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Abstract: The human microbiome is a vast collection of microbial species that exist throughout the
human body and regulate various bodily functions and phenomena. Of the microbial species that
exist in the human microbiome, those within the archaea domain have not been characterized to the
extent of those in more common domains, despite their potential for unique metabolic interaction with
host cells. Research has correlated tumoral presence of bacterial microbial species to the development
and progression of lung cancer; however, the impacts and influences of archaea in the microbiome
remain heavily unexplored. Within the United States lung cancer remains highly fatal, responsible for
over 100,000 deaths every year with a 5-year survival rate of roughly 22.9%. This project attempts to
investigate specific archaeal species’ correlation to lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC) incidence, patient staging, death rates across individuals of varying ages, races,
genders, and smoking-statuses, and potential molecular targets associated with archaea microbiome.
Archaeal species abundance was assessed across lung tissue samples of 527 LUAD patients, 479 LUSC
patients, and 99 healthy individuals. Nine archaeal species were found to be of significantly altered
abundance in cancerous samples as compared to normal counterparts, 6 of which are common to
both LUAD and LUSC subgroups. Several of these species are of the taxonomic class Thermoprotei or
the phylum Euryarchaeota, both known to contain metabolic processes distinct from most bacterial
species. Host-microbe metabolic interactions may be responsible for the observed correlation of
these species’ abundance with cancer incidence. Significant microbes were correlated to patient gene
expression to reveal genes of altered abundance with respect to high and low archaeal presence.
With these genes, cellular oncogenic signaling pathways were analyzed for enrichment across cancer
and normal samples. In comparing gene expression between LUAD and adjacent normal samples,
2 gene sets were found to be significantly enriched in cancers. In LUSC comparison, 6 sets were
significantly enriched in cancer, and 34 were enriched in normals. Microbial counts across healthy
and cancerous patients were then used to develop a machine-learning based predictive algorithm,
capable of distinguishing lung cancer patients from healthy normal with 99% accuracy.

Keywords: LUAD: lung adenocarcinoma; LUSC lung squamous cell carcinoma; ROS: reactive oxygen
species; TCGA: the Cancer Genome Atlas; GSEA: Gene Set Enrichment Analysis; NES: normalized
enrichment score; SHAP: SHapley Additive exPlanations; RFE: recursive feature elimination

1. Introduction

Over recent decades, the human microbiome has undergone increased investigation.
Studies estimate that roughly 500–1000 bacterial species are present within the human
body at any time, with their sheer quantity significantly outnumbering human cells [1].
With such abundance observed, more research is being conducted regarding the human
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microbiome’s correlation to individual health, including cancer development and pro-
gression [2]. Though the gut microbiome’s influence on human carcinogenesis is widely
accepted, mechanisms of influence are poorly understood. Studies show bodily circulation
of gastrointestinal microbial metabolites to be a plausible means of carcinogenesis [2].
Alternatively, evidence continues to emerge suggesting the correlation of tumoral microbial
composition with cancer incidence and prognosis [3]. In the occurrence of microbes mi-
grating to pre-tumoral sites, species may be more capable of direct chemical influence [2];
specifically, popular mechanisms describe these species’ metabolites’ effects on bodily
epithelial tissue [4]. Microbial metabolic generation of reactive oxygen species (ROS), for
example, is known to cause oxidative cellular injury, ultimately promoting cancer devel-
opment [5,6]. Among other common metabolites, ROS are highly reactive compounds
shown to chemically degrade vital cellular proteins and macromolecules. As produced by
many microbial species, ROS induced dysregulation of cell cycle or inflammatory proteins
and genes, for instance, cause contribute to carcinogenesis [5,6]. Butyrate and hydrogen
sulfide are also among other microbial metabolites commonly correlated to cancer devel-
opment [7]. In addition to cell cycle regulation, these metabolites are known to regulate
host immune response, modulating immune cell activity and encouraging inflammatory
induced carcinogenesis [8,9].

Given the human microbiome’s extensive correlation to carcinogenesis, studies now
attempt to characterize specific microbial landscapes of which individuals are at greater
risk; a recent study developed an algorithm for highly sensitive cancer diagnosis using
the microbial compositions of 18,116 human blood samples across 33 cancer types [10].
The ability to accurately diagnose an array of cancers using a sole blood sample would
greatly advance cancer treatment and health services. Equally provocative would be the
potential of these archaeal species, their metabolites, or gene dysregulations they cause,
to be molecular targets for cancer therapy. Many studies choose to investigate the human
bacterial microbiome, however, often overlooking the archaeal domain altogether. Though
less abundant within the human body, archaea are also thought to correlate significantly
to individual health and disease development [11]. Through the course of evolution,
archaeal species have developed rather extreme survival dependencies and metabolic
properties [12]. Thus, the human archaeal microbiome should differ significantly from
the bacterial microbiome with regard to health and disease influence; unique metabolic
effects might influence tumoral growth to a greater extent than bacterial counterparts. In
fact, several archaeal phylums and classes are known to exist in the human body: notably,
methanogens, Desulfurocaccales, Sulfolobales, Thermoproteales, Nitrosospharerales, and
Halobacteriales [13]. Comparatively, few studies have analyzed the relationship between
human archaea populations and individual health as a whole.

Lung cancer in particular has seen extensive correlation to the tumoral microbiome,
exhibiting the highest morbidity rates and the second-highest diagnosis rates of all cancer
type [14,15]. Lung adenocarcinoma (LUAD) is the most prevalent form of lung cancer
within the United States, accounting for approximately 40% of all lung cancer cases [16].
Tumoral sites of this cancer are often in the lung periphery, where many microbial species
are also present [17]. Studies have shown a variety of archaeal species to be present within
lung tissue [13]. Lung squamous cell carcinoma (LUSC) trails LUAD in prevalence rates
and is found in central lung and airway sites [18]. Given lung cancer’s considerable severity
across the nation, as well as the known presence of archaeal species within these tumoral
sites, LUAD and LUSC lung tissue samples were chosen for analysis throughout this
experiment. This study aims to investigate the potential relationship between a patient’s
archaeal lung microbiome with the development and progression of LUAD and LUSC.

527 intratumoral lung tissue samples were analyzed among LUAD patients, and
479 samples were analyzed among LUSC patients. A total of 99 normal adjacent lung
samples were used as a means of assessing cancer development correlations. Samples were
sourced from The Cancer Genome Atlas (TCGA) online database (accessed on 1 August
2021). Within cancer samples, seven variables of interest were analyzed: patient age of
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diagnosis, sex, race, smoking history, pathologic cancer stage, neoplasm development, and
effectiveness in received therapy treatments. Patient survival length after diagnosis was
also analyzed, again in relation to samples’ archaeal compositions.

This study aims to identify potential correlation of tumoral tissue microbiome com-
position with incidence and progression rates of LUAD and LUSC. In characterizing
species-level discrepancies, a cancer’s course of progression can be better predicted. Analy-
sis of corresponding archaeal metabolites and dysregulated cellular signaling pathways
will provide further insight into potential causational mechanisms of carcinogenesis. This
study initially compares the archaeal microbiome of healthy normal samples with that
of both LUAD and LUSC samples. Individual microbial species of significantly different
abundance across cancer and non-cancer samples were next identified and investigated.
Microbial species of differential abundance within cancer subgroups were also identified;
this served to identify species of potential significance regarding worsened cancer progres-
sion. Several oncogenic and metabolomic gene sets were analyzed for dysregulation in
association to altered abundance of significant archaeal species. Metabolic dysregulation of
these cellular pathways might act as a precise mechanism for archaeal species’ influence on
oncogenesis. Lastly, a machine learning-based predictive algorithm was trained to distin-
guish healthy individuals from cancer patients based solely on the microbial landscape of
lung tissue samples.

2. Results
2.1. Microbial Contamination Correction

After download and extraction of raw microbial counts, species abundance data
was further processed to remove any potential contaminant species from future analyses.
The Biospecimen Core Resource (BCR) employs standard operation procedures to attain
molecular analyte data of TCGA samples; in processing tissue, these procedures might
introduce microbes not originally present within samples. Species that display no variation
in abundance along with changes in total microbial abundance (across many samples) are
supposed to have been introduced after sample extraction. Hence, species that exhibit this
behavior were removed from further assessment, as they are likely contaminants.

Spearmen’s correlations were used to identify these contaminants. Individual Spear-
men’s rank coefficients were calculated for the 424 microbes common to both LUAD and
normal adjacent samples, each relating abundance of a particular species to abundance of
all microbes within that sample. Coefficients were similarly calculated for the 447 species
common to LUSC and normal adjacent samples. Species of insignificant correlation be-
tween these two variables were removed using the generated coefficients. This allows for
increased confidence in deeming any species significant in future analyses. Among LUAD
and normal samples, 294 species were regarded contaminants, leaving 130 species to be
analyzed throughout the remainder of the study. A total of 334 contaminant species were
found across LUSC and normal samples, leaving 113 species for analysis. (Figure S1).

2.2. Lung Tissue Microbial Landscaping

Dfferences in lung microbiome composition between healthy samples and cancer
samples were initially identified. Individual comparison of each species’ abundance across
each sample of each cancer status would prove rather a convoluted analysis. Additionally,
visualization of any results would be difficult. As such, Multidimensional Scaling (MDS)
ordination was used to assess the extent of similarity in microbial reads across patients.
This means of ordination considers the abundance of each species within samples, reducing
each patient’s microbial landscape into two arbitrary dimensions. Using this method,
patients’ wholistic landscapes could be compared against one another, grouped by cancer
status, in a more efficient manner.

The 527 LUAD samples were reduced and plotted alongside 99 normal adjacent
samples. A total of 479 LUSC samples were similarly plotted against the same 99 adjacent
lung samples. (Figure 1). The respective MDS plots depict samples’ lung microbiome
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compositions at a relative scale, with each data point representing a patient. Points in
close proximity to one another represent samples of similar abundance values across many
species, while points of greater distance correspond to samples with greater variation in
abundance. It can be noted that LUAD samples occupy a rather distinct region of the
ordination plot, as compared to the region of adjacent samples. Similarly, the locations of
LUSC samplessuggest that patients of this cancer also contain a microbial environment
unique from that of normal patients. Hence, it can be understood that among samples,
patients diagnosed with LUAD or LUSC contain considerably different lung microbial
compositions than normal counterparts. It should be noted the distinct “horseshoe”-like
shape of both ordination plots. Commonly referred to as the “horseshoe effect”, this
occurrence is observed in ordination analyses, and often signifies poor measurability of
sample dissimilarity. In the case of microbial analyses, however, the horseshoe effect
signifies greater distinction among microbial communities [19]; as observed, the horseshoe
effect implies a lack of comparability in microbiome composition between cancer and
normal samples, largely due to the immensity of abundance differences. Such distinction
may prove of great use in discerning cancer samples from normal counterparts. The
presence of this ordination pattern should not suggest incompatibility among samples, but
should rather serve as a means of confirmation that these microbial landscapes truly differ
between cancerous and normal tissue.
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Indeed, cancer and normal samples showed minimal difference in total β-diversity.
β-diversity characterizes differences in the extent of total microbial variation across samples.
β-diversity was calculated across all LUAD samples and plotted against the calculated
β-diversity of normal samples (Figure 1). β-diversity of LUSC patients was also plotted
against that of the same normal patients (Figure 1). This suggests that despite the consider-
able differences noted in microbial composition across cancer statuses, the sheer counts of
species present across samples are relatively comparable. This is expected, as β-diversity
of a tumoral-microbiome does not differ considerably from that of a non-malignant tissue.
This serves to confirm the significance of landscape variation as identified through the
above MDS ordination; total diversity is comparable between cancer and normal samples,
suggesting that the observed diversity across specific species is attributable to true variation,
and not to other factors such as differences in microbial profiling.

2.3. LUAD and LUSC Microbiome Clinical Significance

With the microbial environment of cancerous lung tissue samples differing consid-
erably from that of normal samples, the study next attempted to characterize specific
differences in composition, as well as exact significances in variation. Abundance of indi-
vidual species were compared across LUAD and normal samples, as well as LUSC and
normal samples. In this way, variation in abundance of specific species could be identified.
Kruskal–Wallis testing was employed in order to compared abundance reads across sam-
ples. This analysis determines the significance of differences in each species’ abundance
across all samples of a cancer status. A threshold value of p < 0.05 was used to distinguish
microbes of significantly altered abundance in samples of a particular status as compared
to others.

Of the 130 microbes common to both LUAD and normal patients, 8 were found to
be of considerably different abundance (Table 1). Box plots were generated for each of
these species depicting their observed abundance value within each sample, grouped
by cancer status. A phylogram was constructed to visualize the relationship of these
8 microbes, with the corresponding abundance box plots of Methanosarcina Mazei Go1 and
Methanosarcina Barkeri str. Fusaro included alongside (Figure 2). The differences in microbial
composition as identified through the above MDS ordination can largely be attributed to
these 8 species, as they were found to differ to the greatest extent between cancerous and
normal tissue samples.

Table 1. List of microbes differentially abundant across LUAD and normal samples and LUSC and
normal samples. Corresponding p-Value denoting significance of relationship.

Microbe LUAD vs. Normal LUSC vs. Normal

Methanobacterium formicicum 1.37 × 10−15 3.88 × 10−19

Methanococcus aeolicus 0.035682
Methanosarcina barkeri str. Fusaro 3.45 × 10−45 1.42 × 10−49

Methanosarcina mazei Go1 1.70 × 10−101

Pyrodictium brockii 0.026487 0.014115
Thermoproteus sp. IC-062 0.011968
uncultured crenarchaeote 1.09 × 10−35 1.32 × 10−36

uncultured euryarchaeote 1.12 × 10−50 4.92 × 10−52

uncultured Methanobacteriales archaeon 0.000271 0.004886

Similarly, of the 113 species common to both LUSC and normal samples, 7 were of
significantly altered abundance across groups (Table 1). These microbes were also related to
one another within a phylogram, with the abundance box plot of Methanosarcina Barkeri str.
Fusaro again included (Figure 2). These 7 species largely account for microbial composition
differences between LUSC and normal patients, as suggested through MDS ordination.
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After identification of species differentially abundant across cancer and normal pa-
tients, samples were next analyzed to assess abundance significance within cancer groupings.
These analyses would serve to further reveal any importance the lung microbiome might
play in cancer progression across patients of differing race, age, or cancer stage for instance.
Specifically, the variables assess across cancer samples included age of diagnosis, sex, race,
smoking history, pathologic cancer stage, neoplasm presence, and outcome of any received
therapy treatments. Kruskal–Wallis testing was again used to conduct this analysis, with
species abundance compared individually across patients, grouped by the above variables.
A threshold value of p < 0.05 was used to claim significance in relation.

With 130 microbes across LUAD samples and 7 variables of interest, 910 potential
relationships were explored for significance. Of these, 49 were deemed significant, involv-
ing 37 unique species in total (Table 2A). Box plots displaying each sample’s abundance,
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grouped by variable, were then constructed for each significant microbe. A phylogram
was created to display the relationship between these microbes, with abundance box plots
shown for uncultured methanogenic archaeon, uncultured crenarchaeote, Aeropyrum pernix,
and Vulcanisaeta distributa DSM 14429 (Figure 3).

Table 2. List of microbes differentially abundant across LUAD and LUSC samples. Corresponding
p-Value denoting significance of relationship.

Cancer Microbe Diagnosis Age Sex Race Smoking
History Pathologic Stage Neoplasm

Presence
Therapy
Outcome

LUAD

Aeropyrum pernix 0.000339 0.027172
Caldivirga maquilingensis 0.01464

Candidatus Nitrosarchaeum
limnium BG20 0.012235 0.011974

Candidatus Nitrosocosmicus oleophilus 0.000243 0.026028
Candidatus Nitrososphaera gargensis 0.026028
Desulfurococcus amylolyticus 1221n 0.034768

Halogeometricum borinquense
DSM 11551 0.015319

Halorhabdus tiamatea SARL4B 0.047583
Infirmifilum uzonense 0.003069

Metallosphaera yellowstonensis MK1 0.036199
Methanobacterium kanagiense 0.029399

Methanocaldococcus infernus ME 0.022004
Methanocella arvoryzae MRE50 0.047327

Methanococcus aeolicus 0.002794
Methanococcus maripaludis S2 0.001452

Methanococcus vannielii SB 0.001327
Methanoculleus marisnigri JR1 1.42 ×10−8 0.000996
Methanopyrus kandleri AV19 0.024732 0.007884

Methanosaeta harundinacea 6Ac 0.000167
Methanosarcina siciliae HI350 0.041515

Methanothermobacter thermautotrophicus 0.001041
Natrialba magadii ATCC 43099 0.022468

Natrinema pellirubrum DSM 15624 8.59 × 10−12

Pyrobaculum islandicum 0.016035 0.046881 0.000782
Pyrodictium brockii 0.044358

Pyrolobus fumarii 1A 0.037196 0.025456
Thermofilum adornatus 1505 0.037196
Thermofilum pendens Hrk 5 0.000006

Thermoplasma volcanium GSS1 0.042784
Thermoplasmatales archaeon BRNA1 0.02283

Thermoproteus uzoniensis 0.016035 0.046881 0.000782
Thermosphaera aggregans DSM 11486 5.79 × 10−7

uncultured crenarchaeote 0.045191 0.010931
uncultured Methanobacteriales archaeon 0.007569

uncultured methanogenic archaeon 0.002368 0.009116
uncultured Nitrosopumilales archaeon 0.00077 0.032531
Vulcanisaeta distributa DSM 14429 0.000003

LUSC

Aeropyrum pernix 0.030009
Desulfurococcus amylolyticus 1221n 0.006251

Desulfurococcus amylolyticus DSM 16532 0.002899
Haloarcula sp CBA1115 0.00029

Halorhabdus tiamatea SARL4B 0.005232
Metallosphaera yellowstonensis MK1 0.032987

Methanobacterium formicicum 0.042146
Methanocaldococcus infernus ME 0.007339
Methanococcus maripaludis X1 7.02 × 10−24

Methanopyrus kandleri AV19 0.018165
Methanosarcina barkeri CM1 0.013269 0.011716

Methanothermococcus okinawensis IH1 0.024171
Methanothermus fervidus DSM 2088 0.007446 0.034249
Thermoplasmatales archaeon BRNA1 0.014448

uncultured Candidatus Thalassoarchaea 0.015503
euryarchaeote

uncultured crenarchaeote 0.02786
uncultured Methanosarcinales archaeon 0.001505

uncultured Thermoprotei archaeon 0.047705

791 relationships were analyzed for significance of the 113 LUSC present species
across 7 variables. A total of 20 of these were deemed significant, corresponding to 18
total microbial species (Table 2B). Similar box plots were produced as above, depicting a
species’ abundance across patients of similar groupings by variable. The plots of Methan-
othermococcus okinawensis IH1 and Methanocaldococcus infernus ME were included alongside
a phylogram of significant microbes (Figure 3).

This study also attempted to identify microbial species significantly correlated to better
or worse survival rates of patients. Cox Regression analysis was used to determine whether
high or low abundance of a particular species generally related to increased or decreased
survival times of LUAD and LUSC samples. This means of analysis defines the abundance
of each species within a sample as a binary value: either “high” or “low” expression. As
such, all samples of “high” abundance can be compared against those of “low” abundance.
The time of which patients were last assessed, along with their vital status, was used to
conduct said analyses regarding species’ relations to patient survival time. A threshold
value of p < 0.05 was used to identify microbes of significant correlation to patient survival.
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11 of the 130 species found across LUAD samples were found to be of significant
relation to the length of which patients lived after diagnosis (Table 3). Survival plots were
generated for significant species, each displaying the proportion of patients alive after a
given length of time, grouped by “high” or “low” abundance of a particular species. A
phylogram was constructed to visualize the relation of significant species, with correspond-
ing survival plots included for Thermoproteus sp. IC-062, Thermoproteus uzoniensis, and
Pyrobaculum islandicum (Figure 4).
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Table 3. List of survival-significant microbes across LUAD and LUSC samples. Corresponding
p-Value denoting significance of relationship.

Microbe LUAD LUSC

Desulfurococcus amylolyticus 1221n 0.030359 0.049114
Desulfurococcus amylolyticus DSM 16532 0.034705

Halovivax ruber XH-70 0.043801
Methanothermobacter thermautotrophicus 0.035661

Pyrobaculum islandicum 0.002939
Sulfolobales sp. MK5 0.026319

Thermoplasma volcanium 0.045003
Thermoproteus sp. IC-062 0.002299
Thermoproteus uzoniensis 0.002939

uncultured Methanolinea sp. 0.010941
uncultured Methanosarcinales archaeon 0.028039 0.958966
uncultured Nitrosopumilales archaeon 0.014496

uncultured Pyrobaculum sp. 0.040101
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Figure 4. Phylograms of species differentially abundant among LUAD and LUSC samples, with
respect to patient clinical categorization. Respective taxonomic phylums are shown. Patients were
classified as “high” or “low” abundance of a species. Select Kaplan–Meier survival plots of proportion
of “high” and “low” abundance patients surviving with time.

Of the 113 LUSC present microbes, abundance readings of 4 species were found
to significantly correspond to altered survival rates in patients (Table 3). Survival plots
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were again generated for significant species. The plot for uncultured Methanobacteriales
archaeon was included alongside the respective phylogram (Figure 4).

2.4. Oncogenic and Metabolomic Signaling Pathway Dysregulation

The 8 microbes differentially abundant in LUAD patients and 7 differentially abundant
in LUSC patients were further analyzed to reveal correlations to patient gene expression.
Abundance values were simplified to a binary “high” or “low” presence based on their
individual relation to the median abundance of their respective species.

Patient gene expression counts were downloaded from TCGA for LUAD, LUSC and
adjacent normal samples. Read counts for 60,660 genes were aligned with the 527 LUAD,
479 LUSC, and 99 normal adjacent samples used above in microbial analysis. Kruskal–
Wallis testing was used to correlate each gene’s expression value across patients to high or
low microbe abundance for each of the significant taxa above. A total of 3554 genes were
found to be differentially expressed in LUAD-normal analyses, and 3884 were differentially
expressed in LUSC-normal analyses. These genes display considerable alteration in expres-
sion in correlation to varied abundance of the prior identified significant archaeal species.
As such, they were next analyzed to determine potential enrichment effects on oncogenic
signaling pathways, providing a more definitive relation to these species’ correlation with
cancer incidence.

189 oncogenic gene sets were sourced from the molecular signatures database (MSigDB)
(accessed on 8 July 2022). These sets contain common features of known oncogenic signal-
ing pathways typically dysregulated in cancer cells. A total of 225 metabolomic gene sets
were similarly obtained, each containing genes commonly associated in several cellular
metabolic pathways. Gene Set Enrichment Analysis (GSEA) was performed in order to
estimate the enrichment effects on these pathways of the 3554 genes significant to LUAD
and normal samples. Likewise, this analysis was repeated for the 3884 genes significant to
LUSC and normal samples.

Regarding LUAD, 2 oncogenic gene sets were positively enriched (nominal
p-value < 0.05) in cancer samples as compared to normals, with respective normalized
enrichment scores (NES) of 1.52 and 1.50. In LUSC groupings, 6 oncogenic gene sets were
positively enriched in cancer samples, with NESs > 1.59. Genes in these pathways were of
significantly greater expression in cancer samples than normals. Interestingly, 34 oncogenic
gene sets were negatively enriched in LUSC samples, with NESs < −1.46: 7 of which
displayed nominal p-values < 0.01. Genes in these pathways were of significantly lower
expression in cancer samples than normals.

2 metabolomic gene sets were positively enriched among LUAD samples as compared
to normals, with p-value < 0.05. In LUSC samples 3 metabolomic gene sets were signif-
icantly positively enriched, with p-value < 0.01. These genes were present to a greater
extent in archaeal-dysregulated cancer samples, suggesting an increase in their metabolic
capacity. Four metabolomic gene sets were significantly enriched in normal samples,
with p-value < 0.01.

Enrichment plots were generated displaying a gene set’s enrichment score (ES) in
relation to each of feature’s relative expression across samples (Figure 5).

To understand the extent of significance of correlation between these genes and
pathways, NESs were plotted against each gene set’s nominal p-value and FDR q-value
(Figure 6). In comparing LUSC and normal samples, 84 pathways displayed a q-value < 25%,
and 40 displayed a p-value < 0.05. Between LUAD and normal samples, 2 displayed a
p-value < 0.05.
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Figure 6. GSEA Significance Plots. Displays of pathway NESs with associated nominal p-values
(black) and FDR q-values (red) for LUAD and LUSC analyses. Division of oncogenic associated and
metabolomic associated signaling pathways. Signaling pathways of the left and right extremes of
graphs exhibit the greatest extent of dysregulation, while signaling pathways of the bottom portion
are of the greatest significance. Yellow shaded region signifies q-values below 0.25.
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2.5. Archaeal Microbiome-Based Machine Learning Algorithm for Clinical Diagnosis

Supervised machine learning (ML) algorithms were trained to distinguish lung cancer-
diagnosed patients from healthy individuals based solely on lung tissue sampling. Sepa-
rate algorithms were developed for LUAD and LUSC, each analyzing the archaeal abun-
dance of key species across lung tumor tissue and normal adjacent tissue. Light gradient
boost machine (LGBM) achieved 99% accuracy in diagnosis of LUAD patient test sets
(ROCAUC = 1.000, PRAUC = 0.994), and 100% accuracy in LUSC patient test sets
(ROCAUC = 1.000, PRAUC = 0.993) (Figure 7A). Models were interpreted with SHap-
ley Additive exPlanations (SHAP) values. For both LUAD and LUSC subsets, uncultured
marine group II/III euryarchaeote KM3_87_G01 served as the primary predictive feature
(Figure 7B); predictive features are specific archaeal species most useful to the algorithm
in distinguishing cancer samples from normals. Recursive feature elimination (RFE) was
used to select a collection of features that most effectively distinguish cancer patients from
normal adjacents. A total of 20 significant features were resultant of the LUAD model, and
2 significant features were resultant of the LUSC model (Figure 7C).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 21 
 

 

sets (ROCAUC = 1.000, PRAUC = 0.994), and 100% accuracy in LUSC patient test sets 
(ROCAUC = 1.000, PRAUC = 0.993) (Figure 7A). Models were interpreted with SHapley 
Additive exPlanations (SHAP) values. For both LUAD and LUSC subsets, uncultured ma-
rine group II/III euryarchaeote KM3_87_G01 served as the primary predictive feature (Figure 
7B); predictive features are specific archaeal species most useful to the algorithm in dis-
tinguishing cancer samples from normals. Recursive feature elimination (RFE) was used 
to select a collection of features that most effectively distinguish cancer patients from nor-
mal adjacents. A total of 20 significant features were resultant of the LUAD model, and 2 
significant features were resultant of the LUSC model (Figure 7C). 

 
Figure 7. Machine learning classification of LUAD and LUSC. (A) ROC, precision recall curve and 
confusion matrix. Classifiers of the largest AUC, with values between 0 and 1, exhibit the greatest 
predictive accuracy. (B) SHAP values breakdown of two trained models. Features of the largest 
SHAP values are of greatest influence to the models’ predictive means. (C) Remaining features after 
RFE by cancer type. Most significant species to model prediction succeeding elimination. 

uncultured m arine g roup II/III euryarchaeote KM 3_87_G 01
M ethanosarcina barkeri str. Fusaro

uncultured H alorub rum  sp .
M ethanosarcina sp. W W M 596

M ethanosp irillum  hungatei JF-1
C andidatus N itrososphaera evergladensis SR1

M ethanosarcina b arkeri C M 1
N atrialba m agadii A TCC  43099

M ethanosarcina lacustris Z-7289
M ethanococcus aeolicus N ankai-3
M ethanoculleus b ourgensis M S2
uncultured H yp ertherm us sp.
uncultured euryarchaeote

uncultured m arine archaeon
M ethanosarcina sp. W H 1

uncultured Pyrob aculum  sp .
C andidatus N itrosocosm icus oleophilus

Pyrolobus fum arii 1A
uncultured crenarchaeote

uncultured M ethanotherm us sp.

A) C)

B)

Predicted N orm al Predicted N orm al

Predicted LUSCPredicted LUAD

Tr
u
e
 N
o
rm

al

Tr
u
e
 N
o
rm

al

Tr
u
e 
LU

A
D

Tr
u
e 
LU

SC

RO C Curve Precision Recall Curve

Tr
u
e
 P
o
si
ti
ve
 R
at
e

False Positive Rate

RO C Curve

Tr
u
e
 P
o
si
ti
ve
 R
at
e

False Positive Rate

Precision Recall Curve

Recall

P
re
ci
si
o
n

Precision Recall Curve

Recall

P
re
ci
si
o
n

SH AP value (im pact on m odel output) SHAP value (im pact on m odel output)

Fe
at
u
re
 v
al
u
e

Fe
at
u
re
 v
al
u
e

LUAD LUSC

LUAD LUSC

LUAD

LUSC

uncultured m arine group II/III euryarchaeote

M ethanoculleus bourgensis M S2

M ethanosarcina lacustris Z-7289

Candidatus N itrosocosm icus oleophilus

M ethanosarcina sp. W H1

Pyrolobus fum arii 1A

M ethanosarcina barkeri CM 1

N atrialba m agadii ATCC 43099

M ethanocaldococcus infernus M E

uncultured euryarchaeote

uncultured m arine group II/III euryarchaeote

M ethanocella conradii HZ254

M ethanospirillum  hungatei JF-1

uncultured archaeon

uncultured M ethanotherm us sp.

M ethanosarcina m azei C16

M ethanotherm ococcus okinaw ensis IH1

uncultured Pyrobaculum  sp.

M ethanosarcina barkeri str. W iesm oor

M ethanosarcina barkeri str. Fusaro

uncultured m arine group II/III euryarchaeote

Pyrolobus fum arii 1A

M ethanococcus vannielii SB

Candidatus N itrososphaera evergladensis SR1

M ethanosarcina sp. W H1

Candidatus N itrosocosm icus oleophilus

M ethanosarcina lacustris Z-7289

M ethanosarcina m azei SarPi

M ethanoculleus bourgensis M S2

M ethanosarcina m azei W W M 610

N atrialba m agadii ATCC 43099

M ethanosarcina barkeri M S

M ethanosarcina m azei C16

M ethanospirillum  hungatei JF-1

uncultured m arine archaeon

uncultured archaeon

M ethanosarcina barkeri 3

uncultured m ethanogenic archaeon

M ethanosarcina barkeri str. Fusaro

M ethanocaldococcus infernus M E

Figure 7. Machine learning classification of LUAD and LUSC. (A) ROC, precision recall curve and
confusion matrix. Classifiers of the largest AUC, with values between 0 and 1, exhibit the greatest
predictive accuracy. (B) SHAP values breakdown of two trained models. Features of the largest
SHAP values are of greatest influence to the models’ predictive means. (C) Remaining features after
RFE by cancer type. Most significant species to model prediction succeeding elimination.
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3. Discussion
3.1. Phylogenic Classification

As outlined above, the archaeal lung microbiome seems to correlate heavily to both
cancer presence, and cancer progression. Nine species were found to be of significantly
altered abundance between cancer and normal samples, 6 of which were common to both
LUAD and LUSC patients. A total of 48 species were differentially abundant within cancer
samples of similar pathologic stage, therapy outcome, etc., with 8 common to both LUAD
and LUSC patients. The following portion of this discussion investigates these microbial
species and their characteristics. This section introduces known metabolic properties of
these species and proposes plausible hypothetical mechanisms of microbial impact on host
tissue. It should be noted that due to the lack of research regarding archaeal interaction with
human tissue, some suggested means of influence have not been experimentally confirmed.

Microbial species are known to interact with proximal host cells through a variety
of mechanisms [4]. Common to both bacterial and archaeal species, several metabolites
have been proven capable of translocating into host cells and interfering with typical
cellular function. Of these identified metabolites, reactive oxygen species (ROS), bile
acids (BA), butyrate, hydrogen sulfide, and N-nitroso compounds are more commonly
observed [7,20]. These metabolites are known to influence immune response, contribute to
cellular inflammation, and induce tumorigeneisis [20].

Methanosarcina barkeri str. Fusaro and Methanosarcina mazei Go1 are both of the genus
Methanosarcina. Additionally, Methanobacterium formicicum and uncultured Methanobacte-
riales archaeon are of the order Methanobacteriales. These four microbes are collectively
under the Euryarchaeota phylum, a collection of known methanogens. Methanogens
are species that produce methane as a product of many of their metabolic processes, in
addition to several of the common microbial metabolites introduced above [21]. This
methane-producing behavior is rather unique to archaeal species. In analyzing breath
samples, methane gas-to-hydrogen gas ratio has been shown to differ significantly between
cancerous patients and healthy normal, even in studying non-lung cancers [22]. Microbial
fermentation, as practiced by these methanogenic archaeal species, is thought to account
for the pronounced methane presence among cancer samples. It is possible that synthesis of
methanogenic compounds directly within lung tissue might contribute to the development
of cancer, as observed in patients with higher breath methane-content. Heavy DNA methy-
lation is known to exhibit cancerous effect through a variety of mechanisms [23,24]; one
commonly observed example involves extensive methylation of tumor suppressor genes,
preventing promotor recognition, transcription, and subsequent translation of necessary
cellular proteins [23,24]. It is plausible that intra-tissue production of this compound may
contribute to the methylation process. When produced at sites more proximal to cells, espe-
cially if at considerable concentration, methane and the many other similar metabolites of
these archaea might contribute to increased methylation of an individual’s genetic material.
This would serve to increase the likelihood of cancer development and progression.

Thermoproteus sp. IC-062 and Pyrodictium brockii are of the class Thermoprotei. In par-
ticular, Thermoproteus species reduce elemental sulfur as a critical step in their metabolic
processes. More commonly, they are also known to be capable of reduction in polysulfides
and sulfates, generating thiosulfate and sulfide [25]. As described above, hydrogen sul-
fide is thought to contribute to cancer development through regulation of apoptotic and
extracellular degradation pathways [7,20,26]. However, many of these sulfurous aspects
are also present throughout cellular macromolecules: namely proteins. Though the effect of
Thermoprotei interaction within human tissue has seen little investigation, several plausible
mechanisms of influence can be deduced. Reduction in critical sulfurous components in
human enzymes might dysregulate cellular function within a tissue sample. Disruption of
enzymes associated with tumor suppression or enhancement of enzymes with oncogenic
properties might both serve as mechanisms of impact from these species on human tis-
sue. As such, this might also prove a logical means of correlation between these species’
abundances and the observed differences in cancer development.
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Regarding investigation purely across cancer samples, 17 of the 37 differentially
abundant LUAD species are also of the methane producing phylum Euryarchaeota. A total
of 10 of the 18 significant species present across LUSC samples are of this phylum. Increase
or decrease in metabolic effect of these species, as proposed above, might also serve to
account for noted differences in cancer stage, neoplasm development, and effectiveness of
therapy treatments.

Likewise, 13 significant species are of the class Thermoprotei among LUAD samples,
and 5 are of the class across LUSC patients. The metabolic effects of these microbes may
too be responsible to the discrepancies in cancer progression across patients as observed.

6 microbes significantly correlated to patient survival were also found to be differ-
entially abundant across cancer samples: Desulfurococcus amylolyticus 1221n, Desulfuro-
coccus amylolyticus DSM 16532, Methanothermobacter thermautotrophicus, Pyrobaculum
islandicum, Thermoproteus uzoniensis, and uncultured Nitrosopumilales archaeon. These
microbes’ abundance values correspond significantly to both patient survival length and
patient cancer stage, therapy effectiveness, or neoplasm development. Hence, it might be
understood that these species impact cancer progression to a considerable extent if over-
or under-abundant in tissue. Again, their taxonomic categorization in the Euryarchaeota
phylum or Thermoprotei class may provide a potential means of causation for the noted
discrepancies in progression.

3.2. Molecular Targets

Interestingly, several methanogenic species have been found present in an array of
food types [27]. Discovered in meat, vegetables, cheese, and most notably fish, these taxa
likely enter the human body through consumption [27,28]. Methanogens are only present
in relatively small quantities; however, this is consistent with the abundance levels as
estimated above within lung tissue samples. Potential migration of these microbes from
the gastrointestinal tract to other bodily systems, particularly the lungs, would account for
the measured archaeal counts in lung tissue. As such, dietary regulation may be capable
of reducing bodily presence of particular archaeal species, ultimately decreasing an indi-
vidual’s risk of developing lung cancer. Indeed, dietary alteration is known to influence
microbiome composition [29]. Frequent consumption of many fermented carbohydrates is
known to sustain species of several common genera, including Bifidobacterium, Prevotella,
Ruminococcus, Dorea, and Roseburia; high-fat diets have been shown to increase abun-
dance of bile-resistant organisms, such as Bilophila and Bacteroides [29]. Malnutrition has
even seen certain correlation to microbiome change and composition [30]. Regarding the
archaeal domain, several species of the Thermoproteota (Crenarchaea) phylum are known
to exist in many fermented seafoods [31]; limiting consumption of these food may therefore
reduce abundance of key archaeal species, ultimately minimizing the likelihood of lung
cancer development or progression.

Alternatively, rather novel means of microbiome composition alteration are under
development. Targeted radiotherapy treatments have been shown capable of direct species
abundance manipulation, even of tumoral microbiomes [32,32]. Specific species are known
to exhibit varying responses when exposed to radiation of particular frequency. In limiting
the growth and replication of unwanted species within tumoral tissue, a cancer’s likelihood
of progression can be significantly decreased [32,33]. Microbial radiotherapy may enable
tumoral microbiome manipulation, allowing a direct means of regulating abundance levels
of select archaeal species.

Ultimately, attempt to regulate archaeal presence proves difficult due to lack of re-
search; little investigation has attempted to characterize the means by which these species
are introduced to the body. Logically, targeting their metabolic products might serve as a
more reasonable means of limiting the risk of cancer development and progression. Indeed,
many natural products are known to exhibit carcinogenic effect, capable of altering genetic
material and cellular pathway regulation [34]. These products are broadly classified into
two categories: genotoxic agents which cause direct gene damage, and non-genotoxic
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agents which encourage carcinogenesis by some secondary means. Whether genotoxic or
non-genotoxic, many microbial metabolites are known to be carcinogenic [5–7]. Reactive
oxygen species (ROS), as well as methane, sulfur, and their chemical derivatives, may be
appropriate metabolic targets in attempt to hinder oncogenesis. In fact, there exist several
known means of regulating these metabolites at a cellular level.

ROS are highly reactive compounds, capable of oxidizing vital cellular proteins and
macromolecules [5,6]. Nonetheless, oxidative stress caused by ROS is reduced through
regular intake of antioxidants (e.g., beta-carotene, vitamin B) [35]. These molecules react di-
rectly with ROS, significantly decreasing the likelihood of alternate reactions with necessary
cellular molecules [5,6]. In particular, regular consumption of vitamin B6 and vitamin B12
has been shown to increase oxidative metabolism, leading to decreased levels of oxidative
stress and inflammation [35]. A decrease in presence of cellular oxidative compounds
reduces opportunity for radical reaction and potential carcinogenesis [5,6]. In addition to
synthetic antioxidants, many fruits and vegetables are rich in antioxidant vitamins [36].
Maintaining an adequate source of these nutrients has been proven to limit the risk of
cancer development, with relation to regulation of oxidative stress and inflammation [35].

In this way ROS reaction with methane- and sulfur-derived species would also see
a decrease. ROS chemically activate molecules of which they react with [28]; hence, with
lesser ROS presence, methane and sulfurous compounds would be less capable of fur-
ther activation. This might reduce their likelihood of undesirable reaction with cellular
components, effectively reducing the risk of cancer development and progression.

Irrespectively, GSEA revealed there is in fact a correlation between the archaeal species
differentially abundant in LUAD and LUSC tissue and the expression of select genes in
lung cells. Several known oncogenic cellular signal pathways were either positively or
negatively enriched with respect to these genes; this implies there also exists a correlation
between the significant taxa and cellular oncogenic tendency. Further investigation into
the intricacies of these relations might reveal a specific influence of archaeal species on
oncogenic and tumor suppressive gene expression. This would ultimately detail a more-
concise mechanism by which archaeal species might contribute to cancer development
or progression.

GSEA also revealed a metabolomic correlation to archaeal abundance in cancer sam-
ples. With several cellular pathways significantly dysregulated, these significant archaeal
species have the molecular ability to influence cellular metabolism. The discovered cor-
relation of archaeal abundance to metabolic gene expression may act as a mechanism for
archaeal-associated differences in cancer incidence and progression. Indeed, cancer cells
are known to contain considerable alteration in metabolic pathway regulation [37]; this
can be largely attributed to increased demand of energy with continued proliferation. If
archaeal species are also capable of upregulating key metabolic pathways necessary for
tumorigenesis, this may explain the measured association between archaeal abundance and
oncogenesis. Select archaeal species, as identified above, afford cells additional metabolic
means of unregulated growth and replication. Perhaps in targeting these specific metabolic
pathways, archaeal influence on carcinogenesis can be mitigated.

As demonstrated with the predictive machine learning-based diagnostic algorithms,
the archaeal microbiome can be used as a highly distinctive indicator of both LUAD and
LUSC incidence among patients. Particular abundance values of select features allows
for prediction of cancer presence with over 99% accuracy among both cancer types. This
means of diagnosis is limited in the fact that tumor tissue must be extracted for comparison,
meaning cancer incidence is already known. Recent studies, however, have seen success
in cancer diagnosis with use of mere blood samples. With microbial DNA also present
in blood plasma, variances in microbiome were used to train a machine learning-based
algorithm to diagnose 33 types of cancer with great accuracy. Perhaps inclusion of archaeal
species in models like these would increase prediction accuracy and robustness.

Nonetheless, the implications of the distinct archaeal microbiome of LUAD and LUSC
tumor tissue samples are significant. With unique metabolic properties, archaeal species
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present in lung tissue may be of causational correlation to cancer development and pro-
gression. Many produced metabolites are known to promote carcinogenesis both through
direct genomic damage and cellular signaling pathway regulation, In the event of these
occurrences, archaeal-induced tumorigenesis is plausible. Further investigation into the
intricacies of specific metabolite-host interactions may be useful in elucidating the micro-
biome’s role in lung cancer incidence. Moreover, research regarding the microbiome’s
influence on cancer development and therapy efficacy may see clinical applicability, al-
lowing additional considerations in cancer staging, survival estimation, and creation of
optimized treatment plans. Ultimately, the archaeal microbiome must be further explored
to understand its influence on human physiological function, immunity, and disease.

4. Methods
4.1. TCGA Data Acquisition

Raw whole-transcriptome RNA-sequencing data was downloaded from the TCGA
legacy archive for 527 LUAD samples, 479 LUSC samples, and 99 normal adjacent lung
tissue samples (https://portal.gdc.cancer.gov/legacy-archive/search/f) (accessed on 1
August 2021). Corresponding clinical data of these patients was downloaded from the
Broad GDAC Firehose (https://gdac.broadinstitute.org/, accessed on 1 August 2021).

4.2. Microbial Abundance Extraction and Computation

RNA-sequencing data was filtered for microbial abundance counts with the Patho-
scope 2.0 program using an archaeal sequence library assembled from the NCBI nucleotide
database (https://www.ncbi.nlm.nih.gov/nucleotide/, accessed on 10 September 2021).
The Pathoscope 2.0 program generates two distinct abundance approximations: a “best
guess” estimating the relative abundance of each species, as a percentage, and a “best hit”
estimating the exact amount of each species, expressed as an integer. Best hit values were
used throughout the above analyses.

4.3. Microbial Contamination Correction

Spearmen’s rank correlation coefficients were used to identify likely contaminant
microbes. This means of correlation describes the monotonicity of relation between two
variables: individual species abundance and total microbe abundance. A threshold value
of p < 0.05 was used to distinguish significant microbes from insignificant microbes.

4.4. MDS Ordination Application

Multidimensional Scaling (MDS) ordination was used to characterize the microbial
landscape of each LUAD, LUSC and normal sample. MDS ordination reduces microbial
abundance values of each species within a sample into two dimensions, allowing for
simpler visualization of differences across samples. Bray–Curtis ordination was employed,
in which samples serve as the entities, and species abundance values serve as the attributes.
Computationally, a dimensional matrix was calculated for each cohort, axis direction was
determined, and all appropriate samples were plotted within each matrix according to their
microbial abundance reads.

4.5. β-Diversity Assessment

β-diversity describes the extent of variation across samples of a defined origin. Species
often present in samples of one cancer status, but not others, would increase the amount
of diversity between groups. Likewise, species common to both cancer status groupings
of concern would decrease overall diversity. As such, B-diversity scores were calculated
across all samples within a cancer status grouping for comparison.

4.6. Differential Abundance Determination

The cancer statuses of patients were aligned with microbial read counts of each species.
Clinical values were also aligned for each of the seven variables of concern. Kruskal–Wallis

https://portal.gdc.cancer.gov/legacy-archive/search/f
https://gdac.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/nucleotide/
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testing was conducted, revealing microbes of significant relation to cancer status and each
clinical variable, with p < 0.05 used as a threshold value. Corresponding box plots were
created, each displaying median and upper- and lower- quartile abundances of each species
within each variable.

Microbe counts were simplified to a binary “high” or “low” value, depending on
their relation to the median microbe count. Patients’ classifications for each differentially
abundant species were aligned with their respective gene expression counts. Kruskal–
Wallis testing revealed genes of significantly altered expression in relation to “high” or
“low” species presence.

4.7. Survival Discrepancy Determination

Patient alive statuses and times of assessment were aligned with microbial counts
for survival analyses. Survival analyses were conducted using Cox Regression, revealing
microbes of which higher or lower abundance corresponded to increased or decreased
patient survival; microbe counts of patients were compared across patients of differing
alive statuses throughout an assessed period of time, with p < 0.05 used as a threshold
value. Microbe counts were simplified to a binary “high” or “low” value, depending on
their relation to the median microbe count in order to increase concision of conclusions.
Corresponding survival plots were created, each displaying the proportions of “high”
abundance and “low” abundance patients through a given timeframe.

4.8. Supervised Machine Learning Classification

The LGBM machine learning algorithm was chosen to classify LUAD and LUSC
patients from normal samples, consistently outperforming similar machine learning algo-
ritms [38,39]. The classifier was implemented using official python packages from Microsoft.
As the dataset is unbalanced (more cancer samples than normal adjacents), the weight of
dominate cancer labels were proportioned according to their fractions. Data was randomly
splits into 70% training cohorts and 30% testing cohorts, then normalized using only train-
ing data. RFE was implemented using sklearn, with 5-fold cross validation and default
parameters. SHAP value was computed using the original package provided [40].

4.9. Gene Set Enrichment Analysis (GSEA)

189 oncogenic gene sets and 225 metabolomic gene sets were sourced from the Molec-
ular Signaling Database’s (MSigDB) hallmark gene set collection [41]. Read counts of
LUAD and LUSC differentially expressed genes, as derived through Kruskal–Wallis testing
above, were analyzed using GSEA software [42,43]. Cancer status served as the phenotype
of concern.
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