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Background: Acute Kidney Injury (AKI) is a very frequent condition, occurring

in about one in three patients admitted to an intensive care unit (ICU). AKI is a

syndrome defined as a sudden decrease in glomerular filtration rate. However,

this unified definition does not reflect the various mechanisms involved in AKI

pathophysiology, each with its own characteristics and sensitivity to therapy.

In this study, we aimed at developing an innovative machine learning based

method able to subphenotype AKI according to its pattern of risk factors.

Methods: We adopted a three-step pipeline of analyses. First, we looked

for factors associated with AKI using a generalized additive model. Second,

we calculated the importance of each identified AKI related factor in the

estimated AKI risk to find the main risk factor for AKI, at the single patient level.

Lastly, we clusterized AKI patients according to their profile of risk factors and

compared the clinical characteristics and outcome of every cluster. We applied

this method to a cohort of severe COVID-19 patients hospitalized in the ICU

of the Geneva University Hospitals.

Results: Among the 248 patients analyzed, we found 7 factors associated with

AKI development. Using the individual expression of these factors, we identified

three groups of AKI patients, based on the use of Lopinavir/Ritonavir, baseline

eGFR, use of dexamethasone and AKI severity. The three clusters expressed

distinct characteristics in terms of AKI severity and recovery, metabolic patterns

and hospital mortality.

Conclusion: We propose here a new method to phenotype AKI

patients according to their most important individual risk factors for AKI

development. When applied to an ICU cohort of COVID-19 patients,

we were able to di�erentiate three groups of patients. Each expressed

specific AKI characteristics and outcomes, which probably reflect a

distinct pathophysiology.
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Introduction

Acute Kidney Injury (AKI) is a common condition in the

critical care setting (1, 2). Despite decades of research, AKI is

still associated with high mortality and morbidity, even when

renal function is substituted by Renal Replacement Therapy

(RRT) (3–6).

AKI is defined as a sudden decrease in glomerular filtration

rate, demonstrated by an increase in serum creatinine (7). This

unified definition has resulted in improved recognition of AKI

and has simplified research, healthcare management as well

as comparisons across cohorts and different centers. However,

AKI is not a single clinical entity but an overarching clinical

syndrome. Therefore, the definition of AKI encompasses

many underlying conditions and etiologies. Additionally,

the high degree of heterogeneity of the Intensive Care

Unit (ICU) population including patients with different

risk profiles adds further complexity when considering

AKI outcomes (8). In this respect, recognizing meaningful

subgroups of AKI patients may provide a deeper insight

into AKI pathophysiology and may also be helpful in

identifying groups with differing prognoses and sensitivity

to therapy (9).

From a data-driven perspective, patient sub-phenotyping is

essentially a clustering problem (10, 11). Clustering algorithms

are a type of unsupervised machine learning algorithms where

no labels are known a priori but rather, get assigned based on

inherent similarities between points. A critical step in clustering

is data representation i.e., the construction of the dataset on

which we want to apply clustering. Previous studies on AKI

sub-phenotyping have defined patients according to diagnostic

codes (12), trajectories of serum creatinine (13), patterns of AKI

reversal (14) or clinical and biological data recorded at ICU

admission (15) or during AKI (16, 17). However, these strategies

do not allow for the formulation of any hypothesis based on

the pathophysiological mechanisms involved in different AKI

phenotypes. In addition, the high number of features used

to classify patients makes it Difficult, in Current Practice, to

Recognize Them at the Bedside.

In this study, we aimed to develop an innovative pipeline of

analyses in order to identify in an unsupervised manner, distinct

phenotypes of AKI in ICU COVID-19 patients based on their

pattern of AKI associated factors.

Materials and methods

Study design

We conducted a retrospective, single-center, cohort study

aiming at identifying factors linked to the development of AKI

in order to further clusterize AKI patients according to their

pattern of risk factors.

Patient inclusion

During the study period from March to December 2020, all

COVID-19 patients admitted to the adult ICU of the Geneva

University Hospitals were screened. Patients were included if

they were older than 18 years of age and not on chronic dialysis.

They were not included if they experienced an episode of AKI

prior to ICU admission, during the same hospital stay. The study

was conducted according to the guidelines of the Declaration

of Helsinki and approved by the ethical committee for human

studies of Geneva, Switzerland (CCER 2020-00917, Commission

Cantonale d’Ethique de la Recherche).

Definitions

AKI was defined according to the serum creatinine based

KDIGO criteria (7), i.e., a 1.5-fold or more increase in baseline

serum creatinine levels within 7 days or an absolute increase

higher than 26.4 µmol/L within 48 h. Baseline serum creatinine

levels were determined as the first serum creatinine level

recorded following hospital admission. The urine output was not

used to identify AKI as it was not recorded for all patients.

Data collection

For each patient, the following variables were recorded:

demographic data (sex, age, body mass index, height, and

weight), prior history of hypertension, diabetes, Chronic

Obstructive Pulmonary Disease (COPD), hypercholesterolemia,

tobacco consumption, cardiomyopathy and heart failure,

cerebrovascular disease, malignancy, chronic kidney

disease (defined as a history of chronic renal disease in the

patient’s medical records), chronic use of Non-Steroidal Anti

Inflammatory Drugs (NSAIDs), renin angiotensin aldosterone

system inhibitors or steroids. Upon ICU admission, we recorded

biological data (prothrombin ratio, procalcitonin, C-reactive

protein, d-dimer, white blood cells, lymphocytes, neutrophils,

thrombocytes, lactate, bilirubin, alanine transaminase (TGP),

aspartate transaminase (TGO), troponin levels, serum creatinine

and eGFR), severity scores (APACHE, SAPS, SOFA) and the

FiO2. Once patients were intubated, we recorded the initial

respiratory parameters (PaO2/FiO2 ratio, PEEP and plateau

pressure levels, compliance, tidal volume, duration from

symptom onset or hospitalization to intubation, respiratory

rate before intubation) and the specific therapeutic against

COVID-19 (Lopinavir/Ritonavir (LPV/r), hydroxychloroquine,

azithromycin, remdesivir, anakinra, dexamethasone). Finally,

we screened the following variables for the entire ICU stay:

the need for invasive mechanical ventilation, Neuro Muscular

Blocking Agents (NMBA), Extra Corporeal Membrane

Oxygenation (ECMO), norepinephrine, antibiotics and their
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total duration, the need for prone positioning and the number of

prone sessions, the use of inhaled nitric oxide. At the renal level,

we collected all the serum creatinine values recorded during the

hospital stay, as well as the need for renal replacement therapy.

We also recorded the time between symptoms and admission

to hospital, ICU and intubation, the duration between hospital

and ICU admission and intubation. Glucose and lactate levels

measured during the ICU stay were also collected.

Metabolic pattern

Five metabolic patterns were defined according to glucose

and lactate levels, as previously described (18, 19): the baseline

profile (lactate levels below median and with glucose levels

between the 25th and the 50th percentile); the impaired

metabolism profile (lactate levels above the median with glucose

level below the 75th percentile); the isolated hyperglycaemia

profile (lactate levels below median with glucose levels above

the 75th percentile); the isolated hypoglycaemia profile (lactate

levels below median with glucose levels below the 25th

percentile) and the stress response profile (lactate levels above

median and glucose levels above the 75th percentile). For each

patient, we also calculated the relative time spent in one of the

five metabolic patterns, i.e., the total duration spent in each

of the five profiles divided by the total duration of ICU stay.

Finally, the pattern in which the patient spent the most time was

considered to be the individual patient metabolic pattern. These

five metabolic profiles are shown in Supplementary Figure 1.

Clinical outcomes

We compared the following outcomes among clusters: AKI

severity and recovery, metabolic pattern, and hospital mortality.

AKI severity was determined using KDIGO criteria, while

stage 3 was divided into two stages depending on the need

of RRT. AKI recovery was defined as serum creatinine levels

1.5 times below the baseline level and the absence for renal

replacement therapy following an episode of AKI (20).

Statistical analysis

Baseline characteristics were expressed as mean (standard

deviation) and median (25–75th percentiles) or absolute and

relative (%) frequency if categorical. They were compared using

a MannWhitney or Chi-square tests depending on their class. A

p-value of <0.05 was considered significant

All the analyses were performed using R software (21).

Pipeline of analyses

Step 1: Identification of AKI associated factors

We began by preprocessing the data by following three

steps. First, numerical variables were centered, scaled and

normalized through a Yeo-Johnson transformation, because

independent variables were on very different scales. This

also allowed us to enhance variable selection robustness (22).

Supplementary Figure 2 shows the distribution of the numerical

variables before and after treatment. Second, we imputed

missing data using bagged tree imputation (23) to improve

accuracy of downstream analyses (24). Missing data and their

distribution for each variable before and after the imputation

are presented in Supplementary Figure 3. Third, we calculated

a correlation matrix to identify colinear variables, and removed

or merged those with a correlation coefficient above 0.8

(Supplementary Figure 4). This step was completed using the

caret package.

To identify factors associated with AKI development

from this pre-processed data, we first looked for variables

that fulfilled three criteria: (1) they should exhibit an a

priori association with AKI, (2) they should be easy to

identify by clinicians or be modifiable factors (i.e., therapeutic

initiated before AKI onset) and (3) they should be prior

to the AKI onset. For this purpose, we considered past

medical history including: hypertension, diabetes, Chronic

Obstructive Pulmonary Disease (COPD), hypercholesterolemia,

tobacco consumption, cardiomyopathy and heart failure,

cerebrovascular disease, malignancy, chronic kidney disease and

the eGFR at hospital entrance, chronic medication (NSAIDs,

renin angiotensin aldosterone system inhibitors or steroids), the

demographic data (age, sex, and BMI), the markers of severity

at ICU admission (APACHE, SOFA and SAPS scores, FiO2,

PaO2/FiO2 ratio), the use of mechanical ventilation and the

initiation of COVID-19 specific therapy, started either before

or at ICU admission (LPV/r, hydroxychloroquine, azithromycin,

remdesivir, anakinra, dexamethasone).

For each, we fitted a univariable logistic spline regression

modeling the logit of AKI. Natural restricted cubic splines with

two degrees of freedomwere used as nonlinear relations between

AKI and frequently reported risk factors (25–30).

Variables displaying a p-value below 0.2 were considered

for the multivariable analyses, which were conducted using a

generalized additive model to allow nonlinear relationships via

thin plate regression splines (mgcv package). Variable selection

was further performed using a supervised stepwise approach as

previously described, in order to only keep predictors with a p-

value lower than 0.05 (31, 32). An exception was made for the

APACHE score to ensure our model was adjusted for severity.

Discrimination and calibration of the final model were visually

assessed through the receiver operating characteristic (ROC)

curve and a calibration plot as well as numerically by calculating

the area under the ROC curve and the Hosmer-Lemeshow test.
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The final model was validated as following: Validation of the

nonlinear fitting was achieved by building a second generalized

additive model. Instead of regression splines, local regression

was fitted by locally estimating scatterplot smoothing curve

fitting, as supported by the gam package. The two nonlinear

fits were further visually compared by displaying the partial

dependence plots of each model. Validation of the supervised

variable selection was performed via an unsupervised approach.

Three machine learning methods [multistep adaptative MCPnet

(MSAMNET), lasso regression and regularized random forest

(RRF)], that integrate native automated feature selection,

were applied to the dataset. The input matrix of explanatory

variables includes all the variables selected in the previous

paragraph, i.e., those that fulfilled our three criteria. These

three algorithms were applied to the whole dataset, without

splitting. A hyperparameter grid was used to tune each model

whose performance was iteratively assessed by the out-of-

bag area under the ROC curve through a repeated cross-

validation procedure (5 repetitions of 10 cross-validations). The

selected features and their relative importance were extracted

and calculated, for eachmodel, using the varImp command from

the caret package.

Step 2: Identification of AKI phenotypes

In this second part, we aimed at defining clusters of patients

according to the pattern of risk factors expressed by each

patient. We started by estimating the relative contribution

of each factor identified by the final gam model to the

predicted probability of AKI. For this purpose, we calculated

the Shapley Additive Explanation (SHAP) values with the

shapr package using an empirical approach. SHAP values

represent a feature’s role in changing the model output.

The resulting matrix of SHAP values, restricted to AKI

patients, was further used as an input for Uniform Manifold

Approximation and Projection (UMAP), using a Euclidean

metric, a minimal distance of 0.1 and 15 neighbors with

the umap package. Patients projected on this UMAP were

finally clusterized using an unsupervised method: the Density-

Based Spatial Clustering of Application with Noise (DBSCAN)

algorithm, through the dbscan package. The radius of the epsilon

neighborhood was set to 1. This 2-step dimensional reduction

procedure was adopted to clusterize patients according to

their risk profiles and to improve downstream computational

clustering (33).

The clustering was further validated by linear support vector

machines (SVM, caret package) as previously described (34, 35).

SVM models were applied to each previously found cluster, to

assess its ability to separate this cluster of interest from the others

by a hyperplane. For this reason, the UMAP low dimension

matrix was first randomly split in a train and a test dataset

using a 0.8:0.2 ratio. SVM models were first trained on test

dataset, in order to tune their hyperparameters to maximize the

area under the ROC curve using repeated cross validation as

the resampling method (3 repetitions of 10 cross-validations).

The optimal SVM models were further applied to the 2000-fold

bootstrapped test datasets.

Step 3: clinical comparisons of the clusters

Subsequently, we compared the identified clusters from a

clinical perspective.

For AKI severity, metabolic pattern and hospital mortality,

posteriori probability of each outcome in each cluster was

calculated using a Naïve Bayes algorithm. Confidence intervals

and p-values were further estimated through bootstrap

resampling (n= 2000).

For AKI recovery and hospital mortality, comparisons

between clusters were also completed through a Cox

Proportional-Hazards Model.

Results

Cohort description

From March to December 2020, 253 COVID-19 patients

were admitted to the ICU of the Geneva University Hospitals.

Among them, 5 were not included because they were on chronic

dialysis. A total of 248 patients were analyzed of which 99

(40%) developed AKI. Most of them developed KDIGO1 AKI

(67%) while 14 (14%) received Renal Replacement Therapy

(RRT). AKI occurred within 3 IQR (1.0–6.0) days following

ICU admission. Compared to those who did not develop AKI,

AKI patients more frequently reported a history of diabetes and

hypertension. They had a lower estimated Glomerular Filtration

Rate (eGFR) at hospital entry, were older and mostly male.

Furthermore, they had higher APACHE and SOFA scores as well

as troponin, C reactive protein and procalcitonin levels but lower

bicarbonate levels at ICU admission. AKI patients were more

likely to receive norepinephrine, Lopinavir/Ritonavir (LPV/r),

hydroxychloroquine and azithromycin but not dexamethasone.

Finally, AKI patients more frequently required invasive

mechanical ventilation and prone positioning, received higher

tidal volumes, spent more time on mechanical ventilation

and had longer ICU and hospital lengths of stay. However,

mortality was not different between AKI and non-AKI

patients. Table 1 compares these characteristics between the

two groups.

Development of a pipeline of analyses

To identify subgroups of AKI patients, we based our

approach on unsupervised clustering. However, unlike in

previous studies, we did not apply a clustering algorithm

on the raw dataset but rather designed a three-step pipeline

of analyses. Firstly, we built a nonlinear statistical model to

identify factors significantly associated with AKI development

in ICU patients and calculated the importance of each predictor
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TABLE 1 Baseline characteristics: Data are presented as mean (percentage) or as median (interquartile range).

No-AKI (N = 149) AKI (N = 99) Total (N = 248) P value

Patients’ characteristics

Age (years), 63.0 (55.0, 73.0) 67.0 (59.0, 74.0) 65.5 (57.0, 74.0) 0.027

Sex, male, n (%) 103 (69.1) 84 (84.8) 187 (75.4) 0.006

Weight (cm) 80.0 (70.0, 95.0) 85.0 (73.5, 100.0) 83.3 (70.9, 98.0) 0.061

BMI (mkg/m2) 27.8 (24.6, 32.0) 28.3 (25.4, 32.8) 27.8 (24.9, 32.3) 0.137

Hypertension, n (%) 59 (39.6) 55 (55.6) 114 (46) 0.019

Diabetes, n (%) 38 (25.5) 41 (41.4) 79 (31.9) 0.012

Chronic kidney disease, n (%) 6 (4.0) 14 (14.1) 20 (8.0) 0.007

At ICU admission

time from hospital entrance (d) 2.0 (0.0, 5.0) 2.0 (1.0, 4.0) 2.0 (0.0, 5.0) 0.925

eGFR (mL/min/1.73 m2) 67.0 (51.8, 91.8) 49.3 (33.8, 66.0) 59.5 (43.4, 83.4) <0.001

Urea (mmo/L) 6.9 (5.0, 9.4) 7.0 (5.6, 10.3) 7.0 (5.3, 9.6) 0.486

SAPS II score 52.0 (35.0, 65.0) 55.0 (40.5, 66.0) 53.0 (36.0, 65.2) 0.193

APACHE II score 22.0 (13.0, 28.0) 23.0 (15.0, 30.0) 22.0 (14.0, 29.0) 0.048

SOFA score 6 (4.0, 7.0) 6.0 (4.0, 8.0) 6.0 (4.0, 7.0) 0.025

Hemoglobine (g/L) 129.0 (117.0, 144.0) 130.0 (116.5, 143.0) 130.0 (116.8, 144.0) 0.842

Procalcitonin (µg/l) 0.3 (0.2, 0.8) 0.7 (0.3, 2.0) 0.4 (0.2, 1.4) <0.001

CRP (mg/l) 128.8 (82.3, 193.5) 161.4 (112.5, 216.3) 141.0 (87.5, 205.5) 0.026

White blood cells (G/l) 9.5 (6.3, 13.1) 9.4 (6.5, 11.3) 9.5 (6.4, 12.6) 0.706

Lactate (mmol/l) 1.2 (0.9, 1.7) 1.0 (0.8, 1.5) 1.1 (0.8, 1.7) 0.063

Bilirubin (µmol/l) 9.0 (6.0, 13.0) 9.5 (7.0, 16.0) 9.0 (6.0, 14.0) 0.148

chlore (mmol/l) 104.0 (100.0, 106.0) 104.0 (101.0, 107.0) 104.0 (100.0, 106.0) 0.499

bicarbonates (mmol/l) 25.4 (23.5, 27.0) 23.7 (21.8, 26.3) 24.9 (22.7, 26.7) <0.001

FiO2 (%) 60.0 (50.0, 80.0) 61.0 (50.0, 80.0) 60.0 (50.0, 80.0) 0.891

P/F 16.4 (11.8, 21.4) 15.0 (11.9, 20.0) 16.0 (11.8, 20.7) 0.416

Tidal volume (mL) 450.0 (400.0, 480.0) 460.0 (430.0, 490.0) 450.0 (420.0, 480.0) 0.015

LPV/r, n (%) 16 (11.0) 33 (31.7) 49 (19.6) <0.001

Azithromycin, n (%) 52 (34.9) 57 (57.6) 109 (44.0) <0.001

Hydroxychloroquine, n (%) 54 (36.2) 57 (57.6) 111 (44.8) 0.001

Anakinra, n (%) 9 (6.0) 5 (5.1) 14 (5.6) 1.000

Dexamethasone, n (%) 84 (56.4) 32 (32.3) 116 (46.8) <0.001

NSAID, n (%) 13 (8.7) 16 (16.2) 29 (11.7) 0.105

Remdesivir, n (%) 19 (12.8) 9 (9.1) 28 (11.3) 0.419

Steroids, n (%) 49 (32.9) 44 (44.4) 93 (37.5) 0.082

Antibiotics, n (%) 142 (95.3) 98 (99.0) 240 (96.8) 0.150

NMBA, n (%) 94 (63.1) 84 (84.8) 178 (71.8) <0.001

Noradrenaline, n (%) 115 (77.2) 95 (96.0) 210 (84.7) <0.001

During ICU stay

Max Serum Creatinine (µmol/l) 81.0 (68.0, 99.0) 163.0 (121.5, 278.5) 100.0 (75.8, 150.5) <0.001

KDIGO stage, n (%) <0.001

KDIGO1 0 (0.0) 66 (66.7) 66 (26.6)

KDIGO2 0 (0.0) 13 (13.1) 13 (5.2)

KDIGO3 without RRT 0 (0.0) 6 (6.1) 6 (2.4)

KDIGO3 with RRT 0 (0.0) 14 (14.1) 14 (5.6)

Mechanical ventilation, n (%) 121 (81.2) 97 (98.0) 218 (87.9) <0.001

Prone positioning, n (%) 93 (62.4) 79 (79.8) 172 (69.4) 0.005

ECMO, n (%) 8 (5.4) 8 (8.1) 16 (6.5) 0.435

(Continued)
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TABLE 1 (Continued)

No-AKI (N = 149) AKI (N = 99) Total (N = 248) P value

Outcomes

ICU mortality, n (%) 36 (24.2) 32 (32.3) 68 (27.4) 0.191

Hospital mortality, n (%) 37 (24.8%) 32 (32.3%) 69 (27.8%) 0.247

ICU LOS (d), 11.0 (6.0, 18.0) 17.0 (12.0, 23.0) 13.0 (8.0, 21.0) <0.001

Hospital LOS (d) 25 (16.0, 33.0) 32.0 (23.0, 46.0) 27.0 (16.8, 40.0) <0.001

Aki recovery, n (%) 0 (0.0%) 76 (76.8%) 76 (30.6%) <0.001

BMI, Body Mass Index; eGFR, estimated glomerular filtration rate; FiO2, Oxygen inspirited fraction; SAPSII, Simplified Acute Physiological Score; APACHE II, Acute Physiology and

Chronic Health Evaluation; SOFA, Sepsis-Related Organ Failure Assessment; RRT, Continuous Renal Replacement Therapy; LPV/r, Lopinavir/Ritonavir; NSAID, Non-Steroidal Anti

Inflammatory Drug; NMBA, Neuro Muscular Blocking Agents; ECMO, Extra Corporeal Membrane Oxygenation; P/F PaO2/FiO2, ratio; ICU Intensive Care Unit; AKI, Acute Kidney

Injury; LOS, Length of Stay.

FIGURE 1

AKI associated factors: (A) Shapley Additive Explanation (SHAP) values, where one dot represents the importance of each variable for AKI risk at

the single patient level. Positive values reflect an increased risk of AKI while negative values show a negative e�ect on AKI risk. The sum of all

SHAP values from one patient represent the predicted AKI probability for this patient. Each dot is color coded according to the patient’s initial

value for each considered feature. (B) Partial dependence plots, showing the e�ect of eGFR, APACHE score and FiO2 at ICU admission on the

risk of AKI. (C) evaluation of the generalized additive model with the receiver operating characteristic curve (left panel) and the calibration plot

(right panel) showing sensitivity according to the specificity and the observed vs. predicted probabilities, respectively. LPV/r Lopinavir/Ritonavir,

DM Diabetes Mellitus; DXM Dexamethasone; MV Mechanical Ventilation.

for AKI risk at a single patient level. Second, we used

unsupervised clustering to identify patterns of AKI-associated

factors. Third, we compared the clinical outcomes between those

clusters of AKI patients. These three steps are detailed in the

methods section.

Identification of AKI associated factors

Explicative statistical model

We first aimed at identifying factors associated with AKI

development in COVID-19 patients admitted to the ICU.

Frontiers inMedicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2022.980160
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Legouis et al. 10.3389/fmed.2022.980160

The final multivariable model identified 7 variables, which

were significantly associated with AKI development in the ICU

(Supplementary Table 1): use of LPV/r initiated before ICU

admission, diabetes mellitus and invasive mechanical ventilation

at ICU admission, were all positively associated with AKI

while administration of dexamethasone at ICU admission was

protective. APACHE score and FiO2 at ICU admission as well

as eGFR at hospital entrance displayed a nonlinear association

with AKI.

Figure 1A displays the SHAP value (x-axis) for each

predictor and each patient, while the color of the dot refers to

the original value taken by the variable for each patient being

considered. The sum of each patient’s SHAP values refers to

the predicted AKI probability for this patient. Seeing as the

relationship between AKI probability and numerical variables

was nonlinear, their marginal effect was shown in Figure 1B.

Altogether, the final generalized additive model was

discriminant in predicting an AKI ROC curve equal to 0.82 (95%

confidence interval [0.77-0.87]), which was well calibrated (p-

value of the Hosmer–Lemeshow test equal to 0.88), Figure 1C.

Sensitivity analyses

A similar non-linear relationship between the risk of AKI

and baseline eGFR, tidal volume, FiO2 and APACHE score level

at ICU admission was observed in the validation model using a

local regression by locally estimated scatterplot smoothing curve

fitting instead of regression splines (Supplementary Figure 5A).

In addition, MSAMNET, Lasso and RRF machine learning

algorithms ensured the robustness of the variable selection

by identifying the following factors: use of dexamethasone,

LPV/r, eGFR at hospital admission, invasive mechanical

ventilation and prior history of diabetes. These were chosen

for every method, while APACHE scores and FiO2 at

admission were only captured by the nonlinear method (RRF).

Supplementary Figure 5B shows the distribution of the out-of-

bag area under the ROC curve metric for each predictive model,

ranging from 0.76 ± 0.1 to 0.77 ± 0.1 for RRF and LASSO

models, respectively. The features selected by eachML algorithm

in order of importance in AKI prediction are displayed in

Supplementary Figure 5C.

Altogether, this sensitivity analysis strengthens both the use

of nonlinear fitting between numerical predictors and risk of

AKI, as well as the choice of the predictors.

Identification of AKI phenotypes

Clustering of AKI patients according to their
risk factors pattern

Among the 99 AKI patients, we were able to identify

three clusters, each of them expressing a specific pattern of

AKI-related factors (Figure 2A). The relative importance of

each variable across clusters is shown in Figure 2B. Use of

LPV/r, dexamethasone and eGFR/APACHE score were the most

discriminant factors of cluster 1, 2, and 3, respectively. Figure 2C

shows the predictors, in order of importance, that defined each

cluster. Cluster 1 was characterized by AKI associated with the

use of LPV/r; cluster 2 involved patients with lower baseline

eGFRwho did not receive dexamethasone; cluster 3 included the

most severe patients with low baseline eGFR who however were

receiving dexamethasone.

Sensitivity analyses

SVM models validated the separation of the three clusters

form the others with areas under ROC curves in the test dataset

equal to 1.0± 0 for each cluster.

Clinical characteristics and outcomes of
the three AKI phenotypes

Patients from cluster 3 developed less severe AKI than

patients from cluster 1 and 2 (6% [0–13] vs. 28% (15–38) of

KDIGO3 AKI, p = 0.009) and less frequently received RRT

(3% [0–6] vs. 20% (9–29), p = 0.02) (Figure 3A). They also

displayed a higher recovery rate (HR = 1.6 for AKI recovery,

95%CI [1.0; 2.7], p= 0.05, Figure 3B). In addition, patients from

cluster 3 also displayed a distinct metabolic profile, expressing

the impaired metabolism profile at a higher rate (35% (26–43)

vs. 27% (22–31) p = 0.04, Figure 3C), and had a higher hospital

mortality (55% [39-71] vs. 20% (11–29) p < 0.001, Figure 3D).

Finally, only patients from cluster 3 exhibit a significant positive

association between AKI severity and risk of hospital mortality

(Figure 3E).

Altogether, this analytic procedure allowed us to identify

3 clusters of AKI patients, each of them expressing a specific

pattern of factors associated with AKI. These patients also

displayed different clinical characteristics, including different

AKI severity, mortality and recovery.

Discussion

The current definition of AKI is limited as it provides no

information on AKI etiology, prognosis, molecular pathways, or

responses to treatment (36). Here we identified phenotypes of

AKI patients based on their pattern of AKI associated factors,

with distinct characteristics and outcomes.

We first identified factors associated with AKI development.

When considering COVID-19 specific therapy, we found LPV/r

and dexamethasone to be, respectively positively and negatively

correlated to AKI development, in accordance with other groups

(37–41). We also reported well described AKI risk factors,

such as diabetes mellitus and baseline eGFR (42, 43). Finally,
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FIGURE 2

AKI phenotypes’ (A) scatterplot showing the cluster of AKI patients projected on the UMAP, (B) relative importance of each variable across

clusters, (C) shapley Additive Explanation (SHAP) values for each cluster of AKI patients, sorted by impact on AKI prediction. Bars represent the

mean impact of each AKI associated factor for each cluster and dots represent individual patients. LPV/r Lopinavir/Ritonavir, DM Diabetes

Mellitus; DXM Dexamethasone; MV Mechanical Ventilation.

we identified FiO2 and a need for mechanical ventilation at

ICU admission. While high FiO2 may only reflect disease

severity, mechanical ventilation could be causative. Previous

studies already reported an association between mechanical

ventilation requirement and AKI occurrence in COVID-19

patients (44, 45). Animal data has described renal hemodynamic

alterations during invasive mechanical ventilation well (46, 47).

In particular, the PEEP level could play an ambivalent role, with

beneficial effects like lung volume recruitment at the cost of an

increase in central venous pressures (CVP) (48). Elevated CVP

has been associated with reduced renal blood flow, glomerular

filtration rate and urine output (49), as well as activation of

sympathetic nervous system and renin-angiotensin-aldosterone

system and suppression of the atrial natriuretic peptide, all

resulting in kidney injury (49–53).

In our cohort of AKI COVID-19 patients, our pipeline was

able to identify three clusters of patients. At the renal level, while

all patients met the criteria for AKI, each cluster displayed a

distinct phenotype in terms of KDIGO stage and AKI recovery.

In particular, cluster 1 involving patients receiving LPV/r was

characterized by severe AKI with 26% of patients requiring

renal replacement therapy while cluster 3 includes only 3.2% of

dialyzed patients (p=0.008). However, only patients from cluster

3 displayed the commonly accepted association between AKI

severity and mortality. These patients also exhibited a higher

rate of impaired metabolism pattern and a greater severity

(Supplementary Table 2), in line with our previous results (18).

This may suggest that patients from clusters 1 and 2 developed a

distinct form of AKI.

Altogether, these three phenotypes may reflect distinct

pathophysiological mechanisms of AKI development that does

not result in differences in serum creatinine levels.

Beyond these results, this study introduces a pipeline of

analyses, which is able to phenotype AKI patients according to

their pattern of risk factors, with several innovative features.

First, while most of the studies identified AKI risk factors

through logistic regression (45, 54), we used a generalized

additive model with regression splines to capture nonlinear

associations between AKI and potential risk factors. This

method allowed us to identify factors that would have

remained otherwise unnoticed with the traditional approach

(i.e., baseline eGFR, APACHE score and FiO2 at ICU
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FIGURE 3

Clinical outcomes of each cluster: (A) repartition of AKI severity among clusters, according to the KDIGO criteria (B) survival curve showing the

proportion of patients who did not experience AKI recovery, over time and among clusters, (C) relative time spent in each metabolic pattern

according to clusters of AKI patients, (D) cumulative incidence curve of the hospital mortality, stratified on clusters of AKI patients and (E)

predicted risk of hospital death according to the ratio of maximal and baseline serum creatinine level among clusters. eGFR estimated

Glomerular Filtration Rate; RRT Renal Replacement Therapy. p-value < 0.1; *p-value < 0.05; **p-value < 0.001; ***p-value < 0.0001.

admission). Furthermore, we calculated the absolute importance

of each risk factor in estimating the probability of AKI for

each patient. We thus obtained a pattern of risk factors for

each patient that may reflect a specific pathophysiological

mechanism. Existing studies on AKI phenotyping have either

used supervised clustering, mostly on clinical traits (13,

14), or unsupervised clustering based on recorded clinical

or biological data (15–17). Finally, we did not apply the

clustering algorithm on the raw dataset as did other groups

(15–17), but rather on a dimensionally reduced space; a

strategy that has been shown to improve the clustering

performance (33).

Our study has some limitations. The first is that the study

was single-centered which limits the extent of our results.

The second is that being a retrospective study, procedures

and therapeutic strategies may have changed during the study

period. Lastly, because of the low sample size and the use

of a flexible model (i.e., the generalize additive model),

identification of factors associated with AKI may be spurious.

However, the same factors were independently found by three

unsupervised machine learning models with built-in feature

selection. Similarly, a non-linear relation was also confirmed

using the LOESS regression.

In summary, we have developed a new pipeline of

analyses which identified 3 subgroups of AKI patients with

distinct renal features and outcomes that may be related

to specific pathophysiological mechanisms. This pipeline

is generalizable pipeline and may be applied to various

datasets to identify patients with different outcomes and

therapeutic sensitivity.
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