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Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and
improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a
wearable system for the continuous real-time monitoring of respiratory frequency (fR), heart rate (HR), and movement
cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing
pattern with a mechanical ventilator) and by collecting data from one healthy volunteer. Results show the feasibility of the
proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and
during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection
from different wearable modules.

1. Introduction

Monitoring training is essential to optimizing performance,
promoting health, and improving exercise adherence in dif-
ferent populations ranging from elite athletes to patients.
Despite the widespread diffusion of wearable devices provid-
ing information on mechanical and physiological parameters
related to training, technological development is not always
supportive of training monitoring [1].

Coaches and practitioners potentially have a myriad of
variables and training metrics to deal with, often recorded
with different devices that are not synchronized, thus
increasing the time needed to gain relevant information from
data. This scenario results in a limited use of the available
devices and facilities, which are often substituted by more

straightforward solutions. An example of such decision-
making process is the widespread choice of measuring per-
ceived exertion using a subjective scale [1]. Perceived exer-
tion limits endurance performance [2], affects exercise
adherence in sedentary individuals [3], and is widely moni-
tored during training [1]. Notwithstanding its importance,
subjective rating of perceived exertion (RPE) should be used
in combination with objective variables to allow for a more
comprehensive description of the training process. Indeed,
physiological and mechanical variables, unlike RPE, can be
measured continuously during exercise and can also be
real-time displayed.

Emerging evidence suggests that respiratory frequency
(fR) is a very promising variable to monitor during exercise.
fR is a better marker of physical effort compared to
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traditionally monitored physiological variables (including
HR) and is strongly correlated with RPE during both contin-
uous exercise and high-intensity interval training [4–7].
Among a myriad of potential applications, monitoring fR
during training would, for instance, benefit those patients
who have their HR altered by pharmacological interventions
(e.g., beta blockers). While fR is a better marker of physical
effort than HR is, the latter is, unlike fR, strongly linked with
oxygen uptake and thus provides information on aerobic
contribution and energy expenditure. A possible solution
combines different variables [8] providing information on
physical effort, energy expenditure, and task-related mechan-
ical variables (e.g., acceleration, speed, cadence), possibly
using low-cost ubiquitous-spread technologies.

During the last decade, the use of sensors for monitoring
human behavior has exponentially increased, and several
familiar objects of daily life have become hidden measure-
ment tools [9]. This trend has been fostered by the increased
level of miniaturization in sensor-manufacturing processes
from the one hand and by the increasing computational
availability on the other hand. In particular, the
widespread distribution of tiny, yet relatively powerful
computers, such as those embedded in smartphones, has
enabled ubiquitous data acquisition and analysis [10]. Cur-
rently available smartphones and laptops are provided
with different machine-to-machine (M2M) interfaces that
have enabled the possibility to acquire synchronous het-
erogeneous data from several sensors in a relatively small
space range, like in fitness training.

The aim of this work is to design, develop, and prelim-
inary test a wearable, low-cost device enabling the objec-
tive monitoring of physical activity during sports training
and patient rehabilitation. We have focused the design to
monitor fR, HR, and movement cadence during running
because it is a very common activity in several sports
and rehabilitative programs and it requires particular
attention in the sensor’s selection and placement, more
than in other sports activities.

2. Materials and Methods

The proposed device is composed of a hardware module,
which allows the synchronous acquisition of fR, HR, and
motion cadence, and a software module, in charge to manage
the communication and data transfer.

2.1. Hardware Module: Sensor Selection. In the following
lines, we will carefully review the technological solutions
available on the shelf to measure fR, HR, and motion cadence.
Each solution will be discussed to identify the one better fit-
ting with the aim of this work.

2.1.1. Respiratory Frequency Monitoring. The fR may be esti-
mated indirectly, by measuring parameters physically cor-
related with the breathing activity, such as changes in
thorax circumference, thorax cross section, or transtho-
racic impedance [11], or using the so-called airflow-based
methods [12, 13], based on variables derived from the air-
flow produced during breathing. The indirect methods use

several technological solutions like microphones (measur-
ing the sound created by turbulence that occurs during
respiration) [14] or using straps embedding several sensors
to measure the thorax expansion [15–17]. These solutions
are quite tricky to be used during training due to the arti-
facts caused by movements and the environmental noise.
The airflow-based methods measure differences between
inspired and exhaled air; indeed, exhaled air is warmer, has
higher humidity, and contains more CO2 than inspired air
does. These parameters are usually monitored using temper-
ature, hygrometers, and infrared absorption sensors [18].
Several commercially available solutions use a mask over
the mouth and nose to convey the airflow or a thermocou-
ple under the nose, measuring the change in temperature
of the air as it is inhaled and exhaled [19]. These
solutions, despite being quite accurate, cannot be adopted
in physical training monitoring. A more straightforward
direct way to assess only fR consists of measuring the flow
expired by the subject by using an accurate flowmeter for
low-rate flows positioned over the mouth [12, 20]. This
solution allows the easy detection of exhalation if the
breathing is properly conveyed to the sensor, but it cannot
be used to monitor the inspiration phase. Indeed, to
convey the air toward the sensor during inspiration, it is
necessary to use a face mask, which can be obtrusive for
patients and athletes during physical activity.

Since we are interested in monitoring only the fre-
quency of respiration, the use of low-rate flowmeters with
a conveyor for exhaled air appears to be the most suitable
choice due to its accuracy, easiness of use, and overall level
of comfort.

2.1.2. Heart Rate Monitoring. HR can be monitored using
different techniques based on the electrocardiogram (ECG),
which is primarily used in clinical applications since it is
strongly affected by a baseline drift, which may be ascribed
to a nonoptimal contact of the strip with the body and
motion artifacts [21, 22].

Moreover, even if the ECG method is accurate in clinical
settings and static conditions, it is not very appropriate for
HR monitoring during fitness and rehabilitation due to its
complexity and cost. A promising, low-cost technique is
represented by photoplethysmography (PPG), which con-
sists in the shining of selected regions of the body (typically
earlobes, fingers, wrist, or arm) and in the measurement
of the perfusion of blood in the dermis and subcutaneous
tissue by capturing the different amounts of refracted light
[23–25]. A matched pair of emitter-detector is typically
used: they can be placed in opposite positions (transillumina-
tion configuration) or adjacently (reflective configuration) as
shown in Figure 1.

Photons (red circles in Figure 1) may be absorbed by tis-
sues (a), scattered (c), or reflected to the detector (b). The
absorption strongly depends on the amount of blood in the
illuminated region, which in turn depends on the cardiac
phase: the more blood there is in the illuminated region (dia-
stolic phase), the more light is absorbed by hemoglobin, and
the less light is reflected [26]. Figure 1(b) reports a typical
PPG signal. The black circles correspond to the two main
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phases of the cardiac cycle: the systolic phase when the con-
traction of the blood vessel wall moves blood ahead, reducing
the local volume of blood, and the diastolic phase when the
blood vessel wall is relaxed and the volume of blood in the
capillary bed is maximum. The main limitation for the appli-
cation of such sensors during physical activity is their sensi-
tivity to patient/athlete movements and/or probe-tissue
displacement [27].

Indeed, these movements can modify the amount of light
detected, creating what is known as motion artifact (MA). To
overcome this limitation, it is necessary to use a fastening
system to keep the sensor firmly in contact with the skin,
select a location of the body not directly involved in the
movement performed during training, and use an appropri-
ate technique for MA reduction.

2.1.3. Motion Cadence Monitoring. There are several techno-
logical solutions and systems to monitor human movement
and cadence. They operate on entirely different physical
principles, with different performance characteristics. As
shown in [28], there is not a single technology that can fit
all needs, but each application defines the best one to be
implemented. Figure 2 reports a taxonomy of the main sys-
tems used for motion analysis that can be grouped into two
main classes: optoelectronic and nonoptoelectronic systems
(see [29, 30] for a detailed review).

Marker-based optoelectronic systems use high-frequency
cameras and are generally considered complex and expensive

and not suited to be used in an unstructured environment
[31, 32]. Even if markerless systems are cheaper than
marker-based solutions, they are sensitive to lighting condi-
tions and require the subject to be always captured by the
camera. However, nonoptoelectronic systems that group
different physical principles can be used to monitor move-
ment. Among others, mechanical sensing techniques are
quite bulky and can limit the mobility of the subject. Simi-
larly, magnetic sensors are not suited for physical activity
monitoring because their range of measurement is small
and the sensors require cables, thus limiting the movement
of the subjects [33, 34]. Kinematic variables may also be
measured by the mean of inertial systems [35]. In particular,
microelectromechanical accelerometers allow to estimate the
acceleration of movements measuring the relative displace-
ment of a small mass (few μg) with respect to the fixed
external case and, merging information coming from acceler-
ometers, gyroscopes, and magnetometers (the so-called
inertial-magnetic unit or IMU sensors), they allow to recon-
struct the orientation of the sensor in the space with a good
level of accuracy [36]. Several configurations with different
levels of complexity are possible, depending on the aim of
the study. The reconstruction of the body kinematics requires
the use of a network of sensors, worn by the subject in prede-
fined positions and calibrated using a specific procedure, as
well as biomechanical models to estimate the kinematics of
articular joints [37]. The extraction of elementary informa-
tion like step cadence can be performed by using a single
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Figure 1: (a) Example of a PPG reflective probe. The couple emitter-detector is placed in direct contact with the tissue surface to reduce the
optical noise. The amount of light absorbed by the tissue (red dots marked with a) depends on blood volume changes in the microvascular bed
of the tissue; it is lower for small volumes (systolic phase) and higher for significant volumes (diastolic phase). (b) Typical PPG signal.
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accelerometer. The adoption of one sensor is good for pro-
longed measurements and monitoring because it has a small
size (few millimeters) and it weighs a few grams; moreover, it
can be easily worn and, thanks to its moderate electrical con-
sumption, it can be supplied using relatively light and small
batteries for a long period. Among the other systems, there
are devices based on a combination of the previous tech-
niques. For example, the Wii Remote is a commercial system
which uses inertial and optical sensors to measure human
motion [30]. These systems can be used in real-time applica-
tion but require subjects to remain close to the optical system,
thus reducing their use for motion monitoring during real
exercise conditions.

2.1.4. Selected Solutions. The analysis of the main techniques
used to date to measure fR, HR, and motion cadence has
allowed identifying the main pros and cons of each technol-
ogy. Keeping in mind the specific application of our system
and the main constraints it needs to fulfill to be effectively
used for physical activity monitoring, three promising tech-
nologies have been selected among those presented. We
decided to develop a sensor module instrumented with a
PPG sensor to measure HR, an orifice flowmeter con-
nected to a differential pressure sensor via two static taps
to measure the pressure drop correlated with the exhala-
tion/inhalation and then the fR, and a single triaxial accel-
erometer to both measure step cadence and reduce MAs
from the PPG signal.

The automatic detection of MAs and its separation from
pulse recordings is a nontrivial exercise in computer signal
processing mainly due to their significant band overlapping.

Numbers of solutions have been proposed ranging from
moving average filters [38–40] to adaptive algorithms
(least mean squares adaptive algorithm [41–45], Kalman
filters [46], time-frequency methods and wavelet transform
[47, 48], principal component analysis [49]); the main
pros and cons are detailed in [50]. Within others, the soft-
ware used to analyze the HR from the proposed device
uses the normalized least mean squares (NLMS) adaptive
algorithm presented in [41]. Such kind of filter has high
computational efficiency, making it the perfect candidate
for real-time applications by using the accelerometer data
as reference signal.

Figure 3 reports the block diagram of the implemented
algorithm. Both accelerometer and PPG signals are band-
pass filtered between 0.5 and 3Hz, that is, the band of
the HR signal [42]. The acceleration signal is digitally filtered
and subtracted to the PPG-filtered signal (D[N]) to remove
MAs and obtain the E[N], that is, the reconstructed HR
signal. The digital filter coefficients are adaptively tuned
according to

W n + 1 =W n + μ n x n e n 1

μ n represents the step size of the filter and is calculated as in

μ n = b
a + xTx

, 2

where b and a are two constant coefficients; see [51] for
details.

2.2. Communication and Data Transfer Protocol. To allow
the real-time objective measurement of relevant variables
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Figure 2: Systems for motion capture: a taxonomy.
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Figure 3: Block diagram of the NLMS adaptive filter used. The coefficientsW n of the filter are tuned according to the equations in the body
of the text.
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during physical activity, a communication protocol should
satisfy the following main requirements:

(i) It must be a wireless solution (as in many cases, the
sensors will be in different areas).

(ii) It should allow connecting a small set of sensors to
obtain synchronous data from them.

(iii) It should provide low-power consumption.

(iv) It should be based on standard hardware and proto-
cols as much as possible.

(v) It should provide a sufficient throughput rate to
guarantee a suitable sample frequency (at least
100Hz).

To select the best solution for our application, we
compared some of the most well-known standard suites
for wireless personal area networks (PAN) and sensor net-
works in general. In Table 1, we compared the main tech-
nologies available, in detail: Bluetooth and its more recent
low-consumption variant, Bluetooth Low Energy (BLE),
Wi-Fi, 6LoWPAN/Thread, NFC, ZigBee, and nRF24 (by
Nordic Semiconductor).

Bluetooth is one of the most known and spread M2M
communication systems; BLE is a variant of the main Blue-
tooth specification, also known as Bluetooth Smart. It was
created to provide lower consumption while maintaining a
similar communication range. Wi-Fi is the most used tech-
nology for wireless connections with Internet access. It is
based on the IEEE 802.11 standard, which allows a broader
range of connectivity, allowing for wider networks. 6LoW-
PAN is a technology that aims to use IPv6 over the Internet
of Things (IoT) and sensor networks, through the IEEE
802.11.4 standard. It does not define an application layer
protocol, except for efforts such as the recently released
Thread (backed by more than 50 companies). Near-field
communication (NFC) is a set of protocols that allows the
communication of two devices located in close range (a few
centimeters). Currently, it is widely used for payment process
or data exchange between smartphones. ZigBee is an alterna-
tive for 6LoWPAN which implements the full stack of proto-
cols including the application layer. It is also based on the
IEEE 802.11.4 standard. The idea behind ZigBee was to

provide a simpler and less expensive alternative to Bluetooth
andWi-Fi. There are other solutions for the creation of small
wireless networks, not necessarily based on a full standard
stack of protocols. For instance, Nordic Semiconductor offers
products that allow the creation of radio frequency-based
communications using the same frequency as Wi-Fi in their
nRF24 devices.

The comparison, presented in Table 1, suggests Blue-
tooth as the best technology to guarantee real-time appli-
cation with a good spatial range and low consumption.
Indeed, Wi-Fi-related technologies, even if highly spread
in the market, require high power and need to structure
the environment with access point to be used efficiently.
Other solutions such as 6LoWPAN or ZigBee offer lower
data rates, thus making real-time applications not possible.
NFC technologies can be used in a tiny spatial range, and
nRF24 technologies are not based on any standard and
present a low market adoption for this kind of devices.
Between Bluetooth and BLE, we have finally selected the
first one, as, in this case, a higher data rate it is more
important than a lower consumption.

Moreover, it has been demonstrated that the theoretical
data rate of BLE is strongly dependent on the distance and
it decreases very much also for small distances, well below
the theoretical limit of 50m [52, 53].

2.3. System Development. In the development of the proposed
system, we carefully considered some designing constraints
in the hardware part. Particular attention was paid to keep
the weight and the size factor of the system as small as
possible and to select the electronics to be compatible with
low-voltage power supply reducing as much as possible the
overall power consumption of the system, as suggested
by [52]. The board (size: ~95mm× 42mm× 1.5mm),
shown in Figure 4(a), has been equipped with a local con-
trol unit (a microcontroller PIC18F46J50, by Microchip
Technology Inc., current consumption 23.2mA (settings:
FOSC=48MHz, PRI_RUN mode, EC oscillator) and an
inertial module (LSM9DS0 by STMicroelectronics, range
up to ±58.86m/s2, resolution 16 bit, maximum current
consumption about 10mA) for motion monitoring. It is
also provided with two standard sockets to easily plug/
unplug a PPG sensor (PulseSensor, World Famous Elec-
tronics llc, maximum current consumption 4mA) and a

Table 1: Wireless communication technology comparison.

Bluetooth BLE Wi-Fi
6LoWPAN
Thread

NFC ZigBee Other (nRF24)

Power
consumption

Low
(>30mA)

Very low
(<15mA)

High
(60mW)

Low
Very low
(<15mA)

Medium (<1 μW to
50mW)

Very low
(15mA)

Max range 50m/100m 50m 100m 30m 0.2m 100m 30m

Standard
802.15.1

(originally)
802.15.1

(originally)
802.11 802.15.4

ISO/IEC 18092,
ISO/IEC

14443-2,3,4
802.15.4 —

Market
adoption

Very high High Very high Low High
High (in industrial
developments)

Low

Max data rate 24Mbps 1Mpbs/2Mbps 300Mbps 250Kbps 424Kbps 250Kbps 1Mpbs/2Mbps
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commercial flowmeter (SpiroQuant P by EnviteC, Honey-
well) connected to a differential digital pressure sensor
(hereinafter named SDP sensor, model SDP610, pressure
range up to ±125Pa, accuracy< 0.04% full-scale, Digital
I2C Output, maximum current consumption 6mA).

Both accelerometer and pressure sensors are provided
with a digital I2C interface while the signal of the PPG sensor
is locally conditioned and analogically sent to a 12-bit ADC
on the board (MAX1239, by Maxim Inc., maximum current
consumption 230 μA) connected with the local control unit
via an I2C interface. The communication is locally timed by
the control unit that is programmed to acquire data from
sensors at 100Hz. The acquired data are sent to a remote
unit thanks to a Bluetooth V3.0 module (i.e., by the
SPBT2632C2A module by STMicroelectronics, maximum
current consumption 27.5mA, in slave mode during data
transmission at maximum throughput). All the electronics
are supplied by a LiPo 3.6V, rechargeable battery provided

with an on-board charger. According to the maximum
current consumption of the main components of the
board, the electronic requires about 70mA during data
transmission. For this reason, we selected the LiPo battery
GM302547_PCB, produced by PowerStream Corporation.
This battery has a capacity of 320mAh that guarantees
more than 4 hours of continuous operation, that is, a time
widely sufficient for a typical training session or rehabilita-
tive procedure. A functional diagram of the electronic is
presented in Figure 4(b).

The board has been integrated into a headphone pro-
vided with a microphone stick (Figure 4(c)). The microphone
has been replaced with a commercial flowmeter that causes a
pressure drop when the exhaled air flows through the restric-
tion created by its orifice. The SDP sensor captures the pres-
sure drop. The PPG sensor has been connected to the right
earlobe, which is closer to the accelerometer sensor, thus
allowing an easier compensation of MA.

94.87 mm

42
.4

2 
m

m
SPD sensor

IMU unit

Bluetooth
module

PPG sensor

(a)

LED

12C
MAX1239
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I/O line

RS232

I2C

I2C
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PIC18465J50

Bluetooth
module
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SPD sensor

IMU unit
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Figure 4: (a) Detailed view of the hardware module. (b) A functional diagram of the PIC-based board. The control unit acquires and collects
data from the PPG sensor (through an analog-to-digital converter), the SDP sensor for respiratory rate, and the IMU unit for body movement.
Data are sent to PC by the Bluetooth module. (c) Overall system sketch. The hardware module has been embedded into a headphone. The
flowmeter is positioned 10 cm ahead the mouth, and its static taps are connected to the SDP sensor. The PPG sensor is positioned on the
right earlobe with an ear clip. The IMU is integrated into the hardware module in proximity with the PPG sensor.
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The Bluetooth connection has been used not only to
guarantee M2M connection but also to create a local sensor
network and test the possibility to use these sensors in a local
network configuration, to promote social interaction which
can foster the motivation to perform physical activities. Typ-
ically, Bluetooth connections are defined as point-to-point
connections or as a piconet (a Bluetooth network where
one element acts as a master, and there are a set of slave
devices connected to it using a star topology). This last sce-
nario is the one we tried to implement. As shown in
Figure 5, the scenario is composed of a set of modules for
physical activity monitoring (slaves) provided with a Blue-
tooth interface that send their data to a central device, the
master of the network.

By following the classic client-server architecture [54], we
also defined the master device as a server, to which all the
slaves will connect, acting as clients. Consequently, our com-
munication system is composed of clients, servers, and the
interactions between them.

We used the radio frequency communication Blue-
tooth protocol (RFCOMM) and the Serial Port Profile
(SPP) to establish connections between the master and
each slave. Moreover, to standardize the interactions
between clients and server, we defined a simple message
set. It is composed of only six different types of message.
Each one consists of a set of bytes representing different
control fields to be shared between clients and server. All
of them start with a byte representing the type of the message
and end with a special ending byte value. The messages
are as follows:

(1) Initialization (Init) message: the first message sent
from the client after the connection. It is used to
advertise the information of the client—specifically,
the number of sensors, the size of data each one can
provide, and the frequency of data acquisition.

(2) Configuration (Conf) message: after the Init message,
the server sends a configuration message to each cli-
ent. It consists of a list of sensors to be used in a spe-
cific data acquisition process.

(3) Start message: a simple signal that notifies a client
that should start the data acquisition and transmis-
sion to the server.

(4) Stop message: as the start message, it is a simple sig-
nal to notify a client that it should stop acquiring
and sending data.

(5) Data message: this is each message containing sensor
data, sent from each client to the server.

(6) Sync message: it is a specific message defined to
maintain the synchronization between the clocks of
all the clients connected to the server at some point.
These messages are sent periodically from the server,
regardless of the sequence of data acquisition.

Figure 6 represents the usual sequence of message
exchange. The sequence starts right after the connection
established to the server which is advertising a Bluetooth
SPP service. In the diagram, HUB represents the server and
master and Board represents each client and slave.

Figure 7 shows the different fields of each message. All
fields are of 1-byte length, except for the Time (which is
divided into 2 bytes) and the sensor data (which will depend
on the data received from specific sensors, and therefore, it
will be variable) in data messages.

To prototype the server, we have used Raspberry Pi 3
Model B, which includes a Bluetooth adapter and offers
a simple and easy way for programming. The designed
server could be easily ported to a smartphone or any other
Bluetooth-capable device. We developed the server over
the Raspbian operating system, using the PyBluez library
and the Python language. The server is composed of a
series of threads (bth_th), which manage each point-to-
point connection and defines the messages of the protocol
in a dedicated module (bth_msg). It also offers a command
line interface (bth_ui) for the user interaction and can reg-
ister and store board configurations using a simple SQLite
database. Figure 8 shows the module diagram of the
implemented server.

There are several possible solutions to guarantee time
synchronization among different devices connected to the
server [55–57]. Some of them present the inconvenience of
needing dedicated hardware (i.e., GPS or Internet-
connected adapters to use the Network Time Protocol
(NTP)), while others rely on local protocol implementations
(i.e., Clock Synchronization Protocol (CSP), an optional fea-
ture of the Bluetooth Health Device Profile (HDP) [58]). In
our case, CSP is not supported and it is also not possible to
use dedicated hardware, so we have tried to implement a sim-
ple protocol based on sending broadcast messages from the
server to the clients to reset the client clocks periodically.
As RFCOMM/SPP uses point-to-point connections, it is
not possible to use “real” broadcast messages (i.e., just one
message sent to the shared communications medium and

Slave

Master

Slave

Slave

Figure 5: Piconet topology implemented through Bluetooth
connection.
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read by all the devices listening). Instead of that, we send a
copy of the synchronization message to each client sequen-
tially. If the process is fast enough (i.e., if it lasts less than
the sampling interval, 0.01 s), it will allow keeping the client
clocks synchronized during all acquisition.

3. Results and Discussion

The device developed for monitoring respiratory frequency,
heart rate, and step cadence presented in the previous sec-
tion can be used as a stand-alone system, connected to a
smartphone, or as a node of a local network provided with
a central master.

We have tested the ability of the device to be efficiently
used as a wearable monitoring device in resting condition
and during physical exercises (i.e., running on site) and, sub-
sequently, verified the possibilities to implement a network
configuration using a simple Bluetooth V3.0 adapter. In par-
ticular, we tested the possibility to obtain synchronous data
from the nodes of the network.

To verify the reliability of the system and its suitability to
monitor physiological parameters during physical exercises,
two preliminary data collections have been carried out: (i)
in the laboratory (by simulating the breathing pattern) and
(ii) by collecting data from one healthy volunteer. Lastly,
we tested the synchronization among different devices using

both a synchronization message serially sent to each device
and a dedicated broadcast thread.

3.1. Simulated Breathing Pattern. To test the ability of the
proposed device to detect the pressure drops correlated with
the breathing and then to calculate fR, two breathing patterns
were simulated by using a mechanical ventilator (Servo Ven-
tilator 900C, Siemens-Elema AB, Sweden). The ventilator
was used in the continuous mandatory ventilation (CMV)
mode, in which breaths are delivered based on set variables
(e.g., fR, tidal volume, pauses between phases) [59].

The flowmeter connected to the SDP sensor was placed
downward the end of the Y-piece of the breathing circuit that
delivers the air generated by the ventilator, at the same dis-
tance the mouth is when the flowmeter is mounted on the
headphone (~10 cm).

Two different breathing patterns were generated with the
ventilator: (i) quiet breathing, by delivering air for 120 s with a
set fR of 12 breaths/min, tidal volume of 770mL (minute vol-
ume of 9.2 L/min), and 25% of inspiratory pause and 10% of
pause between inspiration and expiration phases, and (ii)
mild activity, by delivering air for 120 s with a set fR of 32
breaths/min, tidal volume of 800mL (minute volume of
25.9 L/min), and 25% of inspiratory pause and with a 10%
of pause between inspiration and expiration phases. Breath-
ing was real-time measured by the proposed device. Pressure

1 Start server

4 Configure board

7 Request start acquisition

10 Request stop acquisition

12 get data file

11 Send stop message

9 Send data

8 Send start message

5 Send conf message

3 Send init message

2 Connect (Bluetooth)

HUB Board

6 Configure itself

User

Figure 6: Sequence diagram for the application protocol.
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drops collected by the device are shown in Figure 9, together
with the maximum points automatically detected by the ad
hoc developed algorithm used to calculate fR. The device
detected 24 breaths during quiet breathing (12 breaths/min)
and 64 breaths during physical activity (32 breaths/min).
The pressure drop recorded during quiet breathing was one
order of degree lower than the drops recorded during the
activity (up to ~3Pa versus up to ~30Pa).

3.2. Data Collected on the Healthy Volunteer. One healthy
male (age = 36, weight = 76 kg) was asked to wear the pro-
posed device on the head, to place the flowmeter ahead of
the mouth (at a distance of ~10 cm), and the PPG sensor
was connected to the right earlobe.

The test consisted of two trials lasting 120 seconds each
one. In trial 1 (quiet breathing, without movement), the sub-
ject was asked to be relaxed and to breathe with the mouth.
The breathing, heart rate, and movement of the subject were
collected by the device to define a baseline. Then, in trial 2
(running on site), the subject was asked to run on site with
a self-paced cadence. Breathing, HR, and movements were
real-time collected with a laptop connected via Bluetooth to
the proposed device. The laptop was about 3m distant from
the device. In the typical application scenario, the user’s
smartphone will replace the laptop and the distance device-
smartphone will be reduced at about 40–50 cm. Despite such
overestimation in the distance, we did not observe any data
loss. Figure 10 shows data collected by the proposed device
during the two trials.

Tomeasure the performance of the device to track the sub-
ject’s motor behavior activity during the exercise, the breaths
perminute, beats perminute, and stepsperminute valueswere
divided into 4 time bins lasting 30 seconds (see Figure 11).

3.2.1. Quiet Breathing Trial. During quiet breathing, fR was
calculated by the pressure drop signal (Figure 10(a)). All
the maxima were detected, and then all the time intervals

(T interval
i) between two consecutive maximum points were

calculated. So, the instantaneous f R
i is calculated as in

f R
i = 60

T interval
i 3

The subject’s fR was 12± 1 breaths/min on average.
The HR has been estimated in each 30 s lasting time bin

according to

HR = number of peaks
30 ⋅ 60 4

Peaks were identified from the raw signal and from the
signal filtered with the adaptive filter discussed above (see
(2) and (3)). We obtained no differences in the 4 time bins
because the adaptive filter removes motion artifacts, which
are not present in this case.

The volunteer showed an average value of 69± 1 bpm
with a small standard deviation during the 120 s of data col-
lection (1 bpm). Moreover, no steps were detected by the
device during this trial (the accelerometer signal is always
~9.81m·s−2, as shown in Figure 10), as expected.

3.2.2. Running On-Site Trial. During this trial, we tested the
ability of the system to measure steps and breathing fre-
quency reliably. Compared to values gathered without move-
ments, when the subject starts to run, values increased
significantly. During the running trial, the subject was
recorded with a full HD camera embedded in Huawei Honor
6 Plus (Android 4.4.2) at 30 frames per second (fps). The sub-
ject was asked to jump before starting to run, and just after he
had ended, respectively, at second 2 and at second 120 (see
Figure 10). This procedure allowed to identify data corre-
sponding to the running session clearly and to synchronize
data with video. In detail, we realigned the frame at which
foot contacted the floor after the first jump with the first
peak in the acceleration trace. The subject’s average fR
was higher than that in the quiet condition, with an average
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Figure 9: Pressure drop recorded by the SDP sensor integrated into the proposed device at two different breathing patterns delivered by a
mechanical ventilator simulating a quiet breathing (set f R = 12 breaths/min) and the breathing during physical activity (set f R = 32
breaths/min).
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value of 36.5± 1 breaths/min (minimum value: 36 breaths,
the last three time bins; maximum value: 38 breaths, the
first time bin). His HR increased too, with an average
value of 96± 14 bpm (minimum: 78 bpm in the first time

bin; maximum: 107 bpm in the second and last time
bins). The efficacy of the adaptive filter can be fully appre-
ciated in this condition, that is, when motion artifacts are
more likely.
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Figure 10: Data collected during the preliminary test on the healthy volunteer (i.e., pressure drops, accelerations, and PPG signals). The
proposed device detects movements, HR, and breathing, both during quiet breathing (no movement) (a) and the running phase (b).
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Figure 12 reports the effect of the filter on themorphology
of the PPG signal. The blue line is the PPG signal, filtered with
a bandpass filter between 0.5 and 3.0Hz; the red trace is the
PPG signal filtered with the NLMS adaptive filter. As can be
observed, the NLMS adaptive filter reduces signal distortion
due to motion artifacts and produces in output a signal which
resembles the theoretical one presented in Figure 1. A differ-
ence, even if not significant, can be also observed comparing
the HR estimations (NLMS filtered versus bandpass filtered).
In the four time bins, we have, respectively, 79± 6 bpm versus
92± 8 bpm, 108± 8 bpm versus 102± 7 bpm, 90± 5 bpm
versus 93± 5, and 107± 9 bpm versus 114± 7 bpm.

The recorded video was analyzed with a free video
analysis and modeling tool (Tracker v4.92) [60]: the con-
tacts between the shoe of the volunteer and the floor
(number of steps) were manually identified by a frame-
by-frame analysis. The number of the steps identified by
this analysis was compared to the number of steps calcu-
lated from the signal recorded by the accelerometer
integrated into the proposed device. Both systems detected
270 steps in total. All the contact instants (steps) were iden-
tified in both signals; then, all the time intervals (T interval
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Figure 11: Data collected from the healthy volunteer during the quiet breathing (no movement) and running trials with the proposed device.
The numbers of breaths, beats, and steps per minute are presented in 4 time bins lasting 30 s each one.
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between two consecutive steps were calculated. The mean
absolute error (MAE) was used to measure the differences
between all the time intervals calculated by the proposed
device and by the video as in

MAE =
〠n

i
T interval

i
device − T interval

i
video

n
5

The MAE was 0.042± 0.029 s (expressed as mean±
standard deviation). During the whole trial, the accelerome-
ter detected an average time interval between steps of 0.407
± 0.048 s whereas the event detected by the video showed an
average time interval of 0.412± 0.047 s. The difference
between the standard deviations demonstrated the good per-
formance of the proposed system in tracking variations of the
cadence over time. The proposed device evidenced an average
activity pace of 147± 3 steps per minute.

3.3. Synchronization Tests. We tested the synchronization
method described in the previous section. To test the first
implementation, we measured the time necessary to send a
message to various connected boards from our server. We
implemented a synchronization response message (used only
for testing purposes) which was set by the clients immedi-
ately after receiving the sync message. In the first tests, we
sent 300 sync messages (one message each second) having 2
active connections, waited for the responses, and measured
the difference of time between the reception timestamps
(measured in the server) for each one of the clients. If the dif-
ference between timestamps was low enough and stable
through time, this would indicate that the adopted imple-
mentation was feasible for synchronization.

The approach proposed for synchronization gets a cumu-
lative error between the reception times of the response from
each board (Figure 13). This is probably derived from the
independence of execution between threads, which makes
the sending of each message virtually asynchronous.

To avoid this error, we developed the broadcast thread
(bc_bth) shown in Figure 14. This thread allows us to send
all the synchronization messages to each board using a loop,
fixing the time interval from each sending. Repeating the last
test, we obtained the results shown in Figure 14.

In this case, there is no drift, and therefore, the differ-
ences are independent for each pair of messages. Notwith-
standing the absence of drift, the results show that there is a
significant variability in the time delay and, more impor-
tantly, this figure shows how these delays are higher than
the sampling frequency. In the second implementation, we
proposed the use of synchronization messages sent from
the clients at the beginning of the communication to calcu-
late an offset in the server for each board, according to its
clock. We tested this implementation by sending 50 synchro-
nization messages each 0.5 second from 2 different boards
and measuring reception times from the server. Figure 15
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Figure 13: Difference of times measured on synchronization
response reception from two different boards using independent
threads in the server.
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shows the difference between each two received messages for
each board.

The results show that, although all messages are received
in about 0.5 seconds (average values are 500.46ms and
499.85ms for boards 1 and 2, resp.), there is a high variability
between each interval of time (the standard deviation is 20.69
and 23.13, resp., a difference of almost 80ms between the
minimum and maximum measured values: 70ms for board
1 and 78.8ms for board 2).

If the measurements are correct, the difference in
delays prevents us from using this information to find a
reliable offset value related to the server clock. Since the
high variability in these measurements is being obtained
from the application layer and therefore could depend
on the operative system of the server, we repeated these
tests using sniffers (specifically wireshark and hcidump)
which are designed to capture messages in the Host Control-
ler Interface (HCI) (i.e., in the interface between the host sys-
tem and the Bluetooth controller).

Although the times were slightly lower than the ones
measured at the application layer, the variability persisted.
More tests should be performed to determine where the
cause of the variation between messages is. As it can be a
result of low-level tasks in the Bluetooth adapter (in both cli-
ents and server), it would be a right approach to measure
times as close as possible to the hardware, as it has been done
in [61].

4. Conclusions

In this paper, we designed and preliminarily evaluated a
wearable system for continuous real-time monitoring of
physical activity.

The proposed system has been designed, built, and tested,
and thus, the description of each module and the adopted
methodological choices have been reported. Hardware and
software modules compose the system. A variable-orifice
meter combined with a differential pressure sensor (SDP sen-
sor) is used to collect the pressure drop and to estimate fR; a
commercial photoplethysmographic sensor (PPG) is used to
collect the heart rate; an IMU unit is used to monitor the
body movement and then to calculate the steps during walk-
ing or other activity. A PIC-based board was designed, made,
and tested to acquire and collect data from the three
hardware units and to transmit data via a Bluetooth module.
The size of the board (~95mm× 42mm× 1.5mm) allows the
integration of hardware modules on a headphone which is
comfortable to wear during activity. Bluetooth allows estab-
lishing real-time communications between the proposed sys-
tem and a centralized device such as the user’s smartphone.
We designed and developed a Bluetooth-based communica-
tion scheme following a client-server model to verify the pos-
sibility of simultaneous real-time acquisition from multiple
wearable systems.

To test the system for physiological parameter monitor-
ing, two preliminary data collections have been carried out:
(i) in the laboratory (by simulating the breathing pattern with
a mechanical ventilator) and (ii) by collecting data from one
healthy volunteer.

The experimental results show the feasibility of the pro-
posed device to identify the exhalation phase of the breathing
continuously and to extract the fR value from the pressure
drop collected by the board. All the breaths simulated with
the mechanical ventilator were correctly real-time detected
both in quiet breathing conditions (set f R = 12 breaths/
min) and in physical activity conditions (set f R = 32
breaths/min) by the proposed device. During the trials on
the healthy volunteer, the device reported an average value
of 12.1 breaths/min at rest and 36.5 breaths/min during the
running trial. These values are within the physiological range
[62]. Compared to other solutions adopting textile substrates
or similar, which can be affected by movement artifacts due,
for example, to slipping or movement during activity [11],
the pressure drops collected by the proposed system (up to
50Pa) allow the easy identification of pressure peaks and
the extraction of fR values. Moreover, differently from other
direct methods adopting spirometers and face masks, the
proposed solution does not cause discomfort for the user
(no interferences with the freedom of movements) and does
not disrupt the regular breathing pattern during measure-
ment. Despite the absence of a reference instrument for the
detection of HR, values collected by the proposed system
are within the physiological range and increase during the
exercise [63]. Data show that the proposed device can
adequately monitor movements and step cadence: no
movements were detected during quiet breathing, that is,
when the subject is in resting state, while the same num-
ber of steps was recorded by the proposed device and
the reference system during running activity. Further trials
will be necessary in the future to evaluate the performance
of the proposed device in collecting heart rate values by
comparison with a reference instrument. The proposed
device can be used as a stand-alone system, connected to
a smartphone or as a node of a local network provided
with a central master. Our preliminary findings raise some
concerns about the possibility to use standard Bluetooth
module available on smartphones to develop this second
configuration. Indeed, it provides a RFCOMM/SPP point-
to-point connection that does not allow a “real” broadcast
messaging. For this reason, we investigated alternative pos-
sibilities, but the delay we obtained does not allow the use
of these techniques for this kind of application. A possible
solution to overcome this limitation is the use of a dock-
ing station at the beginning of the exercise session to
simultaneously start the acquisition from the remote
nodes. This solution may guarantee the synchronization
among the different modules for a limited amount of time
due to the clock drifts of each board. If effectively imple-
mented, this second configuration could be used to simul-
taneously collect performance data from different athletes
in both team and endurance sports, as well as in clinical
and injury rehabilitation settings to monitor and motivate
patients during their training program.
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