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Abstract: Histamine-releasing activities on human basophils have been studied as potential
allergy-causing agents for four decades. An IgE-dependent histamine-releasing factor (HRF) was
recently shown to interact with a subset of immunoglobulins. Peptides or recombinant proteins that
block the interactions between HRF and IgE have emerged as promising anti-allergic therapeutics, as
administration of them prevented or ameliorated type 2 inflammation in animal models of allergic
diseases such as asthma and food allergy. Basic and clinical studies support the notion that HRF
amplifies IgE-mediated activation of mast cells and basophils. We discuss how secreted HRF promotes
allergic inflammation in vitro and in vivo complex disease settings.

Keywords: allergy; mast cells; basophils; IgE; FcεRI; HRF; translationally controlled tumor protein
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1. Introduction

Activation of mast cells and basophils via high-affinity IgE receptors (FcεRI) on the cell surface
plays an essential role in allergic reactions. Multivalent allergens induce the aggregation or cross-linking
of IgE-bound FcεRI to trigger their activation [1]. Activated mast cells and basophils release
preformed chemicals (e.g., histamine, serotonin) and protein inflammatory mediators (e.g., proteases,
tumor necrosis factor (TNF)), and de novo synthesize and secrete arachidonic acid-derived lipids,
cytokines, chemokines, and growth factors [2,3]. These factors promote type 2 inflammation in allergic
individuals. In this review, we will discuss histamine-releasing factor (HRF)-mediated regulation of
mast cell/basophil activation via FcεRI and its roles in allergic and other immune diseases.

2. What Is HRF?

Cytokine-like factors able to activate basophils in body fluids of allergic patients have been
studied for many years [4]. Several chemokines were shown to induce histamine release from human
basophils in an IgE-independent manner [5–7]. On the other hand, an IgE-dependent factor with
histamine-releasing activity (HRF) was molecularly cloned by Susan MacDonald’s group in 1995 [8].
Coincidentally, HRF happened to be identical to the protein termed translationally-controlled tumor
protein (TCTP), fortilin, p21, and p23. It is often referred to as TCTP intracellularly and is required
for cell cycle progression, proliferation, survival, and malignant transformation in a variety of cell
types [9–14]. Extracellularly referred to as HRF (we follow this convention in this manuscript), it is an
evolutionally conserved protein (96% identical between human and mouse proteins) composed of
172 amino acids with no known related proteins. Human HRF/TCTP is encoded by the TPT1 gene
on chromosome 13. Although numerous single nucleotide polymorphisms (SNPs) are associated
with allergic diseases, no genetic associations with gene expression (eQTLs) are found in the TPT1
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locus (http://dicew-database.org). Similar to antigen/IgE-mediated activation, HRF induces not only
histamine release, but also IL-4 and IL-13 secretion from human basophils and IL-13 and TNF secretion
from murine mast cells [15,16]. Despite the lack of a signal sequence, it is secreted as a cargo of
extracellular vesicles (EVs), particularly in exosomes [17–20]. Intriguingly, the responsiveness of
basophils to HRF depends on a particular type of IgE; IgE derived from certain atopic patients, termed
IgE+, can prime basophils in response to HRF, but other IgE molecules, termed IgE−, are unable to do
so [21]. The dichotomy of IgE+ vs. IgE− was discovered long before the molecular cloning of HRF, and
several possibilities exist to explain the heterogeneity of IgE molecules: 1) structural differences in the
constant regions of IgE, for example, by differences in glycosylation or alternative mRNA splicing at
the ε chain 3′ terminal region [22]; 2) IgE+ being an HRF-specific IgE antibody, that is, HRF acting as
an IgE autoantigen; 3) IgE+ reactivity due to the presence of anti-IgE antibodies in the serum.

In contrast to an earlier report suggesting that HRF does not bind to IgE [23], Kashiwakura
et al. showed that a subset of IgE and IgG molecules are able to directly bind to HRF via two Ig
Fab-interacting sites: the N-terminal 19 residue stretch (N19) and the H3 helix [24]. These observations
are in line with an earlier speculation that the dichotomy of IgE+ vs. IgE− may be caused by differences
in IgE variable region subgroups [25]. However, another speculation that IgE+ reactivity is related to
glycosylation of IgE [21] was not supported by the observation that mannose-specific lectins could
not distinguish between basophils sensitized with IgE+ or with IgE− [26]. Despite these studies, it
still remains possible that glycosylation at VH and VL regions might contribute to the IgE+ reactivity.
In light of recent revelations regarding IgE glycosylation [27], the potential role of glycosylation may
be worth revisiting.

3. Bioactive Forms of HRF

HRF is constitutively secreted as a monomer, a disulfide-linked dimer, and higher molecular
weight oligomers. Crystal structures of HRF monomers from various species and a homodimer of
human HRF have been solved. The homodimer is made by a disulfide bond through a Cys172-Cys172
linkage between two monomers [28,29]. Kim et al. showed that N-terminally truncated recombinant
rat HRF proteins, Del-N11TCTP and Del-N35TCTP, but not full-length TCTP, also form disulfide-linked
dimers with strong cytokine-like activity [29]. However, Doré et al. observed dimers of full-length
mouse and human HRFs [28]. Consistent with the efficacy of HRF inhibitors in allergic disease models
(see below), IgE-binding sequences (i.e., N19 and H3) are exposed on the molecular surface of HRF
dimer (Figure 1a,b) [28]. Recombinant HRF homodimers, but not monomers, synthesized in E. coli can
activate murine mast cells [30]. GST-HRF fusion proteins induce not only histamine release [8] but also
secretion of IL-4 and IL-13 from human basophils [15,16]. It is well known that GST fusion proteins
can form dimers. Thus, these results suggest that FcεRI-bound IgE molecules are cross-linked by HRF
dimers (Figure 1c). HRF homodimers are also able to enhance IgE and antigen-stimulated production
of IL-6, IL-13, and TNF but not β-hexosaminidase release (which is fully activated by stimulation with
antigen) from murine mast cells. This result suggests that cytokine production requires stronger and/or
more persistent FcεRI cross-linking than does degranulation. These observations can be extended to
the argument that HRF exerts its effects by activating FcεRI signaling pathways. However, subtle
differences in signaling may occur, as components of the ligand complex are different when cells are
stimulated with antigen/IgE complexes bound to FcεRI with or without HRF. Intranasal instillation of
recombinant HRF (including HRF dimers), but not HRF-2CA (a monomeric mutant of HRF with the
two cysteine residues being replaced with alanine), reduced/carboxymethylated or boiled HRF, in naïve
mice triggered airway inflammation in an FcεRI-dependent manner [24]. The wide gamut of signs
seen in allergic diseases ranging from the mild skin rashes and gastrointestinal symptoms, to more
severe signs such as pulmonary distress and systemic anaphylaxis, could be due to different levels
of contributions of HRF dimer/oligomers as well as other factors such as variable antigen valencies
and concentrations or FcεRI occupancy by antigen-specific IgE. Further analysis of HRF regulation of
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FcεRI activation is warranted to understand how different forms of HRF affect allergen/IgE-mediated
FcεRI cross-linking.
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light blue and dark blue, respectively. For the second monomer, residues 1-19 (N19) and 107-135 (H3) 
are colored light and dark pink, respectively. (c) Model for HRF dimer/IgE-mediated FcεRI 
crosslinking. IgE binds FcεRI α chain via the interaction between IgE–Cε3 and FcεRIα–D2 domains. 
One HRF molecule can bind one (this version depicted) or two molecules of IgE via interactions with 
the N19 and H3 regions of HRF. After binding of an HRF dimer, two (this version depicted) or four 
FcεRI α chain-nucleated complexes will be formed (Right). The cytoplasmic portion of FcεRI α as well 
as β and γ chains of FcεRI are omitted for clarity. 
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during the late phase of allergic reactions [38], implicating HRF in allergic diseases (Table 1). Long 
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atopic dermatitis, but not patients with atopic dermatitis alone, have higher rates of spontaneous 
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Figure 1. The crystal structure of histamine-releasing factor (HRF) dimer and HRF dimer/IgE-mediated
FcεRI crosslinking. (a) Overall structure of a human HRF dimer. The two molecules of the asymmetric
unit are colored blue and pink. The C-terminal tag is colored yellow, and the positions of C-terminal
residues and residues adjacent to the disordered loop are indicated. (b) The two monomers of the HRF
dimer are colored white and Cys172 is colored orange. For the first monomer, the two IgE binding
sites, mapped to residues Met1–Lys19 (N19), and Arg107–Ile135 (H3), are colored light blue and dark
blue, respectively. For the second monomer, residues 1-19 (N19) and 107-135 (H3) are colored light
and dark pink, respectively. (c) Model for HRF dimer/IgE-mediated FcεRI crosslinking. IgE binds
FcεRI α chain via the interaction between IgE–Cε3 and FcεRIα–D2 domains. One HRF molecule can
bind one (this version depicted) or two molecules of IgE via interactions with the N19 and H3 regions
of HRF. After binding of an HRF dimer, two (this version depicted) or four FcεRI α chain-nucleated
complexes will be formed (Right). The cytoplasmic portion of FcεRI α as well as β and γ chains of
FcεRI are omitted for clarity.

4. HRF in Allergic and Immune Diseases

Allergic diseases such as atopic dermatitis, food allergy, asthma, and allergic rhinitis are type
2 inflammatory diseases in allergen-sensitized individuals with organ-specific or systemic disease
susceptibility [31–33]. Type 2 inflammation is caused by type 2 innate lymphoid cells, allergen-specific
Th2 cells, and epithelial-derived cytokine- and Th2 cytokine-recruited mast cells and eosinophils [34–37].
HRF secretion was found in nasal, skin blister, and bronchoalveolar lavage fluids during the late phase
of allergic reactions [38], implicating HRF in allergic diseases (Table 1). Long before the molecular
nature of HRF was revealed, a study showed that patients with food allergy and atopic dermatitis,
but not patients with atopic dermatitis alone, have higher rates of spontaneous release of histamine
from basophils than normal subjects [39], implying HRF’s involvement in food allergy. However,
definitive evidence for pathological roles of HRF in allergy had been elusive until recently, as there
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were intractable obstacles in HRF research: (i) HRF/TCTP has both intracellular and extracellular
functions, but no tools were available to dissect these functions in complex in vivo settings. (ii)
Despite considerable efforts, researchers were unable to identify an HRF receptor for many years [23].
(iii) HRF knockout mice were embryonically lethal [40–42], thus severely limiting in vivo functional
studies. As described above, Kashiwakura et al. identified a subset of IgE and IgG molecules as HRF
receptors [24]: mapping of the Ig Fab-binding

Table 1. HRF in allergic and immune disorders.

Disease Modulation of Animal Disease Models
by HRF or HRF Inhibitors Human Patients

Asthma

↓OVA-induced airway inflammation by
HRF inhibitors (N19, H3) ↓Aspergillus

fumigatus-induced airway inflammation by
HRF inhibitors (N19)

↑airway inflammation induced by
intranasal instillation of recombinant HRF
↓OVA-induced airway inflammation by

dTBP2 peptide

Atopic dermatitis (AD)

↓passive cutaneous anaphylaxis by HRF
inhibitors (N19)

↓house dust mite allergen-induced skin
inflammation in NC/Nga mice by dTBP2

peptide

↑serum HRF, ↑serum HRF-reactive
IgE

Food allergy (FA)

OVA-induced FA: ↑serum HRF-reactive
IgE, ↑HRF dimer/

oligomers in jejunum, ↑diarrhea,
↑hypothermia, ↓physical activity, which
were all reduced by HRF inhibitors (N19,

HRF-2CA)

Egg allergy: ↑serum HRF-reactive
IgE, which was reduced by

successful OIT1

Chronic idiopathic urticaria
(CIU)

↑serum HRF, ↑serum HRF-reactive
IgE

Pulmonary arterial hypertension
(PAH)

↑plasma and lung HRF associated
with exosomes

Oral immunotherapy (OIT1). ↓, decreased; ↑, increased.

Sites within the HRF molecule led to the discovery of HRF sequence-based competitive inhibitors,
N19 and H3 peptides, as well as a monomeric mutant HRF-2CA, all of which blocked HRF–Ig
interactions without affecting intracellular functions of TCTP. Administration of these inhibitors
drastically reduced type 2 inflammation in mast cell-dependent murine models of atopic asthma
and immediate hypersensitivity of the skin. Intranasal administration of recombinant HRF into
naïve mice caused lung inflammation in an FcεRI and mast cell-dependent manner [24]. Thus, this
study in 2012 solved several major questions about HRF, including the aforementioned issues (i) and
(ii). More recently, Ando et al. showed that HRF dimers, but not monomers, are able to activate
HRF-reactive IgE-bound mast cells and basophils [30]. Intragastric administration of HRF inhibitors,
which preferentially targeted mast cells in the small intestine, strongly reduced diarrhea occurrence,
intestinal inflammation, and systemic anaphylaxis in a murine model of food allergy [30,43]. Levels of
HRF oligomers (including dimers) in the small intestine and HRF-reactive IgE in serum were increased
in food allergic mice, but HRF oligomers were decreased by HRF inhibitors. Patients with egg allergy
also had higher blood levels of HRF-reactive IgE, and successful oral immunotherapy led to reduced
HRF-reactive IgE. Thus, these data suggest that in allergen-sensitized mice, secreted HRF oligomers
bind to the Fab portion of IgE and reduce the threshold of allergen concentrations required to crosslink
IgE-bound FcεRI to activate intestinal mast cells and basophils to elicit the food allergy phenotype
(Figure 2).
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Figure 2. Model of HRF-mediated amplification of type 2 inflammation in food allergy. Epithelial
damage or inflammation in the gut promotes increased entry of food allergens and secretion of the
epithelial cytokines TSLP, IL-25, and IL-33 [44]. These cytokines initiate a Th2-skewed immune
response. TSLP can enhance OX40L expression in dendritic cells, which induce Th2 cell differentiation
of naïve CD4+ T cells [45]. IL-25 secreted by tuft cells may help the expansion of type 2 innate
lymphoid cells (ILC2) [46]. Th2 cells along with ILC2 cells promote the Th2 cell-mediated immune
response, which includes IgE class switch recombination in B cells, eosinophil accumulation, and
mastocytosis. IL-9 promotes the expansion of IL-9-producing mucosal mast cells [47]. Basophils
are also required for production of antigen-specific IgE as well as oral allergen-induced food allergy
during sensitization [48,49] and allergen challenge phases [50]. IL-4 derived from basophils stimulated
by cytokines such as IL-33 seems to be required for Th2 cell differentiation [51], and IL-4 promotes
intestinal mast cell accumulation and activation [52]. HRF dimer/oligomers secreted from several types
of cells amplify intestinal inflammation by enhancing antigen/IgE-mediated activation of mast cells
and basophils [30]. This is likely due to increased HRF secretion by several types of cells in response to
Th2, proinflammatory and epithelial cytokines. Modified from ref. 66 with permission from the journal
Allergy.

Another interesting drug candidate is a 7-mer peptide, called dTBP2. It was identified by
phage display as a peptide more strongly bound to HRF dimer than to monomeric HRF [53]. dTBP2
ameliorated ovalbumin-induced airway inflammation in mice and reduced IL-8 release from BEAS-2B
human bronchial epithelial cells. Recently, dehydrocostus lactone, a sesquiterpene from Saussurea lappa
Clarke, which is able to bind to HRF dimers, was reported to suppress ovalbumin-induced airway
inflammation [54]. However, given its action on various biological activities, it is premature to conclude
that the anti-inflammatory effects of this compound are due to the inhibition of HRF dimer.

Atopic dermatitis is a heterogeneous disease in terms of the pathogenic role of the IgE–FcεRI
axis [55,56]. Interestingly, atopic dermatitis patients have increased levels of HRF, and some patients
have higher levels of HRF-reactive IgE compared to healthy individuals [57]. Polyclonal IgE molecules
present in sera from atopic dermatitis patients activated mast cells [58], similar to highly cytokinergic
IgE [59]. Topical administration of dTBP2 reduced allergen-induced atopic dermatitis in NC/Nga
mice [60], a murine model of atopic dermatitis [56].

Chronic idiopathic urticaria (CIU) or chronic spontaneous urticaria is a disease of itchy red skin
or skin colored hives with no known cause lasting for six weeks or more. IgG autoantibodies against
IgE or FcεRI may contribute to CIU pathogenesis in 30%–40% of the patients [61]. Activation of skin
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mast cells plays a key role in skin inflammation of CIU. Interestingly, a recent study reported increased
serum levels of both HRF and HRF-reactive IgE in CIU patients compared to healthy cohorts, and
there was a linear correlation between HRF and HRF-reactive IgE concentrations in CIU patients [62].
Furthermore, the HRF-reactive IgE level was correlated with disease severity. The authors observed
degranulation in the human mast cell line LAD-2 sensitized with serum of a CIU patient and stimulated
with HRF. They suggested that synergistic actions of HRF and HRF-reactive IgE may play an important
role in the CIU pathogenesis.

Pulmonary arterial hypertension (PAH) is a rare, but often lethal disease characterized by a
sustained increase in pulmonary arterial pressure and severe vascular remodeling. Heritable PAH
commonly involves mutations in bone morphogenetic protein receptor type II (BMPR2). Excessive
proliferation of pulmonary vascular endothelial cells is seen in this disease caused by an imbalance
between cell proliferation and apoptosis. Increased plasma and lung levels of HRF associated
with exosomes derived from endothelial cells were found in PAH patients compared to normal
subjects [63,64]. The exosome-derived HRF was taken up by pulmonary artery smooth muscle cells in
in vitro co-cultures, and promoted proliferation and suppressed apoptosis of the latter cells [20,63].
These results suggest that HRF may not require a specific cell surface receptor for this type of
intercellular communication, as extracellular HRF that has reached the interior of recipient cells would
interact with its target molecules, potentially including Bcl-XL and Mcl-1. Interestingly, essentially all
exosome-associated (and microparticle-associated) HRF in endothelial cells was dimeric [63]. However,
there is no evidence that the function of intracellular TCTP molecules is operated by the dimeric form,
as the vast majority of intracellular TCTP molecules is monomeric [30]. No definitive studies have
been conducted to assign the functions of HRF/TCTP to either its monomeric or dimeric forms (or
other forms) in PAH and other diseases.

5. Concluding Remarks

It is not easy to assign a particular pathogenic role to the secreted HRF molecules separate from
the intracellular TCTP molecules. Targeting HRF is a promising approach toward prevention of allergic
diseases such as food allergy and asthma [24,30,65]. However, all of the current HRF inhibitors have yet
to be fully characterized as therapeutic agents. It is highly desirable to gain both pharmacological and
genetic evidence before the field moves to clinical trials of candidate HRF inhibitors. However, genetic
studies without affecting the function of intracellular TCTP are difficult if an experiment is conducted
with TCTP conditional knockout (CKO) mice, including inducible CKO mice [40,66]. It is likely that
the targeted cells may die because of their dependence of survival on TCTP. With such limitations,
RNA interference (siRNA or shRNA) may be better suited to in vitro and in vivo experiments [66].
An alternative approach is to use heterozygous TCTP KO mice. Indeed, Pinkaew et al. showed
that atherosclerotic lesions in TCTP+/−Ldlr−/−Apobec1−/− mice contain fewer macrophages and more
apoptotic cells compared to TCTP+/+Ldlr−/−Apobec1−/− mice [67]. Transgenic overexpression may
also be useful for analysis of HRF. Yeh et al. generated an inducible transgenic mouse model with HRF
targeted to lung epithelial Clara cells [68]. They showed that HRF exacerbates the allergic asthmatic
responses, although it is not clear whether secreted HRF was responsible for the worsened phenotype.
Despite these obstacles, HRF inhibitors may be a promising approach toward preventing or treating
food allergy and other IgE/HRF-dependent allergic diseases.
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