a thin layer
coating of ZnO NPs that are synthesized via the hydrothermal method, for preparation of the graphene
cathode [100–102]. For the graphene anode, PEDOT:PSS with the optimal thickness (~50 nm) is coated
on top of the graphene film after the graphene surface is treated by oxygen plasma for improved
uniformity [103]. The graphene anode is conformally laminated on top of the organic photoactive
layer, polythieno[3,4-b] thiophene/benzodithiophene (PTB7) and PC71BM [104]. A photograph of the
fabricated SSC with all-graphene electrodes, apparently showing a neutral-colored background image
through the device, is shown in Figure 5b. Figure 5c displays the transmission spectrum of the SSC
device with the graphene cathode, which exhibits a similar transmission profile to the ITO cathode.
Both devices present an average visible transmittance of ~40%, which allows diverse applications,
such as power-generating windows and tandem solar cells. The high average optical transmittance
in the visible region is attributed to the high transmission efficiency of the all-graphene electrodes
and the thinness of the organic photoactive layer (~90 nm). The average visible transmittance can be
improved by decreasing the thickness of the photoactive layer, sacrificing the PCEs of the SSC devices.
Figure 5d presents the J–V characteristics of three SSC devices with different buffer layers on both
sides of the graphene cathode. The best solar-cell performance, which is due to the highest electrical
conductivity, is achieved with the graphene cathode that is modified with the ZnO NPs/PEDOT:PSS
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buffer layer, where a PCE of 3.35% (3.06%) is attained under light illumination from the top (bottom)
graphene electrode.
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Figure 5. (a) Schematic illustration of the semitransparent organic solar cell with all-graphene
electrodes; (b) Neutral-colored SSC with all-graphene electrodes; (c) Transmission profiles of two
semitransparent organic solar cells with graphene anodes and graphene or ITO cathodes. The dashed
lines indicate the visible region; (d) J–V characteristics of the SSC with all-graphene electrodes.
The graphene cathodes were modified with different buffer layers. The devices were illuminated and
characterized from the anode (solid line) and cathode (dash line). Reproduced with permission [98].
Copyright 2015, American Chemical Society; (e) Device structure with approximate layer thicknesses; (f)
J–V curves of the PC70BM graphene/graphene devices illuminated from the glass (cathode) side versus
the polydimethylsiloxane (PDMS) (anode) side. The J–V curve of a PC70BM ITO/graphene device
illuminated from the glass/ITO side is included for reference. The lower-right bar chart shows the
average Jsc values for these configurations; (g) Photograph taken through a PC60BM device. The dotted
lines outline the corners of the device. Reproduced with permission [99]. Copyright 2015, Wiley.
PMMA: Poly(methyl methacrylate).
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Although the optical transparency of the SSC device can be improved by reducing the
thickness of the organic photoactive layer, the PCEs are reduced, which is not desired.
For enhancing the optical transmittance while preserving or even enhancing the PCEs,
an SSC wherein the organic active layer mainly absorbs light in the ultraviolet (UV)
and NIR wavelength ranges with a single (two)-layer graphene cathode (anode) was
demonstrated [99]. In this study, the SSC device structure consists of single-layer graphene
cathode/PEDOT:PSS/ZnO/poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5Hdithieno[3,2-b:20,30-d]pyran)-alt-
4,7-(5,6-difluoro-2,1,3-benzothiadiazole)] (PDTP-DFBT):[6,6]-phenyl-C71-butyric acid methyl ester
(PC70BM)/molybdenum trioxide (MoO3)/two-layer graphene anode. Because PDTP-DFBT mainly
absorbs light in the wavelength range of 600 to 900 nm whereas PC70BM primarily absorbs the
shorter wavelengths of visible light, high transparency in the visible wavelength region can be
accomplished by a bulk heterojunction blend, as shown in Figure 5g, revealing little color difference
across the fabricated SSC device [105,106]. An overall transmission efficiency of 59% at 550 nm and
an average visible transmittance of 54% are achieved by the SSC device with PDTP-DFBT:PC70BM.
An improved optical transmittance but a reduced PCE of the SSC device can be obtained by using
PDTP-DFBT:PC60BM. Figure 5f shows the J–V curves of the two SSC devices with all-graphene
electrodes and an ITO cathode and a graphene anode (the inset schematic shows the SSC device
configuration). The highest short-circuit current density (Jsc) of 12.5 mA cm-2, leading to a PCE of
4.1%, is attained from the SSC with all-graphene electrodes under illumination from the top plastic
stamp side.

3. CNT Electrode

3.1. Laminated CNT

In addition to graphene-based transparent electrodes, there have been increasing efforts to
develop CNT-based transparent electrodes, as CNT is chemically stable, mechanically flexible,
electrically conductive, solution-processable, and transparent compared with the other transparent
conductive oxides (TCOs). The lamination of a CNT network film as a top electrode for
semitransparent small-molecule organic solar cells has been reported, where the fabrication
of the transparent electrodes without damaging the underlying organic photoactive layer is
crucial [44]. In this work, freestanding multi-wall CNT (f-CNT) sheets are prepared using
the conventional CVD process, and then the CNT network film lamination is performed
followed by a densification process to improve the transparency and conductivity [107].
Figure 6a depicts the device structure, which consists of glass/ITO cathode/electron transporting
tetrakis(1,3,4,6,7,8-Hexahydro-2H-pyrimido[1,2-a]pyrimidinato)ditungsten (II) (W2(hpp)4) doped
C60 layer/C60/zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction photoactive
layer/hole transporting 2,2′-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ) doped
N,N′-((diphenyl-N,N′-bis)9,9,-dimethyl-fluoren-2-yl)-benzidine (BF-DPB) layer/f-CNT. Optical, atomic
force microscopy (AFM), and SEM images of the f-CNT film, which has a predominant orientation,
laminated on top of the SSC after the densification process are presented in Figure 6b–d,
respectively [108]. Figure 6e,f show the J–V characteristics of the semitransparent small-molecule
organic solar cells with different thicknesses of the hole-transporting layer under light illumination
from the bottom (ITO cathode) and top (f-CNT anode) sides, respectively. PCEs of 1.3% and 0.9%,
along with an average visible transmittance of 27% with negligible scattering effects, are achieved by
the SSCs with the 50-nm-thick hole-transporting layer under bottom and top illumination, respectively,
both of which present comparable PCEs of the reference cell (1.9% and 1.0% for the bottom and the
top illuminated cells, respectively), where a thin metal layer is used for the top electrode instead
of f-CNT. One of the challenges of the CNT electrodes is that their surface is typically fairly rough,
causing electrical shortage of the solar cells, which can be resolved via a planarization method with
PEDOT:PSS [109,110]. In contrast, it is observed that all the devices with an f-CNT top electrode present
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a very low leakage current, which is attributed to the fact that additional and sizable shunt paths
are not generated during the room-temperature orthogonal liquid-solution-assisted self-laminating
process of the f-CNT top electrode. This implies that the deposition of the f-CNT film on top of the
photoactive layer is uniform, without structural defects and charge-carrier trapping sites.
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Figure 6. (a) Schematic of the SSC with the transparent freestanding multi-wall carbon nanotube
(f-CNT) top electrode; (b) Photograph of the f-CNT cell; (c) AFM image (4 µm × 4 µm); (d) SEM image
of the f-CNT sheet on top of the solar cell. J–V characteristics of the Ag reference cell and f-CNT
cells with different hole-transporting layer (HTL) thicknesses (20, 50, and 80 nm) during (e) bottom
and (f) top illumination. Reproduced with permission [44]. Copyright 2012, Elsevier; (g) Device
structure of a CH3NH3PbI3 perovskite solar cell with the CNT film electrode; (h) Tilted SEM image
of the CH3NH3PbI3 perovskite substrate (blue) partly covered by a CNT film (purple); (i) J–V curves
of a CH3NH3PbI3 perovskite/CNTs solar cell with illumination from the fluorine-doped tin oxide
(FTO) side and from the CNT side under conditions of AM1.5 100 mW cm−2; (j) IPCE spectra of a
CH3NH3PbI3 perovskite/CNTs solar cell with illumination from the FTO and from the CNT side.
Reproduced with permission [43]. Copyright 2015, American Chemical Society.
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A laminated CNT network film as a top electrode was also demonstrated in semitransparent
perovskite solar cells [43]. Figure 6g presents the perovskite solar-cell device structure, where a thin
mesoporous nanocrystalline layer of TiO2 is used as a scaffold. A sequential deposition method is
employed to deposit the perovskite photoactive layer, and a floating-catalyst CVD method is used to
synthesize the thin f-CNT network film that is transferred on top of the light-absorbing perovskite
semiconductor in an ambient atmosphere at room temperature [111,112]. A small drop of toluene
allows the surface tension that occurs during the vaporization of toluene to pull the thin CNT network
film towards the perovskite semiconductor via the van der Walls force without the dissolution of
the photoactive layer, leading to conformal transfer of the CNT film and hence an improved electric
contact. Figure 6h shows a tilted top SEM image of the thin f-CNT network film (purple) conformally
coated on top of the light-absorbing perovskite semiconductor (bluish green). The J–V characteristics
and the IPCE profiles of the semitransparent perovskite solar cells with the CNT top electrode under
illumination from both sides are presented in Figure 6i,j, respectively. PCEs of 6.29% and 3.88%
are achieved by the SSC under illumination from the glass and CNT sides, respectively, where the
transferred CNT network film presents not only a lower transmission efficiency but also a lower
charge-collection efficiency, yielding lower absorption in the photoactive layer and therefore a lower
Jsc. This is confirmed by the IPCE spectra presented in Figure 6j. By eliminating the structural defects
of the CNT film and incorporating Spiro-OMeTAD for better coverage and charge collection, the PCE
can be further improved.

3.2. Doped CNT

Although the semitransparent performance can be accomplished by using the laminated
CNT film as the top electrode, the lamination process is not easy, and the sheet resistance of
the laminated CNT film is high for practical applications. Recent work revealed neutral-colored
semitransparent organic solar cells, where the CNT films were p-doped with HNO3 via the sandwich
transfer method and MoO3 via the bridge transfer process [113]. Figure 7a shows a schematic
illustration and optical images of the window-like semitransparent organic solar cells comprising
glass/ITO/ZnO/PTB7:PC71BM/MoOx/CNT, where the CNT network films with high purity and long
nanotube bundle lengths were prepared via the aerosol CVD method, and the doping was performed
on the CNT films through the direct lamination and dry lamination methods [114,115]. Although
HNO3 acid is an effective p-type dopant, direct application is not possible owing to the high acidity of
HNO3 [116]. The HNO3 doping sandwich transfer procedure is illustrated in Figure 7b (top). A drop of
HNO3 is placed on the CNT film followed by post-annealing treatment at 80 ◦C for 5 min, which causes
the CNT film to appear reddish, indicating that the CNT network film is p-doped. This can be validated
by checking the reduction in the Fermi level value from −5.0 to −6.0 eV through photoelectron yield
spectroscopy (PYS). Then, the HNO3-doped CNT network film is placed onto a MoO3 film, where UV
resin is used to promote the adhesion between the HNO3–CNT film and MoO3. When the device is
illuminated from the ITO side, a PCE of 3.7% is achieved. Figure 7b (bottom) presents the MoOx doping
bridge transfer process, which is found to be more stable than the HNO3 sandwich transfer method [40].
The CNT film is bridged on a metal holder, as shown in the figure, and MoO3 is thermally evaporated
with a shadow mask to pattern the contact area of the electrode followed by post-annealing treatment
at 400 ◦C. The p-doping of the CNT network film is confirmed by measuring the Fermi-level value,
which decreases from −5.0 to −5.6 eV, using PYS. The MoOx-doped CNT film is transferred directly
onto the photoactive layer of the partially fabricated organic solar-cell device, achieving a PCE of 3.1%
under light illumination from the ITO side. The transmission spectra of glass/ITO, glass/pristine
CNT film exhibiting an average visible transmittance of ~85%, glass/ITO/ZnO/PTB7:PC71BM/MoO3,
and glass/CNT/MoO3/PTB7:PC71BM/ZnO exhibiting an average visible transmittance of ~40% are
presented in Figure 7c. Figure 7d shows the IPCE spectra of an SSC with the p-doped CNT electrode
under illumination from the ITO and CNT sides. Although the pristine CNT network film shows
a high transparency of ~90%, relatively low PCEs are achieved, and the fabricated devices exhibit
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unstable J–V characteristics that are attributed to the mechanical variability and the sensitivity of
the transfer methods for the CNT film doping. Such instability of the electrical properties with the
thin CNT film can be easily resolved by increasing the thickness of the original CNT network film,
which can also improve the electrical conductivity despite the reduced average visible transmittance.
By using thicker CNT films that show a transmission efficiency of ~60% at 550 nm, stable J–V curves
are obtained, with PCEs of 4.1% and 3.4% for SSC devices with HNO3-doped and MoOx-doped CNT
electrodes, respectively. The thicker CNT network film is less sensitive to the microwrinkles formed
during the transfer process, leading to a higher Voc. In addition to the improved Voc, the enhanced
electrical conductivity of the thicker CNT film yields a higher FF. Improved PCEs can be attained by
sacrificing the transparency of the device.
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Figure 7. (a) Schematic diagram of the SSC with the laminated CNT top electrode (left) and photographs
with different foci (right); (b) Schematic illustrations of the HNO3 doping sandwich transfer process (above)
and the MoOx thermal doping bridge transfer process (below); (c) Transmission spectra of glass/ITO,
glass/90%-CNT, glass/ITO/ZnO/PTB7:PC71BM/MoO3, and glass/90%-CNT/MoO3/PTB7:PC71BM/ZnO;
(d) IPCE measurement spectra of the SSC devices when light is shone from the ITO side and when light is
shone from the CNT side; (e) J–V curves of 60% transparent CNT-based SSC devices fabricated using the
HNO3 sandwich transfer method (red line) and the MoOx bridge transfer method (blue line). Reproduced
with permission [113]. Copyright 2016, Nature Publishing Group. SWNT: Single-walled carbon nanotube.

4. Conclusions

The PCEs of SSC devices are significantly lower than those of the conventional solar cells with
an opaque electrode. For the further efficiency enhancement of the SSC, various schemes can be
exploited: (1) increased light absorption due to light-trapping effects in plasmonic nanostructures and
nanostructure-textured surfaces; (2) broadband anti-reflection coatings yielding increased absorption
in the photoactive layer and thus increased photocurrent generation; (3) integration of perfect
light-absorbing mechanisms in the infrared (IR) regime for thermophotovoltaic energy-conversion
applications; and (4) the design of tandem solar cells wherein more semiconductors, which can
efficiently harvest the UV and IR portions of the solar spectrum rather than visible light, are employed.
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In addition to an SSC with a window-like appearance, multi-colored SSC devices can be developed for
aesthetic solar panels and power-generating color filters for display technologies. Further enhancing
the PCEs of SSCs and incorporating more functionalities into SSCs can introduce new avenues for the
commercialization of SSCs.

Regarding the transparent electrodes that have been widely used in a variety of the optoelectronic
devices, the TCOs—including ITO—are still dominant in the market, but their brittleness and
expensive fabrication remain a challenge, restricting their potential in many future flexible and
wearable applications. Although considerable effort is directed towards the development of transparent
electrodes based on conducting polymers, their poor stability and durability are significant
issues. Owing to their high transparency with optically neutral colors, high electrical conductivity,
and excellent mechanical flexibility, both CNT and graphene—allotropes of C—have been extensively
explored for transparent electrode materials. Various fabrication methods, modification approaches,
and patterning strategies for CNT- and graphene-based transparent electrodes for diverse electronic
and optoelectronic devices have been demonstrated. However, there are many challenges to be
overcome for the industrialization of both CNT- and graphene-based transparent electrodes for
numerous optoelectronic applications. First, both the optical transparency and electrical conductivity
of the CNT- and graphene-based transparent electrodes must be improved, both of which are still lower
than those of the ITO electrode. This is very important for SSC applications. New fabrication methods
for preparing CNT and graphene with high quality, different morphologies, and a rapid growth
rate should be developed. The second challenge is creating CNT- and graphene-based transparent
electrodes over a large area with reduced costs, which is essential for commercialization. Third,
although significant efforts have been devoted to investigating various dopants for enhancing the
conductivity of CNT and graphene, these dopants have poor stability, which should be resolved,
especially for SSC applications that require long-term stability. Furthermore, creating a smooth
surface of the CNT- and graphene-based transparent electrodes remains a bottleneck; it is difficult to
achieve clear background images through the SSC devices, limiting their widespread use in practical
applications. To industrialize the CNT- and graphene-based transparent electrodes for SSC applications,
the aforementioned challenges should be addressed. Despite these issues, we envision a bright future
for CNT- and graphene-based transparent electrodes for SSC applications, owing to their unique
characteristics that are unattainable with other transparent electrode approaches.
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