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Abstract

Drosophila embryos are well studied developmental microcosms that have been used extensively as models for early
development and more recently wound repair. Here we extend this work by looking at embryos as model systems for
following bacterial infection in real time. We examine the behaviour of injected pathogenic (Photorhabdus asymbiotica) and
non-pathogenic (Escherichia coli) bacteria and their interaction with embryonic hemocytes using time-lapse confocal
microscopy. We find that embryonic hemocytes both recognise and phagocytose injected wild type, non-pathogenic E. coli
in a Dscam independent manner, proving that embryonic hemocytes are phagocytically competent. In contrast, injection of
bacterial cells of the insect pathogen Photorhabdus leads to a rapid ‘freezing’ phenotype of the hemocytes associated with
significant rearrangement of the actin cytoskeleton. This freezing phenotype can be phenocopied by either injection of the
purified insecticidal toxin Makes Caterpillars Floppy 1 (Mcf1) or by recombinant E. coli expressing the mcf1 gene. Mcf1
mediated hemocyte freezing is shibire dependent, suggesting that endocytosis is required for Mcf1 toxicity and can be
modulated by dominant negative or constitutively active Rac expression, suggesting early and unexpected effects of Mcf1
on the actin cytoskeleton. Together these data show how Drosophila embryos can be used to track bacterial infection in real
time and how mutant analysis can be used to genetically dissect the effects of specific bacterial virulence factors.

Citation: Vlisidou I, Dowling AJ, Evans IR, Waterfield N, ffrench-Constant RH, et al. (2009) Drosophila Embryos as Model Systems for Monitoring Bacterial Infection
in Real Time. PLoS Pathog 5(7): e1000518. doi:10.1371/journal.ppat.1000518

Editor: David S. Schneider, Stanford University, United States of America

Received November 19, 2008; Accepted June 19, 2009; Published July 17, 2009

Copyright: � 2009 Vlisidou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Wellcome Trust fellowship (www.wellcome.ac.uk) to WW (grant number 078400/Z/05/Z) and a joint BBSRC grant (www.
bbsrc.ac.uk) to NW and RffC (grant number BB/E021328/1). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: w.wood@bath.ac.uk

. These authors contributed equally to this work.

Introduction

Drosophila is now widely established as a useful genetic model for

looking at microbial infection with recent studies now encompass-

ing both bacterial [1], viral [2] and even fungal infections [3].

Different Drosophila infection models have also begun to mimic

different types of infections. For example, several groups are now

developing systems in which to examine bacterial intestinal

infections [4] as well as the more highly studied model of septic

injury involving injection of bacteria directly into the open insect

blood system or hemocoel.

Within each of these infection models, three different aspects of

infection can be examined [5]. First, the innate immune response,

the mechanism whereby the fly attempts to kill, isolate or

neutralize the invading microbe. Second, microbial virulence,

the mechanism whereby the invading microbe seeks to evade or

overcome the host immune response. Finally, third, changes in

host pathology that can relate either to adverse effects generated

by the invading microbe or indeed the host immune response itself

[5]. Whilst it is easy to recognize these three aspects of infection it

is often harder to examine the interactions between them. It is

possible, for example, to examine the effects of a recombinant

bacterial toxin on infection, but it is more difficult to examine the

role of specific virulence factors in neutralizing specific elements of

the immune system, such as phagocytes. Consequently, despite the

extensive and highly successful efforts of many researchers to

develop infection models in Drosophila, the outcomes of infection

are often measured by end-points such as insect death (survival of a

cohort of insects over time) or changes in cell morphology at fixed

periods throughout infection (often monitored by staining different

elements of the cytoskeleton). Although this problem can, to some

extent, be addressed by the use of reporter constructs (e.g.

Diptericin-LacZ) that provide quantitative or visual read-outs from

specific immune response genes, we still lack the ability to follow

bacterial infections in real-time in the critical early stages of

infection. We are therefore unable to visualise the outcome of the

first interactions between insect phagocytes and invading mi-

crobes, interactions that will determine the future success of the

infection itself. To address this need, here we use Drosophila

embryos, specifically embryonic hemocytes, as models for studying

the early stages of infection in real-time using time lapse confocal

microscopy.

Drosophila embryos and their development are extremely well

documented and recent attention has focused on the role of the

embryonic hemocytes in early embryonic development. Embry-

onic hemocytes are highly motile macrophage-like cells that
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migrate throughout the developing embryo following stereotypical

routes to disperse from their point of origin to eventually distribute

themselves equally throughout the animal by late embryonic stages

[6,7]. During their migration hemocytes play many important

roles in development including the phagocytic clearance of

apoptotic cells within the embryo, as well as the production and

secretion of many extracellular matrix proteins [8]. They are also

essential for the proper development of many key structures such

as the gut and Central nervous system [9].

Although these developmental roles are well documented it is

less clear how competent these cells are to respond to infection and

whether they play a significant role in the immune response of the

embryo. Embryonic hemocytes lend themselves beautifully to live

imaging studies since fluorescent probes can be expressed

specifically in these cells using hemocyte specific promoters and

their movements subsequently imaged within living embryos using

confocal timelapse microscopy. Drosophila embryos therefore

represent an easily injectable, containable and closed experimental

system into which bacteria can be injected and their subsequent

interactions with resident hemocytes observed in real time.

Many of the studies developing Drosophila as models for bacterial

infections have used bacteria pathogenic to man [5]. Thus several

studies have used Pseudomonas aeruginosa, Salmonella typhimurium,

Staphylococcus aureus or Vibrio cholera to look at insects as models for

mammalian infection [10–15]. However, the role of insect specific

pathogens, or pathogens capable of infecting both insects and

man, has been less well studied. We have been developing the

Gram-negative bacterium Photorhabdus asymbiotica as a model

system in which to study cross-talk between virulence factors

developed against insects that can also be deployed against

mammalian immune responses. P. asymbiotica strains have been

recovered from human wounds [16] and are vectored by

nematodes that usually invade and kill insects [17]. We have

recently catalogued the full range of virulence factors that this

bacteria has at its disposal for infecting insects and humans [18].

Anti-insect virulence in Photorhabdus bacteria is associated with the

dominant toxin Makes Caterpillars Floppy 1 or Mcf1 [19]. This

toxin causes extensive apoptotic cell death in both the midgut

epithelium and circulating hemocytes of caterpillar hosts. Access to

both purified Mcf1 toxin and recombinant E. coli expressing the

mcf1 gene makes this an ideal virulence factor in which to study

early interactions between an insect pathogen and insect

phagocytes.

Here, we pioneer the use of Drosophila embryos as models to

study bacterial infection in real time. We show that embryonic

hemocytes both recognise and phagocytose non-pathogenic E. coli

in a Dscam independent manner. In contrast, we show that the

cells of the insect pathogen Photorhabdus instantly freeze the highly

mobile phagocytes. This freezing phenotype can be phenocopied

either by injection of recombinant E. coli expressing the mcf1 gene,

or by injection of the purified toxin itself. The ability to image

these first early stages of infection therefore facilitates a direct

examination of the Mcf1 virulence factor neutralizing the

phagocytic role of the embryonic hemocytes. Moreover, exami-

nation of the role of Mcf1 can be dissected genetically using

mutants that either interfere with its endocytosis into target cells,

or Rac signalling mutants that hint at early and unexpected Mcf1

mediated effects on the phagocyte cytoskeleton.

Results

Specific binding of non pathogenic E. coli by stage 15 D.
melanogaster embryonic hemocytes

To enable in vivo detection of E. coli, strain BL21 (DE3) was

transformed with a high-copy vector pRSET expressing the

monomeric red fluorescence protein. Protein expression was under

the control of the T7 promoter; the leaky nature of this promoter

allowed basal expression of the fluorescent protein without

induction and successful detection of the bacteria within the

embryo. The specificity of the bacterial-hemocyte interaction was

initially tested by injecting stage 15 wild-type embryos containing

unlabelled hemocytes with nl quantities of highly concentrated

fluorescently-labelled bacterial suspension (1010 colony forming

units/ml). At this embryonic stage, hemocytes are arranged into

three characteristic lines that run anterior to posterior along the

ventral aspect of the embryo (Figure 1A). Monitoring of the

injected embryos under fluorescence revealed that 20 minutes

after injection, bacteria specifically localised to the hemocytes.

Thus, although the cells themselves were not fluorescently labelled

their pattern of distribution could be easily visualised as a result of

their binding to the RFP labelled bacteria alone (Figure 1B). The

fact that the hemocytes can be seen in their normal positions

within the embryo reveals that these cells do not have to actively

migrate toward the invading bacteria but rather are able to

recognize and bind the bacteria as they are washed over them in

the extra-cellular space. To investigate this host-pathogen

interaction in more detail hemocytes were labelled using the

srpGAL4 driver to express GFP specifically in the hemocytes.

These embryos, now with GFP labelled hemocytes, were then

injected with a less concentrated fluorescently-labelled bacterial

suspension (107 cfu/ml) and subjected to timelapse confocal

imaging. Confocal images show that hemocytes clearly locate and

capture invading E. coli (Video S1) and optical sections collected at

different focal planes through one hemocyte show labelled bacteria

within the cytoplasm of the phagocyte (Figure 1D, E and F).

Dscam-independent recognition of non-pathogenic E.
coli by stage 15 D. melanogaster embryonic hemocytes

Previous work has indicated the importance of the immuno-

globulin (Ig)-superfamily receptor Down syndrome cell adhesion

molecule (Dscam) for bacterial recognition in Drosophila third instar

larvae [20]. Drosophila fat body cells and hemocytes have the

Author Summary

The humble fruit fly has formed an important model for
the study of bacterial infection both by insect specific and
mammalian pathogens. However, many studies of bacte-
rial infection rely upon death of the insect host, or actin
cytoskeleton staining of specific host cells, at fixed end-
points to look at infection or the mode of action of
different bacterial toxins. Here, we use Drosophila embryos
in a novel application to look at bacterial infection in real
time. Contrary to popular belief, embryonic hemocytes
both recognise and ingest injected Escherichia coli. This is a
dynamic process in which the bacteria are recognised by,
and adhere to, the phagocytes in a process that can be
dramatically seen in real time using time-lapse confocal
microscopy. In contrast, when cells of the insect pathogen
Photorhabdus are introduced, the hemocytes become
frozen and are unable to engulf the invading bacteria.
Using both recombinant E. coli expressing the bacterial
toxin Makes Caterpillars Floppy, and also purified toxin
itself, we show how genetic mutants of Drosophila can be
used to dissect the role of bacterial toxins in infection.
Such approaches should provide a useful model in which
to study infection by other pathogens and their associated
toxins.

Infection in Drosophila Embryos
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potential to express more than 36,000 isoforms of Dscam, and

soluble isoforms of Dscam have also been detected in the

hemolymph [20]. Dscam binds E. coli and is thought to act both

as a phagocytic receptor and an opsonin in both Drosophila [20]

and the malaria vector Anopheles gambiae [21]. To determine

whether Dscam acts as a receptor for bacterial recognition in

embryos, we compared the ability of hemocytes in wild-type and

dscam05518 mutant embryos [22] to bind E. coli. Surprisingly, in

contrast to the above observations, dscam05518 mutants were still

able to recognise and crosslink bacteria on the surface of their

hemocytes with equal efficiency to their wild-type counterparts

demonstrating that Dscam is dispensable for recognition of E. coli

by embryonic hemocytes (Figure 1C).

Photorhabdus rapidly freezes embryonic hemocytes
Having shown that embryonic hemocytes can bind and engulf

live non-pathogenic bacteria, we wanted to characterize the

response of embryos upon infection with an insect pathogen.

Photorhabdus is a Gram-negative, nematode-vectored bacterium

that kills a wide range of insect species [23]. Injection of stage 15

wild-type Drosophila embryos containing RFP-labelled hemocytes

with a GFP-labelled P. asymbiotica suspension (107 cfu/ml) had a

profound effect on embryonic hemocyte motility whereby

hemocytes rapidly loose their ability to migrate and apparently

freeze (Figure 2 and Video S2). All actin rich protrusions are

retained in these cells but appear to loose their dynamism failing to

extend or retract as would ordinarily be seen in a healthy

Figure 1. Injected E. coli are recognised and engulfed by embryonic hemocytes. (A) An embryo expressing GFP specifically in the
hemocytes shows their characteristic pattern of distribution whereby the cells are arranged into three parallel lines running along the ventral surface
of a stage 15 embryo (arrows). (B) Embryo injected with fluorescently labelled E. coli in the anterior region of the embryo (asterisk). 20 minutes after
injection hemocytes become labelled as they bind the injected bacteria (arrows). (C) Hemocytes within dscam05518 mutant embryos are able to
recognize E. coli and can be seen to bind the fluorescently labelled bacteria (arrows) in a pattern indistinguishable from the wildtype. (D) Confocal
images showing a series of optical slices taken through GFP expressing hemocytes. Images clearly show that the cells have internalised injected RFP
labelled E .coli (arrows). (E) A projection of the slices shown in (D) highlight the two hemocytes (green) containing E .coli (red). (F) Z section taken
through the region depicted by the dotted line on (E) clearly shows that the bacteria (red) are contained within the hemocyte (green). Arrows mark
the cell extremities and correspond to the position of the arrows in (E). Scale bars represent 50 mm (A–C) and 10 mm (D and E).
doi:10.1371/journal.ppat.1000518.g001

Infection in Drosophila Embryos
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untreated motile hemocyte. This dramatic effect occurs very

rapidly and could be observed 20 minutes after injection of

Photorhabdus. Consequently the hemocytes are unable to engulf the

bacteria. Interestingly, despite this severe effect on the cell’s

migratory and phagocytic machinery, their ability to recognize

and bind the bacteria was unaffected (Figure 2B).

Mcf1 causes rapid freezing of Drosophila embryonic
hemocytes

During insect infection Photorhabdus replicates within the

hemocoel and delivers toxins which rapidly kill the insect host.

Expression of one such toxin, Mcf1 is sufficient to allow E. coli to

survive within, and kill, Manduca caterpillars which are otherwise

able to clear E. coli infection [19]. Mcf1 treated caterpillars show

rapid loss of body turgor (the ‘‘floppy’’ phenotype) within

12 hours, associated with massive apoptosis of the midgut

epithelium. Manduca hemocytes also undergo apoptosis when

exposed to recombinant Mcf1 [19]. Mammalian cells treated with

Mcf1 also display key features of apoptosis which is putatively

mediated by a BH3-like domain and involves the mitochondrial

pathway [24,25]. Injection of wild-type stage 15 embryos with E.

coli constitutively expressing Mcf1 from the high-copy vector

pUC18 causes rapid paralysis of embryonic hemocytes and

inhibition of phagocytosis as observed following wild-type Photo-

rhabdus infection (Figure 3A and Video S3). Micro-injection of

purified Mcf1 (0.2 mg/ml) into wild-type stage 15 Drosophila

embryos containing GFP-moesin expressing hemocytes also

triggers rapid freezing of hemocytes with ‘frozen’ cellular

protrusions and phagosomes (Figure 3B and Video S4). This

effect was not seen when embryos were injected with the same

concentration of heat inactivated BSA demonstrating that it is

indeed the presence of Mcf1 that causes the freezing phenotype

(Video S5). To ascertain whether the hemocyte paralysis effect of

Mcf1 occurs in a dose-dependent manner we injected embryos

with half the concentration previously used (0.1 mg/ml). In these

embryos the freezing effect on hemocytes was less pronounced

with many cells displaying active lamellipodial ruffling. Despite

this however, these cells were not as dynamic as untreated cells

and were still unable to migrate (Video S6). The rapid paralysis of

hemocytes in the presence of Mcf1 suggests that this phenotype is

independent, or upstream of, apoptosis given that the earliest pro-

apoptotic indicators are observed 3 hours following incubation

with Mcf1 [24]. To investigate this we expressed the pro-apoptotic

Bcl-2 family member Bax in hemocytes using a combination of

srpGAL4 and crqGAL4 drivers. Confocal analysis revealed that

apoptotic hemocytes are very different in morphology to those

exposed to Mcf1 appearing hugely swollen and containing

fluorescent puncta having engulfed their dying neighbouring

Figure 2. Photorhabdus injection causes a dramatic freezing of embryonic hemocytes. (A) Stills from a movie (see Video S2) of hemocytes
expressing RFPmoesin following injection of GFP expressing E. coli. Hemocytes (asterisk) can be clearly seen actively migrating within the embryo and
extending dynamic actin rich protrusions (arrow) as they bind and clear the injected E. coli (yellow). Insets show the movement of bacteria over the
period of the movie as they are carried within the migrating hemocytes. (B) Stills from a movie (see Video S2) of RFP labelled hemocytes following
injection of GFP labelled Photorhabdus. Hemocytes are able to recognise and bind the bacteria (yellow) but are completely frozen remaining in the
same position for the duration of the movie (60 minutes). Cells still display actin rich protrusions (arrows) but these are static and bear no
resemblance to the dynamic structures normally seen in hemocytes (compare to (A)). Insets show that the Photorhabdus bacteria themselves do not
move throughout the movie as they are anchored to the static hemocytes. Scale bars represent 10 mm. Elapsed time is indicated in the upper right
corner.
doi:10.1371/journal.ppat.1000518.g002
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Figure 3. E. coli expressing Mcf1 are recognised by hemocytes and induce a freezing phenotype. (A) Stills from a movie (see Video S3) of
hemocytes following injection of E. coli expressing Mcf1. The images clearly show that whilst the hemocytes can recognise the bacteria and bind
them the cells are apparently frozen and fail to move throughout the whole 60 minutes of the movie. Insets show that the position of the bacteria
does not change over the course of the movie. (B) Stills from a movie (see Video S4) of GFPmoesin expressing hemocytes following injection of
purified Mcf1 show an identical effect to that seen in (A). Hemocytes are unable to move, have static actin rich protrusions (arrows) and over time
accumulate GFP positive puncta in the cytoplasm (arrowheads). (C) Graph showing percentage mortality of embryos following Mcf1 injection. 75% of
embryos fail to hatch following Mcf1 injection as opposed to 26% of those injected with heat inactivated BSA. (D) Embryos containing GFP expressing
hemocytes (arrowheads) 12 hours after injection with Mcf1 (below) show a dramatic reduction in hemocyte number when compared with control
embryos (above). (E) Hemocytes expressing UAS-Bax to induce apoptosis are morphologically distinct from hemocytes exposed to Mcf1 (compare
with B) appearing circular and lacking any protrusive structures (arrow). (F) Confocal image of hemocytes within a dead embryo 12 hours after Mcf1
injection. Hemocytes appear identical to apoptotic cells expressing Bax (compare with E). Scale bars represent 10 mm (A, B, E and F) and 100 mm (D).
Elapsed time is indicated in the upper right corner in A and B.
doi:10.1371/journal.ppat.1000518.g003

Infection in Drosophila Embryos
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hemocytes (Figure 3E). Such obvious differences in morphology

suggested that the early freezing effect of Mcf1 is independent of

apoptosis but could not rule out a separate more long-term pro-

apoptotic effect. In order to determine the long term effect of Mcf1

injection we left injected embryos overnight before scoring for

lethality. We found that 70% of embryos injected with Mcf1 failed

to develop to first larval instar compared with 26% of embryos

injected with the same concentration of heat inactivated BSA

(Figure 3C). This was consistent with a long-term apoptotic effect

of Mcf1 causing widespread cell death and ultimately death of the

animal. To investigate this further we observed hemocytes in

embryos 12 hours after injection and found that hemocyte

number is greatly reduced in these dead animals (Figure 3D).

Additionally, high magnification confocal analysis revealed that

the remaining hemocytes in these animals appeared morpholog-

ically identical to those overexpressing Bax (Figure 3F). This

suggests that long-term exposure to Mcf1 causes hemocytes to

ultimately undergo apoptosis consistent with previous studies using

Manduca caterpillars.

We were curious to know whether the observed freezing effect

of Mcf1 was specific for hemocytes or whether other cells might

also be affected in the same way. To address this we analysed the

paradigm morphogenetic tissue movement dorsal closure in

embryos injected with Mcf1 and compared them to wildtype.

Dorsal closure is a naturally occurring epithelial movement which

requires the coordinated migration and fusion of two epithelial

sheets to close the dorsal side of the embryo. Like hemocyte

migration, dorsal closure requires the small GTPase Rac [26] and

previous work has shown that the fusion of the migrating epithelial

fronts is dependent on the formation of dynamic actin rich

filopodia [27]. We found that Mcf1 injection into embryos

expressing constitutively expressed GFP moesin had no effect on

dorsal closure and that epithelial fronts migrated and fused at the

same rate as wildtype (Figure 4 and Video S7). We therefore

conclude that Mcf1 does not appear to affect all embryonic cell

types in the dramatic fashion observed in hemocytes. One possible

explanation for this result might be that epithelial cells are less

endocytically active than hemocytes and therefore internalise less

of the Mcf1 toxin.

Cellular internalisation of Mcf1 is required for the
freezing phenotype

Mcf1 has been previously described as requiring internalisation

for cytotoxicity in vitro [24,25]. To determine whether Mcf1

requires cellular internalisation for its freezing effect on hemocytes

in vivo we tested whether Drosophila embryonic hemocytes

attenuated in their ability to endocytose would still exhibit the

freezing phenotype upon exposure to Mcf1. Dynamin is a GTP-

binding protein which controls formation of constricted coat pits

and is involved in a late step of clathrin-dependent endocytosis. In

order to disrupt dynamin function specifically in hemocytes we

expressed a temperature sensitive allele of Drosophila dynamin

(shibirets1) [28] using the a combination of the hemocyte drivers

srpGAL4 and crqGAL4. We allowed embryos to develop to stage

14 before moving them to restrictive (non-permissive) temperature

to allow activation of shits1. When these embryos were microin-

jected with Mcf1 the hemocytes were immune to the paralytic

effect of the Mcf1 and continued to produce large dynamic

cytoplasmic extensions appearing indistinguishable from unin-

jected control embryos (Figure 5A and Video S8). This

demonstrates that the toxin Mcf1 needs to be internalized to

cause cellular paralysis. To further investigate internalization and

paralysis, Mcf1 was directly labelled with Alexa-Fluor 555 (Mcf1-

555) and micro-injected into wild-type embryos. Embryos injected

Figure 4. Mcf1 has no effect on dorsal closure. (A) Stills from a movie showing dorsal closure in an embryo expressing GFP moesin in all tissues.
Over a period of 2 hours opposing lateral epithelial sheets sweep dorsally and fuse in the midline to seal the dorsal side of the embryo. (B) Stills from
a movie (see Video S7) showing high magnification detail of the boxed region in A show that opposing epithelial fronts zipper together at the canthi
(arrowhead) to close the dorsal hole. Arrows point to a hemocyte as it migrates beneath the epithelium. (C) Stills from a timelapse movie (see Video
S7) of an embryo injected with Mcf1 show that the presence of the toxin has no effect on dorsal closure which proceeds at the same speed as
observed in wildtype embryos (compare with (A)). (D) High magnification stills from zipping canthi show that epithelial fronts fuse as normal in these
areas. Note that no dynamic hemocytes can be seen in these stills nor in the accompanying movie due to the freezing effect of Mcf1 on these cells.
Scale bars represent 50 mm (A and C) and 10 mm (B and D). Elapsed time is indicated in the upper right corner.
doi:10.1371/journal.ppat.1000518.g004
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with Mcf1-555 show a punctate distribution of labelled Mcf1

within hemocytes appearing associated with phagosomal com-

partments (Figure 5B). Mcf1-555 was also visible outside of

hemocytes in a similar punctate pattern probably due to

internalization of the labelled toxin by cells other than the GFP

expressing hemocytes since Mcf1 is known to affect a wide variety

of cell types other than insect hemocytes [24].

Drosophila embryos with disrupted Rac1 function evade
Mcf1-mediated paralysis

The rapid onset of the freezing phenotype led to the hypothesis

that Mcf1 may be acting on a pre-existing eukaryotic molecular

switch governing actin cytoskeletal dynamics such as the rho

GTPases. The small GTPase Rac is a key factor known to be

involved in phagocytosis and cell migration in mammals and has

been shown to be essential for hemocyte migration within the

embryo [29,30]. To investigate the potential involvement of Rac

in Mcf1 mode of action we micro-injected Mcf1 into Drosophila

embryos expressing either dominant- negative (RacN17) or

constitutively active (RacV12) versions of the small GTPase, Rac,

in hemocytes. It has been previously shown that hemocytes

expressing dominant-negative RacN17 fail to undergo their normal

developmental migrations and exhibit stunted lamellipodia

formation [29,30]. However, despite these migratory defects,

RacN17 expressing hemocytes were completely resistant to the

effects of Mcf1 and injection of Mcf1 into these embryos failed to

cause the freezing effect observed when administered to wildtype

cells (Figure 6A and Video S9). Interestingly, expression of

constitutively active RacV12 in hemocytes also led to complete

resistance to Mcf1-mediated paralysis in the hemocytes (Figure 6B

and Video S10). These results appear to indicate a role for Rac in

Mcf1 mediated paralysis.

Discussion

Adult Drosophila have been used extensively as infection models

for a range of different microbes [1]. In this study, we have

expanded this infection model to include the well studied Drosophila

embryo. We have combined Drosophila genetics and real-time

imaging to examine the very earliest stages of host-pathogen

interaction, which are critical for the successful initiation of any

infection. We have proven that embryonic hemocytes are indeed

competent phagocytes when challenged with non-pathogenic E.

coli and that the process of recognition and engulfment of these

bacteria is, surprisingly, Dscam independent. In contrast, when

injected with the insect and human pathogen P. asymbiotica, the

highly motile embryonic hemocytes underwent a rapid paralysis,

termed the ‘freezing’ phenotype. This phenotype could be

phenocopied either by injection of the purified Photorhabdus toxin

Mcf1 or by injection of recombinant E. coli expressing the mcf1

gene. Use of Drosophila mutants either deficient in endocytic

machinery or with altered activity of their Rac GTPases shows

that the freezing phenotype requires internalization of the Mcf1

toxin and may involve unexpected alterations in the actin

cytoskeleton of the hemocytes. These studies demonstrate not

only that Drosophila embryos are powerful systems for studying the

early stages of infection but also that they can facilitate the genetic

dissection of the underlying molecular mechanisms of virulence

and immunity.

Mcf1 is a single toxin which facilitates persistence of Photorhabdus

bacteria in the hemocoel of an insect host in the face of the cellular

immune response [19]. Previous studies have suggested that the

massive apoptosis of the insect midgut epithelium, and destruction

of insect hemocytes, associated with Mcf1 toxicity were related to

its pro-apoptotic activity. However the rapid Mcf1 mediated

Figure 5. Internalisation of Mcf1 is required for freezing. (A) Stills from a timelapse movie (see Video S8) of hemocytes expressing shibirets1

following injection with 0.2 mg ml21 Mcf1. Unlike wildtype cells, shibire mutant hemocytes do not freeze after exposure to Mcf1 and continue to
migrate (asterisk) and extend large actin rich protrusions (arrows). Elapsed time is indicated in the upper right corner. (B) Injection of Alexa Fluro 555
labelled Mcf1 (Mcf1 555) into wildtype embryos shows localisation of labelled Mcf1 in hemocytes (white arrows) 1 hour after injection. Mcf1 can also
be seen outside hemocytes indicating localisation in other surrounding cell types (arrowheads). Scale bars represent 10 mm.
doi:10.1371/journal.ppat.1000518.g005
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hemocyte freezing phenotype described here suggests that this

toxin may also have earlier effects on the actin cytoskeleton of host

phagocytes. This early, anti-phagocytic, activity of Mcf1 may also

be consistent with Mcf1 being the anti-phagocytic factor

previously documented in other strains of Photorhabdus [31].

Mcf1 has previously been shown to require endocytosis for its

pro-apoptotic activity and here we confirm that the freezing

phenotype also requires internalisation of the toxin. The

mechanism of how Mcf1 was freezing the actin cytoskeleton and

preventing cellular migration was investigated by examining the

effect of the toxin on embryonic hemocytes mutant in the small

GTPase Rac. Drosophila embryonic hemocytes expressing domi-

nant-negative or constitutively active Rac evaded the freezing

phenotype caused by Mcf1 indicating a necessity for the presence

of wild-type Rac in the freezing process. The Rho GTPases are a

popular target for bacterial toxins as the manipulation of these

molecules assists in virulence processes such as intracellular

invasion and phagocytic avoidance [32]. A number of bacterial

toxins inactivate Rho GTPases as a mechanism of avoiding

phagocytosis. A group of such Rho inactivators act as Rho

GTPase activating Proteins (RhoGAPs) which stimulate the

intrinsic GTPase activity of the small GTPases hydrolysing them

to their inactive GDP bound state. Examples of such toxins are

ExoS and ExoT (Pseudomonas aeruginosa), YopE (Yersinia spp.) and

SptP (Salmonella typhimurium) [33–36]. Constitutive activation of the

Rho GTPases counteracts the activity of most GAP toxins and

does not effect those that directly target the actin cytoskeleton

[37,38]. Whether Mcf1 is capable of inactivating Rac, and is doing

so directly through a GAP-like activity or via other mechanisms

remains to be explored.

Previous studies using third instar Drosophila larvae have

implicated the immunoglobulin (Ig)-superfamily receptor Down

syndrome cell adhesion molecule (Dscam) as being an important

player in the recognition of bacteria [20]. Here we demonstrate

that, despite these previous results, Dscam mutant hemocytes can

recognize and bind E. coli with equal efficiency to that seen in wild-

type embryos. This result demonstrates an intriguing difference

between the immune system operating in the embryo when

compared with larvae. Embryonic hemocytes are very long lived

cells that persist into larval stages and constitute the circulating

population of hemocytes in a larva. Within the larva a second

population of hemocytes develops in a specialised hematopoetic

organ called the lymph gland. Lymph gland hemocytes are

normally released from this organ during metamporphosis but can

be released prematurely following parasitisation [39]. Within an

infected larvae, bacteria are therefore cleared by a combination of

both embryonic hemocytes that have persisted through to larval

stages and larval lymph gland hemocytes released upon infection.

Our results suggest that the mechanisms used for bacterial

recognition by these two populations could be different. We

cannot exclude the possibility that hemocytes within the embryo

operate with a small subset of the receptors utilised by lymph gland

hemocytes and that as they persist through to larval stages they

begin to express the full complement of immune receptors

including Dscam. It will be interesting to determine whether this

is the case or whether embryonic hemocytes encode a completely

different set of proteins for bacterial detection. Further work is also

Figure 6. Embryos with defective Rac activity evade Mcf1 mediated paralysis. (A) Stills from a movie (see Video S9) of hemocytes
expressing RacN17 following injection of Mcf1. Hemocytes expressing RacN17 are localised at the anterior of the embryo and have decreased
lamellipodia formation and movement compared to wild-type cells. However, despite these defects RacN17 hemocytes fail to freeze after Mcf1
injection and continue to form small dynamic membrane ruffles (arrow) and filopodia (arrowheads). (B) Time-lapse movie stills (see Video S10)
showing constitutively active RacV12 expressing hemocytes following Mcf1 injection. RacV12 expression in hemocytes causes reduced lamellipodia
formation and migration when compared to wildtype cells. When exposed to Mcf1 these cells fail to display the freezing phenotype and like the
RacN17 expressing cells continue to make small dynamic protrusions (arrows). Scale bars represent 10 mm. Elapsed time is indicated in the upper right
corner.
doi:10.1371/journal.ppat.1000518.g006
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needed to determine at which stage of development embryonic

hemocytes acquire their ability to recognise invading micro-

organisms.

The maturation of embryonic hemocytes as they progress

through embryonic into larval stages of development is an

interesting process that has received very little research attention.

Recent studies have shown that when circulating within larvae,

hemocytes appear substantially less motile than when they migrate

throughout the embryo [40,41] This difference in morphology can

be attributed to their being passively pumped around the larval

hemocoel rather than actively migrating through the embryonic

extracellular space. Their morphology could change drastically

however, once they encounter a pathogen that needs to be

engulfed. Here we show the effect of Mcf1 on the actin

cytoskeleton of a hemocyte within an embryo which manifests

itself as a block on cell migration. It would be interesting to see the

affect of Mcf1 on hemocytes within larvae where its effect on cell

migration would presumably be less pronounced but its effect on

other actin dependent processes such as phagocytosis may be

equally drastic.

Here we have described an in vivo system for looking at a

known population of phagocytes in a closed system, the Drosophila

embryo. This system complements the use of tissue culture systems

for several reasons. First, the real-time behaviour of phagocytes in

their natural environment can be monitored. This overcomes the

limitations of looking at immortal cell lines of uncertain origin (eg

Schneider cells) or of looking at abnormal behaviour in primary

cultures of phagocytes (eg hemocytes recently bled from an insect).

Second, we can use both genetic mutants and RNAi to look at

effects in vivo. This contrasts to transfection experiments on cell

cultures that are often transient and variable in their effects.

Finally, although we cant precisely define the concentration of

effector proteins delivered into the hemocyte via injection, we can

say, in the case of Mcf1, that both the purified protein, the

recombinant protein expressed by E. coli and the native Mcf1

expressed by P. asymbiotica all had the same phenotypic effects on

the in vivo system. Moreover, these effects were all very different to

those previously described for Mcf1 protein applied to primary

cultures of Manduca hemocytes recorded under time-lapse

photography [19].

In recent years cultured Drosophila S2 cells have been used

extensively as a model system to study infection and immune

responses. These cells allow for large scale screening using RNAi

and have been successfully used to identify proteins involved in

host interactions with important human bacterial pathogens such

as Escherichia coli, Staphylococcus aureus [42,43], Mycobacterium spp.[44],

Legionella pneumophila [45], Chlamydia spp. [46–48] and Listeria

monocytogenes [49–51]. Whilst such studies provide a reservoir of

genes involved in bacterial recognition and degradation in vitro the

situation in vivo where hemocytes can interact with other immune

cells to optimize immune responses is likely to be more complex.

Ultimately, to have an impact on human and animal health, the

results obtained by in vitro studies need to be verified in a whole

organism. The assay we present here provides a perfect model to

begin to fill these gaps and should lead to a better understanding of

host-pathogen interactions in the complex setting of a multicellular

organism.

Materials and Methods

Bacterial strains and plasmids
P. asymbiotica ATCC 43949 was isolated from a human leg

wound in San Antonio, Texas [52] and obtained from the ATCC

culture collection. A spontaneous rifampicin mutant was created

by common microbiology methods and used in all microinjection

experiments. Escherichia coli S17-1lpir [53] was used as a

conjugative donor of the pir-dependent suicide replicon pBamH7

(a kind gift from Dr Leo Erbel) which constitutively expresses

green fluorescence protein (GFP). E. coli BL21 was used for cloning

and constitutive expression of Mcf1 from pUC18 (as previously

described [19]) and green or red fluorescence protein (RFP) from

pRSET (Invitrogen). DNA fragments were cloned using standard

cloning procedures. Bacterial strains were amplified in LB broth

containing, as appropriate, ampicillin 100 mg ml21; kanamycin

25 mg ml21; rifampicin 25 mg ml21. For embryo microinjections,

bacteria were grown to stationary phase at 37uC for 18–24 h,

washed in phosphate-buffered saline (PBS) and adjusted to the

appropriate density.

Plasmid conjugation to P. asymbiotica
pBamH7 was delivered to P. asymbiotica via conjugation with

S17-1lpir by using a membrane filter mating technique. S17-

1lpir pBamH7 was inoculated into 5 ml of LB broth containing

kanamycin and grown at 37uC for 16–18 h with shaking

(200 rpm). P. asymbiotica was grown at 28uC for 16–18 h with

shaking (200 rpm) but without antibiotic selection. 100 ml of each

saturated bacterial culture was added to 3 ml of sterile 10 mM

MgSO4, mixed, and filtered through a 0.45-mm-pore-size

nitrocellulose filter, using a 25-mm Swinnex filter apparatus

(Millipore). Control assays, using donor and recipient alone, were

also performed. Filters were placed on LB plates supplemented

with 10 mM MgSO4 and incubated for at least 8 h in a 37uC
incubator. The filters were washed with 4 ml of sterile 0.85%

NaCl, and 100 ml aliquots were spread onto LB plates containing

25 mg of rifampicin and 25 mg of kanamycin per ml. Rifampicin-

resistant and kanamycin-resistant transconjugants were identified

after 48 h incubation at 37uC.

Preparation of Mcf1 for micro-injection
Purification and labelling of Mcf1 was carried out as described

previously [24]. Mcf1 was diluted to required concentrations for

micro-injection with sterile 16 phosphate buffered saline solution

(PBS).

Fly stocks
UAS constructs were expressed in hemocytes using either the

hemocyte specific Gal4 line serpentHemoGAL4 (srpGAL4; [54]) or

croquemortGAL4 (crqGAL4; [30]. A w; srpGAL4, UAS-GFP recombi-

nant line was used to visualize wildtype hemocyte motility and

bacterial engulfment. Actin dynamics were visualised in hemocytes

using lines with recombined chromosomes carrying both srpGAL4

and either UASGFPmoesin (UASGMA; [55] or UAS-RFP-Moesin

[56]. Embryos containing the transgene sGMCA (constitutively

expressing GFP-Moesin) [55] were used to visualise actin

dynamics in epithelial cells during dorsal closure. To activate

apoptosis in hemocytes w;srpHemoGAL4UASGFP;crqGAL4UASGFP

flies were crossed to a w;UAS-bax stock. After egg laying at 25uC,

embryos were transferred to 29uC to develop. To disrupt shibire

function in hemocytes w;srpHemoGAL4UASGFP;crqGAL4UASGFP

flies were crossed to a w;UASshits1 stock [28] generating

w;srpHemoGAL4UASGFP/UASshits1; crqGAL4UASGFP/+ progeny.

These embryos were then left to develop to late stage 13 before

being incubated at 32uC for 2 h and returning to room

temperature for 1.5 h before injection. Expression of dominant

negative Rac constructs in hemocytes was achieved by crossing

UAS-RacV12 or UAS-RacN17 flies to a w;srpHemoGAL4UASGFP;crq-

GAL4UASGFP stock. For the Dscam loss of function experiment

the dscam05518 allele was used [22]. w; dscam/CTG flies were
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intercrossed and homozygous dscam05518 mutants were identified

by their lack of a fluorescent balancer.

Micro-injection and imaging of Drosophila embryos
Embryos were collected at stage 15 of development and

prepared for micro-injection and confocal imaging. Embryos were

dechorionated in bleach and mounted on a coverslip under

Voltalef oil as previously described [57]. Micro-injection was

carried out using an Eppendorf Femtojet injectman. The micro-

injection needle was loaded with 4 ml of either E. coli RFP, E. coli

GFP pUC-18, GFP pUC-18mcf1 or purified Mcf1 for injection as

required. The needle was then introduced into the anterior of the

embryo and the embryo injected. Following injection a coverslip

was mounted over the embryos ready for microscopy. For the

survival study injected embryos were left uncovered in voltalef oil

in a humid chamber overnight and scored for lethality the

following day.

Imaging was carried out on a Zeiss LSM-510 confocal laser-

scanning microscope (Zeiss LSM-510 system with inverted

Axiovert 100 M microscope), equipped with a krypton-argon

laser and helium-neon lasers, under 636objective. For time-lapse

movies images were obtained by taking four optical slices (each

slice averaged 26) through hemocytes collected at 120 s intervals.

Compilation and processing of movies was carried out using

ImageJ software.

Supporting Information

Video S1 Embryonic hemocytes engulf E. coli. Confocal time-

lapse movie of an embryo containing GFP expressing hemocytes

(green) that has been subjected to injection of RFP expressing E.

coli (red). In the first few frames of the movie, the bacteria are

rapidly engulfed by a hemocyte. Movie duration is 50 minutes.

Found at: doi:10.1371/journal.ppat.1000518.s001 (1.59 MB

MOV)

Video S2 Photorhabdus rapidly freezes embryonic hemocytes. The

movie on the left shows an embryo containing RFP expressing

hemocytes (red) that has been injected with E. coli (yellow). The

hemocytes are highly motile cells migrating within the embryo as

they clear the invading bacteria. The movie on the right shows the

effect of injection of Photorhadus (yellow) on the hemocytes (red).

Hemocytes are able to bind the bacteria but appear frozen and

lose their ability to move. Movie duration is 40 minutes. Both

movies are running at the same speed (7 fps).

Found at: doi:10.1371/journal.ppat.1000518.s002 (2.42 MB

MOV)

Video S3 Mcf1 causes freezing of hemocytes. Confocal time-

lapse movie showing embryonic hemocytes expressing RFP in an

embryo injected with GFP expressing E. coli producing Mcf1. Top

panel shows the red channel (RFP), the middle shows the green

channel (GFP) and the lower is the merge. Whilst the hemocytes

(red) are able to detect the bacteria (green) they are unable to move

and appear completely frozen as seen following injection with

Photorhabdus (compare with Video S2). Movie duration is

50 minutes.

Found at: doi:10.1371/journal.ppat.1000518.s003 (1.07 MB

MOV)

Video S4 Injection of purified Mcf1 causes hemocyte freezing.

Movie of GFPmoesin expressing hemocytes within an embryo

after injection with 0.2 mg/ml purified Mcf1. Hemocytes are able

to form actin rich protrusions but these protrusions are completely

static and bear no resemblance to the highly dynamic structures

normally seen in these cells (compare to Video S1). Movie

duration is 60 minutes.

Found at: doi:10.1371/journal.ppat.1000518.s004 (1.97 MB

MOV)

Video S5 Injection of BSA has no effect on hemocyte dynamics.

Movie of GFPmoesin expressing hemocytes within an embryo

following injection with 0.2 mg/ml heat inactivated BSA.

Hemocytes appear completely wildtype in their morphology and

actin dynamics extending large lamellipodia as they patrol their

environment.

Found at: doi:10.1371/journal.ppat.1000518.s005 (0.23 MB

MOV)

Video S6 Hemocyte paralysis effect of Mcf1 occurs in a dose-

dependent manner. Movie of GFPmoesin expressing hemocytes

within an embryo following injection with 0.1 mg/ml Mcf1. The

freezing effect on hemocytes is less pronounced at the lower

concentration (compare with Video S4) with many cells

displaying active lamellipodial ruffling although these cells are

not as dynamic as untreated cells and were still unable to

migrate.

Found at: doi:10.1371/journal.ppat.1000518.s006 (0.93 MB

MOV)

Video S7 Mcf1 has no effect on dorsal closure. Movie showing

dorsal closure in wildtype embryos (left) and embryos injected with

Mcf1 (right). Both embryos express sGMCA (constitutively

expressed GFPmoesin) to enable epithelial dynamics to be

visualised. Epithelial fronts migrate and fuse at the same rate in

both embryos demonstrating that Mcf1 has no effect on dorsal

closure. Arrow in the wildtype image highlights a dynamic

hemocyte as it migrates under the epithelium. No migrating

hemocytes can be seen in the Mcf1 treated embryo due to the

specific freezing effect on these cells.

Found at: doi:10.1371/journal.ppat.1000518.s007 (2.45 MB

MOV)

Video S8 Cellular internalisation of Mcf1 is required for

hemocyte freezing. Timelapse confocal movie showing embryos

containing hemocytes expressing shibirets1 injected with Mcf1.

These shibire mutant hemocytes can be seen migrating normally

extending large, dynamic actin rich protrusions and show no sign

of the freezing phenotype observed in wildtype cells upon exposure

to Mcf1 toxin. Movie duration is 40 minutes.

Found at: doi:10.1371/journal.ppat.1000518.s008 (1.95 MB

MOV)

Video S9 Mcf1 induced freezing is blocked in RacN17 expressing

cells. Movie showing RacN17 expressing hemocytes in an embryo

injected with Mcf1. Due to a requirement of Rac for the formation

of lamellipodia, these mutant cells are far less mobile than wildtype

hemocytes and produce much smaller and less dynamic

protrusions. However, despite these defects the cells are still

motile after exposure to Mcf1 and there is no evidence of the cell

freezing effect observed in wildtype cells (compare to Videos S2,

S3 and S5). Movie duration is 60 minutes.

Found at: doi:10.1371/journal.ppat.1000518.s009 (2.59 MB

MOV)

Video S10 RacV12 expression in hemocytes also blocks freezing

effect of Mcf1. Timelapse movie showing RacV12 expressing

hemocytes in an embryo injected with Mcf1. Like RacN17,

expression of RacV12 causes migration defects in hemocytes.

Despite this when exposed to Mcf1, the mutant cells appear

immune to the paralytic effect of the toxin. Movie duration is

60 minutes.
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Found at: doi:10.1371/journal.ppat.1000518.s010 (2.52 MB

MOV)
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