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Abstract

Tumors consist of a hierarchical population of cells that differ in their phenotype and geno-

type. This hierarchical organization of cells means that a few clones (i.e., cells and several

generations of offspring) are abundant while most are rare, which is called clonal domi-

nance. Such dominance also occurred in published in vitro iterated growth and passage

experiments with tumor cells in which genetic barcodes were used for lineage tracing. A

potential source for such heterogeneity is that dominant clones derive from cancer stem

cells with an unlimited self-renewal capacity. Furthermore, ongoing evolution and selection

within the growing population may also induce clonal dominance. To understand how clonal

dominance developed in the iterated growth and passage experiments, we built a computa-

tional model that accurately simulates these experiments. The model simulations repro-

duced the clonal dominance that developed in in vitro iterated growth and passage

experiments when the division rates vary between cells, due to a combination of initial varia-

tion and of ongoing mutational processes. In contrast, the experimental results can neither

be reproduced with a model that considers random growth and passage, nor with a model

based on cancer stem cells. Altogether, our model suggests that in vitro clonal dominance

develops due to selection of fast-dividing clones.

Author summary

Tumors consist of numerous cell populations, i.e., clones, that differ with respect to geno-

type, and potentially with respect to phenotype, and these populations strongly differ in

their size. A limited number of clones tend to dominate tumors, but it remains unclear

how this clonal dominance arises. Potential driving mechanisms are the presence of can-

cer stem cells, which either divide indefinitely of differentiate into cells with a limited divi-

sion potential, and ongoing evolutionary processes within the tumor. Here we use a

computational model to understand how clonal dominance developed during in vitro
growth and passage experiments with cancer cells. Incorporating cancer stem cells in this

model did not result in a match between simulations and in vitro data. In contrast, by con-

sidering all cells to divide indefinitely and division rates to evolve due to the combination
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of division rate variability and selection by passage, our model closely matches the in vitro
data.

Introduction

Intratumoral heterogeneity, the genotypic and phenotypic differences within a single tumor, is

a well known feature of cancer [1] and strongly influences the effectiveness of cancer therapy

[2]. Genotypic heterogeneity is the result of random mutations, and while most of these muta-

tions are neutral passenger mutations, some are functional mutations that add to phenotypic

heterogeneity. Phenotypic differences may also be caused by phenomena such as differential

signaling from the local tumor micro-environment, epigenetic changes, and stochastic gene

expression [3]. Another proposed source of intratumoral, phenotypic heterogeneity is the

presence of so-called cancer stem cells (CSCs) that have an unlimited potential to renew and

can give rise to differentiated cells (DCs) with a limited potential to renew [4]. The presence of

CSCs would result in a tumor containing a mixture of CSCs, and DCs that all derive from a

small number of CSCs.

For a long time, evidence for the presence of CSCs was primarily based on xenograft models

in which transplantation of tumor cells into immunodeficient mice resulted in tumor growth

in only a small fraction of the mice [1, 5], suggesting that only a subset of the tumor cells has

the ability to sustain long-term growth. However, the lack of success of initiating tumor growth

in immunodeficient mice may also be related to the incomplete inhibition of the immune

response [6], or to the dramatic change in tumor micro-environment upon transplantation

[5]. An alternative approach to identify the existence of CSCs is to perform lineage tracing by

fluorescent marking of a subpopulation of cells [7, 8]. For example, Schepers et al. [9] managed

to trace the lineage of CSCs by fluorescently labeling cells expressing stem cell markers in mice

developing intestinal adenomas and thereby showed that all cells in small adenomas descended

from a single stem cell. However, fluorescent labeling of stem cells is not possible in all cancer

types, and for those cancer types an alternative approach is taken by labeling a small fraction

of the tumor cells in animal models. Studies employing this strategy showed that the number

of colored patches reduced during tumor growth, while the size of these patches increased

[10–12]. These observations are compatible with the hypothesis that tumor cells descend from

a small number of CSCs.

Another, high-resolution, approach to lineage tracing is the application of unique genetic

tags, also called cellular barcodes, to a population of tumor cells [13–19]. Tumors grown in

immunodeficient mice injected with barcoded tumor cells are dominated by cells that express

only a small subset of the barcodes [15, 16]. Serial implantation of barcoded leukemic cells

showed that rare clones in one mouse can develop dominance after transplantation into a sec-

ond mouse, indicating that clonal dominance is not a predetermined property of certain clones

[18]. Porter et al. [13] used cellular barcoding to follow the development of clonal dominance

over time in an in vitro setup, thereby controlling the external factors that could affect clonal

dominance. Populations derived from several polyclonal cell lines were barcoded and grown

for three days after which a fraction of the cells was passed on to the next generation. By

repeating this process (Fig 1A) and analyzing the intermediate clone distributions, Porter et al.
[13] showed that clonal dominance progressed over time (Fig 1B). Interestingly, similar exper-

iments with a monoclonal K562 cell line resulted in a minimal progression of clonal domi-

nance, hinting that an intrinsic variability in the cell population may cause the progression of
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clonal dominance. Moreover, random passage could also play a role in developing clonal

dominance.

Although the studies discussed above represent a strong base of evidence for the develop-

ment of clonal dominance in vivo as well as in in vitro tumor cell populations, the mechanism

that drives this dominance remains unknown. The presence of CSCs is consistent with the

induction of clonal dominance, but only in some cancers direct evidence for the involvement

of CSCs is available [5]. Alternatively, evolutionary selection pressure may cause clones with a

higher division or survival rate to dominate the tumor. Hence, it is necessary to further investi-

gate the role of these mechanism in the development of clonal dominance. One way to do this

in a formal way is to construct computational models that incorporate different hypotheses

and compare the outcome of computer simulations to spatio-temporal clonal dynamics

observed experimentally. Such an approach has been used before in numerous studies address-

ing the temporal and spatial evolution of tumor cell populations with CSCs, which are thor-

oughly reviewed in [20]. Several of these modeling studies focused on the development of

spatial tumor heterogeneity by employing cell-based models in which intratumoral heteroge-

neity is induced by CSCs [21, 22], by CSCs and epigenetic changes [23], or by mutations [24].

Here, we built a computational model that simulates the iterated growth and passage experi-

ments described in [13]. By incorporating different hypotheses for the development of clonal

dominance in our model, we show that heritable variability of the rates of cell divisions

amongst tumor cells, which is due to a combination of initial variation and mutational pro-

cesses, is sufficient to induce clonal dominance in iterated growth and passage experiments.

Fig 1. Setup and results of the in vitro iterated growth and passage experiment previously described by Porter et al. [13]. A

Experimental setup. B–E Development of the clone size distribution of polyclonal K562 cells, as obtained from our own analysis of

the FASTQ files published by Porter et al. [13]. Shown are the percentage of clones that remain after each passage (B), the percentage

of clones versus the percentage of the population taken up by those clones (C, mean ± SD and 3 biological replicates shown) and the

Gini coefficient (E; ratio of areas X and Y in D). F Clone loss (left) and Gini coefficient (right) for the in vitro experiments with the

monoclonal K562 cell line. G Clone loss (left) and Gini coefficient (right) for the in vitro experiments with HeLa cells. All error bars

depict the SD of the 3 replicates.

https://doi.org/10.1371/journal.pcbi.1005954.g001
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Results

Re-analysis of published sequencing data

We started by re-analyzing the data for the in vitro experiments with the lentivirally barcoded

cell lines, in order to subsequently make quantitative comparisons with simulation results (see

Methods section for more details). In these previously published experiments, the barcode-

transduced cells were grown and aliquots containing 3 � 105 cells were used to initialize three

biological replicates of the iterated growth and passage experiment. The cells were then, itera-

tively, grown for 3 days after which 3 � 105 cells were passed on to the next generation (Fig 1A).

In agreement with Porter et al. [13], iterated growth and passage with the polyclonal K562

cell line resulted in clone loss (Fig 1B) and progressing clonal dominance (Fig 1C). To evaluate

clonal dominance, we plotted clone size, sorted from large to small, against the cumulative

population fraction for clones of that size (Fig 1C). In the remainder of this paper, we quantify

clonal dominance based on this graph (Fig 1D) by employing the Gini coefficient [25]:

G ¼
1

2C0

XC0

i¼1

XC0

j¼1

jNi � Njj

n

with C0 the number of clones at initialization, Ni the size of clone i, and n the number of cells.

As expected from the observed clone distributions, the Gini coefficient is already greater than

zero at the start of the experiment (indicating mild clonal dominance) and further increases

over time (Fig 1E). We also processed the data for the in vitro experiments with monoclonal

K562 cells (Fig 1F) and with HeLa cells (Fig 1G) and clone loss was in good agreement with

those published in [13] (S1 Fig). The monoclonal K562 cell line exhibits a more limited clone

loss and development of clonal dominance (at time points beyond the initial measurement)

compared to the polyclonal K562 cell line. The HeLa cells show a similar trend as the K562

cells: the number of unique clones declines while clonal dominance increases. However, clone

loss occurred later for the HeLa cells than it did for the polyclonal K562 cells.

Iterated growth and passage reduces the number of clones, but does not

cause progressive clonal dominance

The limited development of clonal dominance during passaging in monoclonal K562 cells

compared to polyclonal K562 cells indicates that chance could play a role in the development

of clonal dominance, hence the most straightforward explanation for the development of

clonal dominance is that the iterated passages cause small clones to completely disappear while

larger clones remain and grow. This hypothesis is supported by Porter’s in vivo experiments in

which no passage occurred and no loss of clones nor clonal dominance was observed [13]. To

test whether clone loss during passage explains clone loss and progressive clonal dominance,

Porter et al. employed a computational model of iterated deterministic growth phases and pas-

sage steps in which a subset of the cells were selected at random, showing that this could par-

tially explain the experimentally observed clone loss but not the development of clonal

dominance (see Methods section of [13]). In these simulations, all clones grow according to

Niðt þ tgrowthÞ ¼ NiðtÞertgrowth , where Ni(t) represents the size of clone i at time t, tgrowth is the

duration of the growth phase, and r is the division rate of the cells. At the end of the passage

interval, npass cells are selected randomly and passed to the next generation (Fig 1A). As a first

step, we confirmed the Porter simulation results using the code that was published with Por-

ter’s paper [13] (https://github.com/adaptivegenome/clusterseq/). We ran simulations starting

with C = 14,000 clones uniformly distributed over 3 � 105 cells and r ¼ 24

19
log ð2Þ to match the

experimentally observed doubling time of 19 hours. As expected, these simulations resulted in
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a moderate reduction of the number of clones (Fig 2A; blue bars). In contrast to the in vitro
results, clonal dominance developed only slightly and hardly increased over time beyond pas-

sage 10 (Fig 2B; blue bars). To test if a realistic initial clone distribution improved the resem-

blance between the experimental observations and the simulation results, we extended the

simulations by employing the initial clone distribution of the polyclonal K562 cell line (Fig 2C)

in which clonal dominance is already slightly developed. In this setting the expected number

of clones left still remained larger than that for the polyclonal K562 cells while the clone distri-

bution was hardly affected (Fig 2A and 2B; green bars).

Porter et al. [13] noted that in simulations in which more cells were passaged, fewer clones

disappeared, indicating that the random process of passage causes some clones to become

smaller and finally disappear. However, because cell division is modeled as a deterministic pro-

cess, the clone sizes, relative to other clones, remain similar over time, and the probability to

disappear for individual clones remains unchanged over time. The assumption of determin-

istic growth would be reasonable for large clones, but for small clones, probabilistic events

could strongly affect the simulation outcome. As shown in Fig 2C, a large part of the clones

contain only a few cells, e.g., *25% of the clones have less than 10 cells. Therefore, we next

explored the effect of stochastic cell division by replacing deterministic growth by a stochastic

growth model using Gillespie’s Stochastic Simulation Algorithm (SSA) [26] (see Methods sec-

tion for details and Table 1 for the model parameters). In contrast with Porter’s deterministic

growth model, passage occurs when the population size reaches the critical population

size ncrit = 4 � 106, which corresponds to approximately 3 days of growth with a population

doubling time of 19 hours. Because growth continues until the critical population size is

reached, the division rate no longer affects the simulation results and we therefore set it to the

arbitrary value of 1. As before, npass cells are then chosen randomly and passed on to the next

generation.

We performed stochastic growth simulations initialized with either a uniform clone distri-

bution (Fig 2A and 2B; purple bars) or the initially observed clone distribution of polyclonal

K562 cells (orange bars). In both cases the results were similar to those with deterministic

growth, albeit with a larger decrease in the number of clones. For simulations with stochastic

growth that were initialized with the polyclonal K562 clone distribution, the clone loss resem-

bles the average in vitro clone loss for passages 10 and 20, but for passage 30 the in vitro clone

loss overtook the simulated clone loss. This suggests that the early clone loss is dominated by

the effects of stochastic division and passage, and that at a later stage another, unknown, mech-

anism further increases clone loss. Altogether, these results indicate that passage and growth

Fig 2. Clonal dominance does not develop during passaging of cells that divide at a fixed rate. A–B Clone loss (A) and Gini coefficient (B) during

iterated growth and passage with either deterministic or stochastic growth and initialized either with a uniform clone size distribution or the initial

distribution for polyclonal K562 cells. All values are the mean of 10 simulations and the error bars represent the SD. C histogram of the initial clone

sizes of polyclonal K562 cells.

https://doi.org/10.1371/journal.pcbi.1005954.g002
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can cause clone loss during passage, but neither of these mechanisms can induce progressive

clonal dominance.

The presence of CSCs does not induce clonal dominance

The presence of cancer stem cells is thought to induce tumor heterogeneity because they gen-

erate a, hierarchically organized, population of cancer stem cells and differentiated cells [27].

To introduce cancer stem cells in our growth model we replaced the unlimited growth in the

stochastic model with a previously published model of cancer stem cell driven growth [28]. In

this model cells are either cancer stem cells (CSCs) that can divide indefinitely, or differenti-

ated cells (DCs) that divide a limited number of times. CSCs proliferate at a division rate of

rCSC and division can result either in two stem cells (with probability p1), in a stem cell and a

differentiated cell (with probability p2), or in two differentiated cells (with probability p3)

(Fig 3A). Differentiated cells proliferate at a division rate rDC until they reach their maximum

number of divisions M, after which, following Weekes et al. [28], they die with a rate rDC. We

did not consider random cell death of cancer stem cells and differentiated cells, because this

process only affects the population growth rate.

We fine-tuned the parameters of the CSC growth model such that the population growth

rate is consistent with the 19 hour doubling time reported by Porter et al. [13]. For this we

exploited the analytical solution of the CSC model elegantly derived by Weekes et al. [28]. This

solution predicts that the population of cells initially grows, and then develops according to

one of three growth regimes determined by β = (p1 − p3)rCSC. When β> 0, the population con-

tinues to grow, when β = 0 the population reaches an equilibrium, and when β< 0 the popula-

tion will eventually go extinct. Because the in vitro cells were reported to be in “log phase
growth” [13], we limited the parameter space to β> 0 by setting p3 to 0, which ensures a

Table 1. Parameters of the stochastic growth and passage models.

parameter symbol default value unit

Iterated growth & passage
population size after passage npass 3 � 105 cells

maximum population size ncrit 4 � 106 cells

number of passages 30

Tau leaping algorithm
tau leap step τ .0005 days

Stochastic growth model
division rate r 1 day-1

CSC growth model
symmetric division probability p1 0.5

asymmetric division probability p2 0.5

symmetric commitment probability p3 0

initial CSC fraction CSC0 5%

maximum DC age M 10 divisions

CSC division rate rCSC 1 day-1

DC division rate rDC
24

19
day-1

Agent-based model
mean initial division rate r0 1 day-1

initial division rate SD s�
0

0

mutation SD s�m 0

https://doi.org/10.1371/journal.pcbi.1005954.t001
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monotonically growing cell population. A complicating factor is that the parameters determin-

ing β do not affect the growth in the first couple of days. Instead, during this time interval,

growth is determined by the division rate of DCs (rDC) relative to that of CSCs (rDC), and the

maximum age of DCs (M). Therefore, we explored how much the simulated population dou-

bling time deviates from the experimental doubling time of 19 hours when M and rDC were

varied while the other simulation parameters remained at their default value according to

Table 1 (Fig 3B). This exploration resulted in a well-defined parameter range for which the in
vitro doubling time could be reproduced in silico.

To illustrate the clonal development of the CSC growth model, we tested the model for sev-

eral parameter sets from the region that matches with the experimentally observed population

growth rate (Fig 3B; crosses). The simulations showed that the maximum age of DCs or the

CSC division rate hardly affect clonal development (Fig 3C and 3D). Furthermore, an at first

sight surprisingly strong reduction in clone number occurred in the simulations while the

clone distribution remained virtually unchanged (Fig 3C and 3D). The dramatic reduction in

clone number can readily be explained: clones frequently loose all CSCs during passage, which

takes away the long-term self-renewal capacity of such clones. We tested this explanation by

varying the initial percentage of CSCs and the probability of a symmetric CSC differentiation

while keeping the other parameters constant (Table 1 and white cross in Fig 3B). In line with

our explanation for the massive clone loss, increasing the probability of symmetric CSC divi-

sion strongly reduced clone loss (Fig 3E). Increasing the initial percentage of stem cells had a

Fig 3. Simulations with CSC model result in massive clone loss and no development of clonal dominance. A Scheme illustrating the

divisions and cell death in the CSC growth model. B Heatmap showing the difference between in vitro and simulated population doubling time

(19 hours) depending on the maximum number of DC divisions (M) and DC division rates (rDC) in the CSC growth model. The white cross

denotes the default model settings and the black crosses depict several alternative parameter sets that result in a similar population doubling

time. C–D Clone loss (C) and Gini coefficient (D) for the parameter sets highlighted in B and all other parameters as in Table 1. E–F Effect of

symmetric CSC division probability (p1) and initial CSC percentage (CSC0) on clone loss (E) and Gini coefficient (F), with all other parameters

as in Table 1. All values are the mean of 10 simulation replicates with the error bars depicting the SD.

https://doi.org/10.1371/journal.pcbi.1005954.g003
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less pronounced effect on clone loss (Fig 3E), which fits with the observation in [28] that the

proportion of CSCs in the population will become constant in the long term and does not

depend on the initial percentage of CSCs. Altogether, increasing the probability of a symmetric

CSC to 1 and the initial CSC percentage to 100% did not lead to clone loss matching that

observed experimentally. Moreover, changing these parameters had only little effect on clonal

dominance (Fig 3F). The lack of progression of clonal dominance over time can be explained

by a lack in difference between the clones: although in the long run all cells descend from only

a few clones, there is no difference in the speed at which each clone generates offspring. In con-

clusion, incorporating CSC growth into our passaging simulation resulted in a poor match to

the experimental observations because far too many clones disappeared and the distribution of

the remaining clones did not exhibit clonal dominance.

A model with evolving division rates results in clone loss and increasing

clonal dominance

Because neither simulations with random growth and passaging of tumor cells nor simulations

incorporating CSC growth can explain the development of clonal dominance, we next consid-

ered intrinsic variability of growth characteristics as a source of clonal dominance develop-

ment. To this purpose, we let go of the distinction between cell types and let all cells divide

with their own division rate ri, that is subject to mutations. Note that the term mutation is used

here to describe any change in a cell’s phenotype that can be inherited, which includes both

genetic and epigenetic changes. Mutation of cellular properties requires the explicit represen-

tation of single cells, therefore we can no longer use Gillespie’s SSA because clones rather than

single cells are explicitly described in that type of simulation. Therefore, we implemented an

agent based model (ABM) in which each cell is represented explicitly, and both a barcode and

division rate are associated to each cell.

In the ABM there are two sources for division rate variability. First, the division rate of cells

at initialization may vary due to prior mutations. To implement this, the division rate of each

cell is initialized to ri = Xi r0, with ri the cell’s division rate, r0 the mean division rate of all cells

and Xi taken from a normal distribution with mean 1 and SD s�
0
. Second, mutations are

included by setting the division rate of each offspring to ri = Yirp, with Yi taken from a normal

distribution with mean 1 and SD s�m, and rp the division rate of the parent cell. Further details

on the implementation of the ABM can be found in the Methods.

To test if the ABM can induce similar clone loss (Fig 4A) and clonal dominance (Fig 4B) as

observed in vitro, we ran simulations for a range of initial division rate SDs (s�
0
) and mutation

SDs (s�m), all initialized using the initial distribution of the polyclonal K562 cells. Note that we

did not vary the initial mean division rate (r0) because this parameter does not affect the simu-

lation results (S2 Fig). The resulting ranges of clone loss and Gini coefficient do indeed include

those observed for the polyclonal K562 cells. Furthermore, simulations with division rates that

vary due to either initial variation (s�
0
> 0) or mutations (s0

m > 0Þ result in higher levels of

clone loss and a higher Gini coefficient compared to simulations without any variation

(s�
0
¼ s�m ¼ 0). Thus, the ABM that describes evolution of division rate variability has the

potential to match the in vitro results.

Fitting the ABM describing division rate evolution to the K562 data

To fine-tune the model for the polyclonal K562 cell line measurements, we perform a maxi-

mum likelihood estimation (MLE) for the simulations shown in Fig 4 to identify the best fit-

ting values for s�
0

and s�m. For this we consider the errors of all metrics included in the MLE to

Heritable tumor cell division rate heterogeneity induces clonal dominance
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be normally distributed, so we can use the following definition of the loglikelihood:

‘ðs�
0
; s�mÞ �

X

m2 metrics

X

P2passages

�
ð �mðPÞ � mm;PÞ

2

2s2
m;P

with �mðPÞ the mean of 10 simulations for metric m at passage P, and μm,P and σm,P respectively

the mean and SD of the three polyclonal K562 replicates for metric m at passage P. Using pas-

sages 10, 20, and 30, and either the fraction of clones left, the Gini coefficient, or both metrics,

we obtained heatmaps of the likelihood (Fig 5A–5C). The simulated clone loss is quite similar

to that for the polyclonal K562 cells (Fig 5A), independent of s�m and s�
0
. This fits with the pre-

vious observation that a model with stochastic growth, but with identical division rates for all

cells, already closely fits clone loss (Fig 4A). In contrast, the Gini coefficient only fits well for a

defined region of parameter values (Fig 5B) and as a result this metric dominates the MLE

based on both parameters (Fig 5C).

The area of best matching parameter sets also includes sets without mutation or initial divi-

sion rate variation, suggesting that the source of the division rate variability cannot be deter-

mined. However, it seems most likely that both mechanisms are active because mutations

before the experiment started would already induce initial division rate variation and these

mutations continue to happen upon cell division. Consistent with this, the best fit corresponds

to a model that includes both mechanisms (s�
0
¼ 0:036 and s�m ¼ 0:0018) and the simulation

results are close to the experimentally observed Gini coefficient (Fig 5D) and clone loss

(Fig 5E). Furthermore, major clones, i.e., clones representing more than 1% of the population,

do develop in the ABM simulations (Fig 5F) while the mean division rate of the population

only increases with 10% (Fig 5G).

To test the effect of initially present heterogeneity on clone loss and the development of

clonal dominance, Porter et al. [13] created a monoclonal K562 cell line and showed that clone

loss was reduced and clonal dominance only slightly developed (Fig 1F). Because this cell line

was derived from a single cell, it is expected to have a lower initial variation yet similar

Fig 4. The ABM that describes evolution of division rate variability induces clone loss and clonal dominance. A–B Clone loss

(A) and Gini coefficient (B) for a range of initial division rate SDs (s�
0
) and mutation SDs (s�m), with all other parameters as in

Table 1 and all data points representing the mean for 10 simulations.

https://doi.org/10.1371/journal.pcbi.1005954.g004
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mutation dynamics as other K562 cells. We tested this hypothesis by running a parameter

sweep for s�
0

and s�m in which each simulation starts with the initial distribution of the mono-

clonal K562 cells.

Performing an MLE for either clone loss (Fig 6A) or the Gini coefficient (Fig 6B), we found

that our model fails to produce a good fit for the clone loss (the maximum ℓ in Fig 6A is -780),

while the fit for the Gini coefficient is much better (the maximum ℓ in Fig 6B is -40). In line

with our expectations, the optimal fit of the Gini coefficient occurs at a s�
0

that is clearly lower

than the optimal fit for the polyclonal K562 data (cf. Fig 5B). Moreover, the best-fitting s�m val-

ues for mono- and polyclonal K562 data are similar.

Although the optimal fitting parameters for the Gini coefficient show a close fit for the Gini

coefficient (Fig 6C), this same parameter set produces a clone loss that follows a similar pattern

as the monoclonal K562 cells, but the simulated clone loss is much higher (Fig 6D). However,

the overestimation of clone loss by our model may actually be an underestimation of in vitro
clone loss that is quantified by the PCR and sequencing procedure. Because any clone that had

a barcode in the reference library is counted, so-called spurious reads may cause false positives

and thus underestimate actual clone loss. These reads are at least partly the result of systematic

errors that are common with next-generation sequencing methods [29]. Porter et al. [13] ele-

gantly showed that the sequencing results were reproducible by pair-wise comparing the clone

frequencies in four samples of the plasmid library. Nevertheless, this analysis does not

completely rule out spurious reads because read errors are correlated to specific base sequences

[30] and such errors are expected to occur at similar frequencies in each replicate [31]. To test

the effect of spurious reads we artificially ‘contaminated’ the clone sizes returned by the simu-

lations with spurious reads (see details in S1 File). This analysis showed that such spurious

reads can decrease clone loss to such an extent that the model matches in vitro clone loss. The

Fig 5. ABM simulations describing evolution of division rate variability match results for polyclonal K562 cell line. A–B

Maximum Likelihood estimator (ℓ) based on the percentage of clones lost (A), on the Gini coefficient (B), and on both metrics (C)

for a range of initial division rate SDs (s�
0
) and mutation SDs (s�m). Note that we plot −ℓ in these plots and thus its minimum value is

sought. D–E comparison of clone loss (D) and clonal dominance (E) observed in simulations with the best fitting parameter values

for the Gini coefficient (red rectangle in B) and in the experiments with polyclonal K562 cells. F Comparison of the number of major

clones, i.e. clones representing more than 1% of the population, developing in simulations with the parameter set highlighted by the

red rectangle in B and in the experiments with polyclonal K562 cells. G Evolution of the mean division rate with the best fitting

parameter values for the Gini coefficient. All simulation results are the mean of 10 simulations and the results for the polyclonal

K562 cells are the mean of 3 replicates, with the error bars or colored areas representing the SD.

https://doi.org/10.1371/journal.pcbi.1005954.g005
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effect of spurious reads on the Gini coefficient was less pronounced, arguing in favour of fit-

ting to the Gini coefficient rather than to clone loss data or to a combination of the two met-

rics. Furthermore, results were similar for the HeLa cells, i.e. for that cell line clone loss was

not matched well whereas the Gini coefficient and the number of major clones was (for details

see S2 File). Altogether, these results indicate that variation in division rates explains the

dynamics of the clone size distribution described by Porter et al. [13].

Discussion

Employing a simple model of stochastic cell division and passage, we showed that most of the

clone loss taking place during passage, observed by Porter et al. [13], is due to the random loss

of clones during passage. In contrast, the progressive clonal dominance that developed in the

same experiments, cannot at all be explained by random clone loss. Extending the simulations

with indefinitely dividing CSCs and DCs with limited division capacity did not induce pro-

gressive clonal dominance and led to a much larger clone loss than observed experimentally.

However, a model in which variability of division rates was present and was subject to an evo-

lutionary selection pressure resulted in a progressive clonal dominance matching the domi-

nance observed experimentally. The level of correspondence between clone loss and the

simulations varied per tested cell line, which we hypothesize to result from errors during

sequencing as these are known to occur frequently and at a reproducible rate [29, 31]. We

showed that indeed such errors have a much larger effect on the measured clone loss than on

the Gini coefficient, which we used to characterize clonal dominance.

Altogether, our model provides strong evidence that heritable division rate variation rather

than the presence of CSCs induces the changes in clonal distribution observed by Porter et al.
[13]. Note that our model was set up to mimic in vitro growth and cannot be directly extrapo-

lated to predict the development of heterogeneity within real tumors, because in that case

spatial effects such as contact inhibition of growth and signals from the tumor micro-environ-

ment are likely to play a role. Nevertheless, our simulations elucidate which effect evolution of

division rates can have on the clonality of a cell population, and such effects are likely to also

be important in vivo. For example, several in vivo, microscopy-based, lineage tracing studies

Fig 6. ABM simulations match the limited clonal dominance development for the monoclonal K562 cell line. A–B

Maximum Likelihood estimator (ℓ) based on clone loss (A) or Gini coefficient (B), for a range of initial division rate

SDs (s�
0
) and mutation SDs (s�m). C–D Clone loss (C) and clonal dominance (D) in simulations, with the parameters

from the red rectangle in B, and in the experiments with monoclonal K562 cells. All simulation results are the mean of

10 runs and the results for the monoclonal K562 cells are the mean of 3 replicates, with the error bars representing the

SD.

https://doi.org/10.1371/journal.pcbi.1005954.g006
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[10, 11], ascribe the development of large monochromatic patches from a mosaic pattern to

CSCs. Based on these observations, Driessens et al. [10] proposed a mathematical model with

CSCs and DCs that closely fitted the clone sizes they observed in their experiments with skin

papillomas. However, their model considered CSCs to divide twice as fast as DCs, while CSCs

are typically thought to divide slower or at a similar rate as DCs [4]. It would therefore be inter-

esting to investigate whether division rate variability could also contribute to such in vivo line-

age tracing data.

Although there is in general ample evidence for the existence of CSCs [1, 3, 4], our model

results do not point to a role for CSCs in the experiments of Porter et al. Indeed, in the CSC

growth model with division rate heterogeneity, clonal dominance appeared in combination

with a massive clone loss. This clone loss occurred because only clones that had a CSC at ini-

tialization had any chance of generating offspring in the long term, and even those clones

could disappear when CSCs were accidentally lost during passage. Consistent with this expla-

nation, removing the distinction between CSCs and DCs in our model, led to clone loss closely

matching the experimental observations. Recent studies showed that the CSC fate is plastic,

meaning that differentiated cancer cells sometimes can become CSCs [4, 32]. This CSC plastic-

ity might provide an alternative mechanism to prevent clone loss, by enabling clones to (re)

acquire CSCs. Adding such plasticity to our CSC growth model would give all clones the

potential to generate offspring indefinitely, making it similar to a model in which all cells

divide indefinitely, and should thus be able to fit in vitro clone loss. To test if such a model

with clonal evolution of division rates would develop clonal dominance we extended the CSC

model with heritable heterogeneous division rates (see Methods). Simulation with this model

indeed showed that clonal dominance develops (see S3 Fig). However, in order to limit clone

loss, it was required to have a high probability of symmetric CSC division and a large fraction

of initial CSCs in the simulations. Therefore, we expect that a model with CSC plasticity can

only reproduce the in vitro findings when the transition from DC to CSC is common.

Reproducing the in vitro results in our simulation was possible when we considered the

division rates of tumor cells to vary between clones and to be fully and directly inherited from

the parent cell (although the rate could be changed by mutation). Whereas classical studies

have provided ample evidence for division rate heterogeneity among tumor cells [33–35], we

are unaware of observations of its full and direct inheritance. Nevertheless, Gray et al. [33]

showed that when melanoma cells are iteratively grown in mice, isolated, and transferred into

new mice, the tumor growth speed increased every generation, which indicates that fast divid-

ing cells generate offspring that also divide fast. More recent work further supports the

assumption of heritable division rates by showing a strong, positive, correlation in the division

rate of B-cell siblings [36]. However, other studies have shown that the division times of breast

cancer cells correspond less between parents and offspring than between siblings [37], and that

in lymphoblasts the division times of parents and offspring do not correlate at all [38]. These

findings indicate that the child’s division rate is not a direct copy of the parent’s division rate.

Sandler et al. [37] propose a kicked cell cycle model where the cell cycle length is determined by

the level of an oscillating protein which is inherited from the parent and the phase of this pro-

tein determines the time between birth and division. Hence, such a model results in similar

division times for siblings, while the correlation between division times of parents and off-

spring depends on the cell cycle duration [37]. These observations show the need for a better

understanding of how the division rate of child cells depend on the parent, which can be

achieved from lineage tracing studies employing imaging of multiple divisions over time.

While our model explains the strong clonal dominance evolving over time in vitro, it does

not perfectly match all in vitro observations of Porter et al. [13]. The main discrepancy is that

our model overestimates the clone loss observed with monoclonal K562 cells or HeLa cells
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(and is also slightly off for polyclonal K562 cells). Clone loss is minimal when we omit all divi-

sion rate variation (Fig 2A), but even in such simulations clone loss is overestimated. Clone

loss can also be reduced by increasing the percentage of clones that is passed (S4A Fig), how-

ever this also reduces clonal dominance (S4B Fig). Alternatively, it could be that passaging

occurs with a bias for small clones to survive passaging, for instance when clones closely attach

to each other in vitro and small groups of attached cells are more likely to be selected for pas-

saging than large groups. However, this explanation seems unlikely considering that trypsini-

zation was sufficient to detach any adhering cells. Therefore, we consider it likely that in vitro
clone loss was actually underestimated in the experimental data due to the presence of spuri-

ous reads. Our analysis (S1 File) confirmed that our model would better fit the in vitro data if

such spurious reads are included in the simulation results.

Altogether, in this work we used a computational approach to test different hypotheses for

the development of clonal dominance and showed that only the presence and evolution of

division rate heterogeneity, can reproduce the experimental observations. Hence, this study

showcases the value of computational modeling in the interpretation of experimental results.

In the future, the model could be further extended to improve its power, especially for compar-

ison with in vivo data. For this, the model should be extended with an explicit representation

of space and physical interactions between cells [39]. With such a model it becomes possible to

explore the consequences of division rate variability while comparing with intra-vital images

studies.

Methods

Analysis of sequencing data

The sequencing data were downloaded from the NIH Sequence Read Archive (https://www.

ncbi.nlm.nih.gov/sra/SRX535233) using the SRA Toolkit. The downloaded FASTQ files were

processed with our own code (S3 File), which collects all barcodes for which the read quality is

56 or higher and counts the occurrence of each barcode. We used our own code rather than

the ClusterSeq code (i.e., the code developed and used in Porter et al. [13]), because ClusterSeq

clusters barcodes for each dataset separately, which may result in identical barcodes ending up

in a different cluster at different time steps of the same experiment.

To generate a reference library for the cell lines barcoded with the lentiviral vector, we

merged the four plasmid library samples, excluding any barcode with a frequency smaller than

0.0002% or that appeared in only one biological replicate. The resulting reference library, con-

taining 13325 barcodes, was then used to select only these known barcodes from the experi-

mental data (S1 Dataset). Finally, we processed the FASTQ files containing the reads for the

experiments with the polyclonal K562, monoclonal K562, and HeLa cell lines. The full process-

ing of these files is outlined in S3 File.

SSA model of stochastic growth and passage

In order to understand the clone size dynamics of tumour cells, we employed Gillespie’s Sto-

chastic Simulation Algorithm (SSA) [26] to simulate the growth and passage of a cell popula-

tion. The SSA allows to follow the size Ni of each clone i over time rather than that of single

cells and we applied this to the polyclonal K562 cell line. The simulations were initialized

based on the read counts for this cell line at passage 0 (see S2 Dataset), which contains the

counts for nlibrary = 13325 unique barcodes. Hence, we initialized Ni for 1� i� nlibrary as

Nið0Þ ¼
npass

nlibrary
NK562;i, where NK562,i is the read count for clone i in the polyclonal K562 sample

Heritable tumor cell division rate heterogeneity induces clonal dominance
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and npass = 3 � 105 is the number of cells that are selected during passaging (i.e., also for the ini-

tial passage).

The simulations closely follow the experimental procedure of iterated growth and passage:

the initial population of 3 � 105 cells grows until the critical population size ncrit = 4 � 106 is

reached, then npass cells are selected randomly and taken to the next generation. We imple-

mented the SSA using the τ-leaping algorithm [40], in which size Ni of clone i is described by:

Niðt þ tÞ ¼ NiðtÞ þ ki ð1Þ

with time step τ, and ki taken from a Poisson distribution with mean rNi(t)τ, where r denotes

the division rate. These τ leaps are performed until the population size n ¼
PC

i¼0
Ni � npass,

where C is the number of clones. We set τ = 0.0005, which resulted in a simulation time of typ-

ically *100 seconds (for *12,000 clones with one species and r = 1) with similar results as for

lower τ values (S5 Fig). The source code of the simulations can be found in S4 File.

To test how CSC driven growth affects the clone size evolution, we incorporated a previ-

ously published model of CSC driven growth [28]. In this model CSCs proliferate at a division

rate of rCSC and division can result either in two CSCs with probability p1, in a CSC and a DC

with probability p2, or in DCs with probability p3 (Fig 3A). DCs proliferate at a division rate

rDC until they reach their maximum number of divisions M and then, following Weekes et al.
[28], they die with a rate rDC. For simplicity, we did not consider random cell death of CSCs

and DCs, because this process only affects the population division rate. This division scheme is

incorporated in the growth model by defining for each clone i the number of CSCs NCSC,i and

the number of DCs NDCm,i of age m (where m can take values ranging from 0 to the maximum

age M). Then, for each clone i there are 5 possible transitions:

1. CSC! 2CSC: NCSC,i(t + τ) = NCSC,i(t) + ki;

2. CSC! CSC + DC: NDC0,i(t + τ) = NDC0,i(t) + ki;

3. CSC! 2DC: NCSC,i(t + τ) = NCSC,i(t) − ki and NDC0,i(t + τ) = NDC0,i(t) + 2ki;

4. DCm! 2DCm + 1: NDCm,i(t + τ) = NDCm,i(t) − ki and NDCm+1,i(t + τ) = NDCm+1,i(t) + 2ki for

0�m<M;

5. DCM !: NDCM,i(t + τ) = NDCM,i(t) − ki,

where ki is obtained as described above, except for transitions 1-3 where the CSC division rate

is multiplied by the respective transition probability. At initialization, the number of CSCs in

each clone is set to NCSC,i = CSC0Ni, rounded to the nearest integer. The remaining cells are

distributed evenly over the M DC species, while rounding to the lowest integer:

NDC;i ¼ b
1

M ð1 � CSC0ÞNic 8 0 � i � M. When, due to rounding, NCSC;i þ
PM

i¼0
NDC;i < Ni, the

remaining cells are randomly distributed over all species of clone i. Note that the actual frac-

tion of CSCs and DCs of varying ages will settle to equilibrium values that depend on the CSC

and DC division rate and the probabilities for the CSC division modes [28], and that the initial

CSC fraction therefore does not strongly affect simulation outcome (see Fig 3E).

To test the effect of division rate heterogeneity on the development of the clone size distri-

bution, the division rates ri,CSC and ri,DC of each clone i are multiplied by a randomly chosen

value Xi that is obtained from a normal distribution with mean 1 and SD s�r , and Xi is set to 0

when Xi<0. Note that s�r is the division rate SD relative to the mean division rate; the actual

division rate SD is s�r � r. Because Xi is linked to clone i, the division rates are inherited upon

division.
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ABM of stochastic growth and passage

The agent based model (ABM) differs from the SSA model in the explicit representation of

individual cells rather than of clones. In the ABM, each cell i has a barcode bi and a division

rate ri. All simulations are initialized based on sequencing data of either the polyclonal K562

cells, the monoclonal K562 cells, or the (polyclonal) HeLa cells, which can all be found in S2

Dataset. First, we create a master population from which the initial population of each replicate

is selected. The master population consists of 5 � 106 cells, each of which contains a barcode fol-

lowing read abundance in the sequencing data, such that the relative abundance of the bar-

codes is initially correct. Then, a division rate ri = r0 max(X, 0) is assigned to each cell in the

master population, where X is randomly drawn from a normal distribution with mean 1 and

SD s�
0
, and r0 is the initial mean division rate. The seed of the random number generator used

for division rate selection is kept constant across simulation replicates such that the same divi-

sion rate is associated with the same cell and the same barcode in every replicate. Finally, ninit

cells are taken from the initial population to be used in the simulation of iterated growth and

passage. Note that the initialization omits the clonal dynamics during the 8 to 9 days before the

growth & passage experiments started. During this time interval, a within-clone correlation of

the division rates likely develops, which is missing in the simulated cell population. As a result

the model does not reproduce the overlap between major clones that was observed by Porter

et al. [13].

Division is modeled using the dynamic Monte Carlo method [41] implemented with a

first reaction method. Whenever a cell is created, either during initialization or after

division, the next division time for that cell is assigned according to ti ¼ � ln R
ri

, where ri is

the cell’s division rate and R is a random number from a uniform distribution between 0

and 1. Then, by creating an ordered list of next division times, population growth can be

simulated efficiently. When division occurs, a new division rate rc is assigned to each newly

created cell according to rc = rp max(Y, 0) with rp the parent’s division rate and Y taken from

a normal distribution with mean 1 and SD s�m. Note that s�
0

is the initial division rate SD rela-

tive to r0; the actual SD of the initial division rates is s�
0
� r0. As in the SSA, division continues

until the population size reaches its maximum ncrit after which npass cells are randomly

selected and passed to the next generation. The source code of the simulations can be found

in S5 File.

Note that there are some implementation differences between the aforementioned

SSA model and the ABM, which result in small quantitative differences in the simulation

results. These differences occur for two reasons: First, growth is slightly underestimated in the

SSA model, and the exact underestimation depends on the clone size. Second, a clone in the

ABM can include cells with different division rates, which is not the case in Gillespie

simulations.

Supporting information

S1 Fig. Comparison of clone number in [13] and in our analysis. A Polyclonal K562 cells. B

Monoclonal K562 cells. C HeLa cells. The values in the original publication were retrieved

from [13] (Fig 3f, Additional File 5d, and Additional File 12d), whereas a description of our

analysis can be found in the Methods.

(EPS)

S2 Fig. The initial mean division rate in the ABM does not affect the clone size distribu-

tion. Clone loss (left panel) and Gini coefficient (right panel) for a series of simulations with

s�
0
¼ 0:036 and s�r ¼ 0:0018 and varying values of the initial mean division rate r0. All data
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points are the mean of 10 simulations and shaded areas (only visible for the non-solid lines)

represent the SD.

(EPS)

S3 Fig. Clonal dominance develops in simulations with the CSC growth model and division

rate variability. A–B Gini coefficient (A) and clone loss (B) in a simulation with s�r ¼ 0:05.

C–D Relation between the division rate SD and Gini coefficient (C) or clone loss (D), with the

horizontal lines in C denoting the corresponding experimental values for the polyclonal K562

cell line. E Clone loss for simulations with a varying initial CSC percentage (CSC0) and sym-

metric CSC division probability (p1). The maximum of each colormap is set to the average

clone loss, at the respective passage, of the three biological replicates. All values are the mean

of 10 simulation replicates and the error bars (A–B) and the shaded areas (C–D) represent the

SD.

(EPS)

S4 Fig. Increasing the number of cells passed reduces clone loss and clonal dominance.

A–B Clone loss (A) and Gini coefficient (B) for a varying percentage of passed cells (relative to

ncrit). All data points are the mean of 10 simulations and shaded areas (only visible for the

non-solid lines) represent the SD.

(EPS)

S5 Fig. Effect of the simulation time step on the Gillespie simulations. A-C Effect of the

time step (τ) on the simulation time (A), on the clone loss (B) and on the Gini coefficient(C).

The vertical dashed line marks the τ used for all simulations. All points are the mean of 10 sim-

ulation replicates and the shaded areas (only visible in C) represent the SD.

(EPS)

S1 File. Analysis of the effects of spurious clones on simulated clone loss and gini coeffi-

cient.

(PDF)

S2 File. Comparison of the ABM describing division rate evolution to the HeLa data.

(PDF)

S3 File. Analysis of the FASTQ files. File contains an executable jupyter notebook and a pdf

print of that notebook as well as all code needed to process the FASTQ files.

(ZIP)

S4 File. Archive containing the source code for the SSA model. This code can also be found

at https://github.com/lacdr-tox/ClonalGrowthSimulator_SSA.

(ZIP)

S5 File. Archive containing the source code for the ABM. This code can also be found at

https://github.com/lacdr-tox/ClonalGrowthSimulator_ABM.

(ZIP)

S1 Dataset. Reference library used for the analysis of the experimental data.

(ZIP)

S2 Dataset. Barcode counts of the polyclonal K562 cell line barcoded with the lentiviral

vector, at passage 0.

(ZIP)
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