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Abstract

A new methodology was developed to quickly generate whole body models with detailed

neck musculoskeletal architecture that are properly scaled in terms of anthropometry and

muscle strength. This method was implemented in an anthropometric model generation

software that allows users to interactively generate any new male or female musculoskeletal

models with adjustment of anthropometric parameters (such as height, weight, neck circum-

ference, and neck length) without the need of subject-specific motion capture or medical

images. 50th percentile male and female models were developed based on the 2012 US

Army Anthropometric Survey (ANSUR II) database and optimized with a novel bilevel opti-

mization method to have strengths comparable to experimentally measured values in the lit-

erature. Other percentile models (ranging from the 1st to 99th percentile) were generated

based on anthropometric scaling of the 50th percentile models and compared. The resultant

models are reasonably accurate in terms of both musculoskeletal geometry and neck

strength, demonstrating the effectiveness of the developed methodology for interactive

neck model generation with anthropometric scaling.

Introduction

Neck pain or injury is a common issue affecting a large percentage of the population in both

civilian [1] and military populations [2]. For military personnel, head supported mass (HSM)

such as helmet and helmet mounted gears pose additional risks of neck injuries. For civilians,

sports helmets, motorcycle helmets, or occupational head protection (e.g. construction work-

ers’ and welders’ helmets) pose similar risks of neck injuries, especially due to prolonged wear.

Heavy or off-balance HSM requires stronger muscle contraction to stabilize the head during

different motions, which in turn increases loading to tissues of the cervical spine. Insights into

neck muscle contraction and loading of the cervical spine in vivo are important to understand

and minimize risks of chronic injury.
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Because loading of the cervical spine cannot easily be measured in-vivo, modelling

approaches are often used to provide estimates. For example, to estimate cervical disc com-

pressive forces, one must consider the muscle forces acting along the cervical spine, the weight

of the head and head worn mass. Several musculoskeletal models of the cervical spine have

been previously developed and can be used for such estimates. Van der Horst et al. [3] devel-

oped a combined multi-body and finite element model (based on [4]) with ligaments, simpli-

fied muscles, and nonlinear stiffness of intervertebral discs. Another detailed model [5], based

on imaging and cadaver dissection data [6], includes overall ligament actions, but no individ-

ual ligaments. Vasavada et al. [7] developed an advanced model with detailed muscle architec-

ture based on cadaver dissections and refined it with accurate muscle volumes based on MRI

studies [8]. A unique female neck model has been developed [9] based on the anatomical data

of the Visible Human Female (VHF). This VHF neck model was developed to represent the

geometry and muscles around the female head and neck. However, this model was based on a

single female who happened to be obese, and the process of creating subject-specific models is

still time consuming and labor intensive. These models developed by Vasavada’s group do not

have mass or inertia properties so they are not ready for dynamic simulations. Cazzola et al.

[10] improved Vasavada’s model with inertia properties and integrated it with a whole body

model for rugby simulations. They also increased the isometric strength of each muscle in

Vasavada’s model by at least 40%. Their resultant model has a good agreement in extension

strength but is still weak in flexion strength. More recently, Mortensen et al. [11] improved the

Vasavada neck model with inclusion of passive elements and additional hyoid muscles. The

strength of the extension muscles was further scaled by 1.4 and the flexion muscles by 2.7 in

order to match experimentally measured flexion and extension neck strengths. However, this

scaling also resulted in unrealistically strong hyoid muscles that produced a jaw force that is

more than three times the measured value. Therefore, it remains a challenge to obtain a neck

musculoskeletal model that has both realistic muscle strengths and realistic overall neck

strengths.

Most existing neck models represent either a subject or a typical population and scaling

these models requires either motion capture or medical image data. Desantis Klinich et al. [12]

predicted cervical spine geometry based on age, height, and gender based on lateral-view

radiographs of 180 adult subjects, but only in the 2D sagittal plane. It is not an easy task to

scale a detailed neck musculoskeletal model to specific neck and head anthropometry (e.g. by

given measured head and neck circumferences). Considering most existing neck models do

not incorporate the whole body skeleton, it is even harder to scale the model with whole body

anthropometry such as height and weight. In addition, existing neck scaling methods change

the neck musculoskeletal geometry, individual muscle paths and forces, often without putting

limits on the alteration of the overall neck strength. To predict cervical loadings accurately in

dynamic simulations, model strength re-calibration is desired for subject-specific models,

which is again a non-trivial task.

To address these challenges, the aim of this study was to develop methodology to quickly

create anthropometric whole body models with detailed neck musculoskeletal architectures

and appropriate neck strengths based on just a few whole body and neck anthropometry mea-

surements, such as height, weight, neck circumference, and neck length. First, a male and a

female 50th percentile model with detailed neck muscles were optimized to have mean neck

strength (moment generation capacity). Based on user specified anthropometry parameters

and the ANSUR II 3D database (an anthropometry database including both traditional mea-

surements and 3D body scans of thousands of military personnel, including both male and

female) [13], these models can be interactively scaled, which includes the scaling of the joint

skeleton, mass and inertia, muscles, and strength. This allows the generation of personalized
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neck musculoskeletal models with realistic strength and anthropometry that are required to

address research questions that consider the effect of body size and gender on predicting in
vivo neck loadings.

Methods

The overall anthropometric model generation methodology consists of the following steps:

1. an existing (original) neck model was scaled and fitted to the anthropometry of the ANSUR

II 50th percentile male (and female) and the segment inertia properties were calculated

based on volumetric body segmentation of a 3D body;

2. maximum isometric forces of all muscles were optimized such that the overall neck

strengths (in flexion, extension, lateral bending, and axial rotation) of the 50th percentile

male (and female) models were close to the experimentally measured mean values (from

literature);

3. lastly the 50th percentile male and female models were loaded into the Anthropometric

Model Generation (AMG) software [14] and interactively scaled to generate arbitrary

anthropometric musculoskeletal models. The AMG software is in-house developed soft-

ware (by CFD Research) that generates anthropometric models using Principal Component

Analysis (PCA).

Scaling of original neck model to 50th percentile male (and female)

anthropometry

The original model was based on the initial musculoskeletal neck model developed by Vasa-

vada et al. [7]. The initial model, which represents an approximate 50th percentile male, has

been continuously improved with new information from scientific experiments and radio-

graphic studies [9,15]. The model components include skeletal geometry, joint kinematics,

and muscles (Fig 1). This model’s bones are positioned to represent the upright neutral posture

based on one approximate 50th percentile individual from radiographic studies. It has 8 joints

(OC-C1, C1-C2, . . ., C7-T1, OC: Occipital Condyle, C1: 1st cervical vertebra, T1: 1st thoracic

vertebra), 24 degrees of freedom (DOF) and 84 muscle fascicles. The intervertebral kinematics

in the neck model are prescribed as a set percentage of the overall neck angle (angle of the

head relative to T1). Each intervertebral joint contributes a certain percentage to the overall

Fig 1. The original neck musculoskeletal model. (A) Skeletal joints are shown as axes and the head COM is shown as a sphere; (B)

different views of the 84 neck muscles including the hyoid muscles.

https://doi.org/10.1371/journal.pone.0219954.g001
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angle, and this percentage is constant over the full range of motion. Muscle force-generating

parameters were defined based on detailed anatomical studies of Kamibayashi and Richmond

[16] and Anderson et al. [15] and revised according to the data presented by Chancey et al. [6]

and Oi et al. [5]. The segment mass and inertia properties of the cervical spine and head were

adapted from the literature [3,4]. To be able to simulate whole body motions, the detailed neck

model was assembled onto a whole body model [17] with 61 DOFs in total.

50th percentile anthropometric models

The ANSUR II database [13] contains 4,802 and 1,986 3D body scans of male and female sub-

jects respectively. After each scan was mapped with a template mesh (male or female) through

deformation, all body surfaces share the same mesh triangulation (with the same number of

vertices and connectivity but different vertex positions). Consequently, a mean male (and

female) 3D model averaged from these templated 3D body scans can be obtained. In addition,

3D principal component analysis (PCA) with these 3D body scans can be carried out. The

deviation of each model from the mean model can be calculated by subtraction. By computing

the covariance matrix of all deviation vectors, one can conduct PCA and get all principal values

and vectors (i.e., eigenvalues or eigenvectors). By varying the principal component (PC)

weights within reasonable ranges, new synthesized 3D surface models can be easily generated.

Nonetheless, these PC weights are not directly correlated to the traditional anthropometric fea-

tures or measurements. For example, the first male PC correlates to the overall size change and

affects many anthropometric features such as height, weight, chest breath, and torso height.

We demonstrated that the method of feature analysis in the AMG software can generate any

3D body model with user specified features (measurements such as height and weight) [14].

Here we use the averaged male and female models as the corresponding 50th percentile

models. The 50th percentile ANSUR II male has a height of 1.76 m, a mass of 84.6 kg, a neck

circumference (at Adam’s apple height) of 39.5 cm, and a neck length (defined as the vertical

distance between the C7 and tragion) of 10.8 cm. The 50th percentile female has a height of

1.63 m, a mass of 66.8 kg, a neck circumference of 32.8 cm, and a neck length of 10.6 cm.

The ANSUR II dataset includes 42 body landmarks, including multiple markers on the

head. In addition to these ANSUR II landmarks, 110 landmarks were identified to calculate

joint center locations, body segment rotations, and additional body measurements [14].

Twelve of the ANSUR II and eight of the additional landmarks are located on the head and

neck. The 3D coordinates of each landmark only need to be recorded once for the mean sur-

face model and they can be automatically translated to other models synthesized using the

AMG software due to the underlying Principal Component Analysis (PCA) data [14]. The

lower neck joint center is calculated as a weighted average of the C7 and Clavicle landmarks.

The skull-neck joint is located at the top of the neck between the C1 vertebra and the skull and

calculated based on another two markers located on the left and right side of the head near the

tragion.

To create a 50th percentile male (and female) model based on ANSUR II, the original neck

model was first manually scaled and fitted inside the mean 3D body (Fig 2) and its segment

inertia properties were updated based on a volumetric body segmentation of the 3D body. The

manual scaling was done by scaling separate body segments to obtain a visually close-fitting

match. The resulting mean model was voxelized for body segmentation based on the musculo-

skeletal segment definitions (Fig 3). For simplicity, the neck is segmented as a whole instead of

7 smaller cervical segments defined in the musculoskeletal model (C1-C7). Uniform density

was assumed for all segments and the overall density was adjusted for the male and female sep-

arately to match the total body mass of the mean ANSUR II male and female [14]. The selected
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voxel volumes for the head and neck (Fig 4) were used to calculate the head and neck volume,

mass, center of mass (COM), and moment of inertia (MOI). With a given density, the mass

and COM of a segment can be easily computed from the sum of voxel mass and position, and

the MOI can be computed with regard to the COM frame by summing over all voxels with the

parallel axis theorem.

Although a female neck model has already been developed by Zheng [9], this model was

based on a single female subject who happened to be obese and no mass and inertia properties

were provided. The vertebral geometry and muscle attachments in this model were specific for

that particular female. This makes it difficult to define differences in neck behavior between

males and females using the current male and female neck models. In the studies by Zheng

et al. [8] and Zheng [9], it was found that females have 59% lower neck total muscle volume

(TMV) compared to males (females: 510±43cm3, males: 814±64cm3; p<0.001). However, the

same authors also showed that there is no significant gender difference in vertebral shape

(wedging or concavity) or in kinematic parameters such as intervertebral motion distribution

or instantaneous axis of rotation when normalized by vertebral size; moreover, the muscle vol-

ume distribution is similar between males and females. Therefore, for consistency, the female

musculoskeletal model was generated by manually scaling the male model while incorporating

gender specific differences, such as differences in mass and inertia distributions, as well as

muscle strength with regards to anthropometry.

Optimization of maximum isometric muscle force

After geometric and anthropometric fitting of the male and female models to 50th percentile

ANSUR II data, their strengths needed to be optimized to 50th percentile male and female

strength. Neck strength data in literature usually report either the forces measured at certain

locations on the head or the estimated moments. In most studies, the force was applied or

Fig 2. The adjusted 50th percentile musculoskeletal model fitted within the mean ANSUR II Skin. (A) Male; (B)

Female.

https://doi.org/10.1371/journal.pone.0219954.g002
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measured at the forehead for flexion, at the opisthocranion for extension, and at the temple for

lateral bending. There is a large variation in the strength data from literature and only [19–22]

presented data for both males and females. Male flexor strength, for example, ranges from 72

to 197 N and female flexor strength from 41 to 91 N. The reported strength ratios between flex-

ion and extension range from 58% to 85% for male and 57% to 71% for female; and ratios of

female to male strength range from 0.42 to 0.68 for flexion and 0.4 to 0.74 for extension. The

large variation in strength measurements made it difficult to use the averages of these studies

as the target strengths of 50th percentile males and females, as this would result in different

Fig 3. Body segmentation of the ANSUR II average (A) male and (B) female. The segmentation is done based on the

anatomical structures contained in each body part and limited manual adjustment. The different shades of red and blue

identify the different body parts.

https://doi.org/10.1371/journal.pone.0219954.g003
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strength ratios (between flexion and extension) for the male and females. However, other

sources in literature suggested that muscle volume distribution does not differ (or only mini-

mally) between males and females [8], implying that strength ratios shall be similar for male

and female. We therefore used the male data from literature that were close to 50th percentile

male and scaled the male target data for the average female with a female to male ratio of 0.65

from [21,22] since these studies measured strength in a similar way as it was calculated during

our model strength optimization (explained below). This average male strength and female

strength (as a ratio of male strength) that was used as a target in our optimizations is presented

in Table 1.

Optimization of muscles forces requires the knowledge of physiological force limits for

each muscle, which cannot directly be measured in vivo. Muscle force is proportional to physi-

ological cross-section area (PCSA), with a proportionality constant known as the specific ten-

sion. PCSA is directly proportional to muscle volume and inversely proportional to fiber

length, both of which can be measured with MRI or in cadavers. To ensure that the muscle

force ranges remained physiologically realistic during muscle strength optimization, it was

ensured that the muscle volume distribution stayed within limits reported in literature. Zheng

et al. [8,9] described a muscle volume distribution and defined regression equations for total

muscle volume on this same dataset (Table 2). Optimization of muscle parameters in our

model may deviate from the measured percentage muscle volume distribution. We therefore

constrained this optimization (for both the male and female model) to produce muscle volume

Fig 4. Zoom-in view of the head and neck segmentation for (A) male and (B) female. The balls are the COMs of the head and

neck. The local rotational axes for head and neck are also shown. Planes of separation of the neck from the torso and the head

are based on the rules by Walker et al. [18].

https://doi.org/10.1371/journal.pone.0219954.g004

Table 1. Peak forces and moments that can be resisted by the 50th percentile male and female for extension, flexion, lateral bending and axial rotation. The male

and female target data from literature [19–22] are the targets used for optimization, and the male and female optimized are the forces and moment that can be resisted by

the optimized models.

Extension (N) Flexion (N) Lateral bending (N) Axial rotation (Nm)

Original model 255 66 109 7.4

Male target literature 254 122 173 11.2

Male optimized 248 119 190 11.5

Difference (%) -2.4 -2.5 9.8 2.7

Female target literature 165 79.6 112.3 7.3

Female optimized 171 78 103 7.3

Difference (%) 4.0 -2 -8.3 0

https://doi.org/10.1371/journal.pone.0219954.t001
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distributions that are within ±5% of those reported by Zheng et al. [8,9]. Zheng’s muscle vol-

ume percentage distribution data was used because they are all based on the same subjects and

scans of living subjects instead of cadaver measurements.

The muscle strength of the original neck model (see section 1. Scaling of original neck

model to 50th percentile male (and female) anthropometry) was based on muscle PCSA and

fiber length measurements on cadavers [16]. The overall neck strength was computed by simu-

lating the experimental conditions with increasing forces or (axial rotation) moment applied

to the model until it can no longer maintain the static neutral posture. For example, to deter-

mine the flexion strength, we applied an increasing force on the forehead and conducted static

optimization to determine if the muscles can coordinate to generate the required joint torques.

The computed overall neck strength (moment generation capacity) of the original or scaled

50th percentile neck model did not agree well with that reported in literature for a 50th percen-

tile male (Table 1). The model was too strong for neck extension and too weak for neck flexion.

Since most muscles have multiple functions (such as extensor and axial rotator), the model

cannot easily be manually tuned or scaled to agree better with experimental data in all direc-

tions. For this reason, we developed an optimization routine that matches the moment gener-

ating capacity of the model to average moment generating capacity data of 50th percentile

males measured experimentally (target neck strength as listed in Table 1). This optimization

routine can vary the peak isometric force of all or selected muscles between minimum and

maximum values reported in literature [5,7,9,23,24], or any other predefined range. This

ensures that all muscle parameters stay within their reasonable physiological ranges.

For strength optimization, we used outcomes from studies that reported forces at the head

except for the axial rotational moment. Only maximum isometric forces of muscles were opti-

mized such that the model could resist the maximum force applied that corresponded to the

values from literature and the ability to resist higher forces was penalized in the optimization

formulation. The location of the point of force application to the skull was defined based on

Table 2. Muscle volume distributions (calculated from isometric muscle strength and optimal fiber length) by Zheng et al. [8,9], with total muscle volume in the

bottom row.

Muscle volume distribution by [8]

Females (n = 3) Males (n = 7) Average (n = 10)

Sternocleidomastoid 17.3% 14.0% 15.0%

Scalenus 6.4% 6.3% 6.3%

Longus capitis 2.4% 1.6% 1.8%

Longus colli 1.9% 1.7% 1.7%

Trapezius 25.9% 28.7% 27.9%

Splenius (capitis and cervicis) 9.3% 9.9% 9.7%

Semispinalis capitis 10.6% 10.7% 10.7%

Semispinalis cervicis and multifidus 8.7% 7.0% 7.5%

Longissimus capitis 1.5% 1.8% 1.7%

Longissimus cervicis 1.1% 1.3% 1.2%

Levator scapulae 8.9% 10.0% 9.7%

Rectus capitis major 0.8% 0.8% 0.8%

Rectus capitis minor 0.3% 1.1% 0.9%

Obliqus capitis superior 0.3% 0.6% 0.5%

Obliqus capitis inferior 1.4% 1.9% 1.8%

Infrahyoids 3.4% 2.7% 2.9%

Total neck muscle volume (cm3) 510.4±43.0 813.9±63.6

https://doi.org/10.1371/journal.pone.0219954.t002
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the anatomical landmarks on our mean 3D male and female skin models. The forces (or

moment for rotation) and location of application are presented in Table 1 for the male and

female model.

The objective function used in the optimization is as follows:

J ¼
XN¼4

k¼1

wk

Xn

i¼1

ðtsimi � t
exp
i Þ

2

 !

with t
exp
i as the target joint torques (at all cervical joints) required to resist the experimentally

measured forces from literature, and tsimi as the maximum attainable joint torques from the

muscles for a given set of muscle parameters. n is the number of cervical joints. N = 4 indicates

the four experiment modes included (flexion, extension, bending and rotation). In our optimi-

zation, we used equal weights, wk = 1.0 for all modes. The joint torques tsimi can be obtained

through a separate inner static muscle optimization, which optimizes all muscle forces in order

to produce the target torques t
exp
i . The objective function of this inner static optimization is

Js ¼
Xm

i¼1

fi
f max
i

� �2

þ wt

Xn

i¼1

ðtsimi � t
exp
i Þ

2

in which m is the number of muscles, fi are the muscle forces to be optimized, f max
i is the maxi-

mum isometric muscle forces, tsimi are the joint torques generated by all muscle forces, wτ is a

large weight (for which we used 100 in our optimization). The first term aims to minimize the

muscle effort or activation and the second term aims to minimize t
exp
i � t

sim
i , often referred as

the residual torques in a muscle static optimization problem. The computed residual torques

also appear in the outer objective function J above.

However, use of the objective function J in strength optimization will likely produce a

strong model with unnecessary high strength because it can easily generate the required tsimi to

be equal or close to t
exp
i even with sub-maximum muscle forces to minimize J. To determine if

this happens, we artificially increase the experiment forces by a small ratio (e.g. 2%) that

changed t
exp
i to t

exp0
i and redo the static muscle optimization. If the resultant J is smaller than a

tolerance (e.g. 1e-3), it means the current muscles can generate torques more than necessary

and are too strong. Therefore, we added an additional penalty term Jp to the objective function

J above such that the final objective function JF = J+Jp with

Jp ¼
XN¼4

k¼1

wk
1

ð
Pn

i¼1
ðtsimi � t

exp0
i Þ

2
Þ
:

The hyoid muscle groups in the original neck model were included in the optimization,

assuming they participate in maximum voluntary contraction experiments, where the jaw

could be clenched with force contributions from hyoid muscles.

The overall optimization method is a bilevel optimization process. On the top, a global opti-

mizer was used to search the entire parameter space for optimal parameters that minimize the

objective functions above. While evaluating the objective functions, the global optimization

involves an inner static muscle optimization that predicts tsimi . Typically, there is no guarantee

the optimization outcome is the global optimum since the objective never reaches zero (satisfy-

ing the strength objective for all four modes) within limited time (e.g. a half hour).

To prevent some individual muscle volumes from becoming too large within a muscle

group, individual muscle volume percentages within each group were approximately main-

tained within the optimization. Since Zheng et al. [8] only presented muscle volumes for
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muscle groups instead of the individual muscles, the total volume of each muscle group was

distributed over individual muscles based on their proportion in the original male neck model.

Therefore, the muscle group volume distribution is based on Zheng et al., while the ratio of

each individual muscle subvolume within a group (such as sterno-mastoid, cleido-mastoid

and cleido-occipital for the sterno cleido mastoid muscle group) was based on the original

model. During the optimization, the left-right symmetry of all muscles was enforced through

equality constraints of muscle parameters.

Anthropometric scaling of musculoskeletal models

To create body surface models of different anthropometry, the AMG software [14] uses virtual

body measurements, such as segment lengths, width, depths and circumferences, calculated

from digital body landmarks on the 3D body. It links traditional 1D anthropometry measure-

ments with 3D principal components and allows users to directly change anthropometry

parameters to manipulate the body shapes and vary inertia properties accordingly (Fig 5).

As mentioned earlier, during anthropometric model generation, the new joint locations are

determined by the positions of surface landmarks and the new mass and inertia properties of

each segment are determined by the voxelized segmentation. By linking the body-surface-

model-determined joint locations and inertia with the musculoskeletal model, the AMG soft-

ware can interactively scale the musculoskeletal model simultaneously with the 3D surface

model. Scaling of the neck segment is based on the neck circumference at the Adam’s apple

height and the total neck segment length. The scaling factor is computed by comparing the val-

ues of the current model with those of the mean ANSUR II male or female model. The 3D seg-

mented model has one single neck segment instead of 7 cervical spine segments. Therefore, we

scaled these cervical segments based on their geometry and mass distribution in the original

model. The 3D model has no guaranteed symmetry between left and right, but the musculo-

skeletal model can be symmetrized using the average of the left and right values when needed

(e.g. during output).

Fig 6 shows examples of 5th, 50th and 95th percentile male and female anthropometry mod-

els with specified height, weight, neck circumference, and neck length (Table 5 and Table 6).

The values of these features can then be adjusted, and the body shape will change accordingly.

The geometrical and physical parameters of each muscle were also scaled based on neck

anthropometry. During the anthropometric scaling, the position of each muscle path point

(called node here) is scaled with its attached segment (which is scaled in XYZ directions with

Fig 5. Exemplary anthropometry body models generated based on neck width, depth and length.

https://doi.org/10.1371/journal.pone.0219954.g005
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factors sx, sy, and sz. This geometry scaling causes the muscle to change its path line and its

total length changes from L0 to L. The muscle fiber length and tendon slack length is scaled by

the muscle length scaling factor (sL = L/Lo), similar to the scaling law employed in [25,26]. For

the max muscle fiber force, we scaled it with the ratio of muscle PCSA (sc) before and after the

scaling. Nonetheless, it is not straightforward to derive the muscle PCSA scaling factor sc from

the segment scaling factors sx, sy, and sz since the cross-section may not align with any of the

XYZ planes. To address this problem, we assume each muscle node i has a volume vi that is

scaled by a scaling factor svi ¼ sxi � syi � szi . Then the total volume scaling factor for the muscle

can be defined as a weighted average of the nodal volume scaling factors

sv ¼
Pn

i li � sviPn
i li

¼

Pn
i li � svi
L

¼
Xn

i

li
L
� svi

Fig 6. Anthropometrically scaled percentile models (5th, 50th, 95th) for (A) males and (B) females.

https://doi.org/10.1371/journal.pone.0219954.g006
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in which n is the total number of nodes in this muscle, li is the characteristic length of node i
(defined as the half length of the edge/s connecting this node to its neighbors), L = ∑li is the

total length of the muscle, and
li
L is the volume scaling weight factor for the ith node. With both

sL and sv given above, the PCSA scaling factor can then be computed as sc = sv/sL.

Results

Mass and inertia properties

Systemic methods that use geometric approximations or predefined anthropometric features

(such as [27,28]) are fairly accurate in estimating body segment moments of inertia (MOI) of

the upper and lower extremities but may not be accurate enough for the head and neck. Our

voxelized segmentation method captures the fine details of the anthropometric body variation

without approximation and offers better representation of mass and inertia properties. The

calculated mass of the head and neck for the 50th percentile male and female model (Table 3),

based on the volumetric segmentation in Fig 3 and Fig 4, agreed well with literature [18,29–

31]. The COM of the head and neck is further forward and higher than that reported by [32],

[29], and [33], even though the axes definitions are similar to that in our model. This could be

because of the definition of our neck and head segments. Our definition has a slightly more

detailed separation between the cervical spine and the skull. The neck COM is difficult to com-

pare, because of the difference in the location of the axes. The head MOI (Table 3) estimated

for our model is in good agreement with that from literature [18,29,30,32,33], while the neck

MOI is higher than that reported by McConville et al. [32]. This could be because of the differ-

ences in the definitions of the neck segment or the measurement method.

Neck strength optimized models

The original male model was too weak in flexion, lateral bending, and axial rotation and too

strong in extension (Table 1). After optimization, the strength of the 50th percentile male was

improved for most directions from a maximum of 45% to be below 3% (Table 1). However,

the optimized male model was still much weaker in flexion than the experimental measured

value (9.8%). Closer investigation of the optimization results showed that the male model was

not capable of producing sufficient flexion strength at the top cervical vertebrae without the

optimized parameters deviating too much from reasonable values. Therefore, an additional

flexor muscle, the rectus capitis anterior muscle, which was not included in the original model,

was added. To complete the rectus capitis muscle group, the rectus capitis lateralis was added

as well. Their locations were based on anatomy of these muscles (Fig 7) and their initial

strengths were based on [34] with a maximum isometric force of 32.5N. However, to consider

the discrepancy in reported specific muscle tension, ranging from 35 N/cm2 to 137 N/cm2 in

the literature [35], we allowed their strength to change up to a few times higher. To maintain

agreement between the male and female model, identical muscles were added to the female

model with scaled down strength.

Table 3. Mass and inertia properties of the head and neck of the 50th percentile male and female models. x, y, z are the anterior-posterior, media-lateral, and top-bot-

tom directions, respectively. Inertia properties (unit: 10−4 kgm2) are relative to the segment’s COM.

Mass (kg) Ixx (10−4 kgm2) Iyy (10−4 kgm2) Izz (10−4 kgm2)

Male Neck 1.66 41.5 38.9 37.4

Head 4.20 191.9 229.9 168.8

Female Neck 1.22 27.3 25.3 22.4

Head 3.61 143.3 182.1 143.0

https://doi.org/10.1371/journal.pone.0219954.t003
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The final strength results of the male and female models are presented in Table 1 and the

isometric forces of the individual muscles in Table 4. For both the male and female models, the

strengths are very close for extension, flexion and axial rotation, all within 4%. However, the

difference in lateral bending moment is relatively higher at ~8–10%.

Percentile models

Once the optimized 50th percentile models were obtained and loaded into the AMG software,

we were able to interactively generate anthropometric musculoskeletal models based on the

geometrical scaling method presented in [14] and the muscle scaling method presented earlier.

To demonstrate the capabilities of anthropometric scaling of these 50th percentile musculo-

skeletal models, 12 male and 12 female models were created based on the body height, mass,

neck circumference (at Adam’s apple height), and neck length specifications, corresponding to

1st to 99th percentile males and females from the ANSUR II data base ([36]; Table 5 and

Table 6).

Fig 6 shows the generated anthropometric models of 5th, 50th, and 95th percentile for both

female and male models. The musculoskeletal neck model is shown together with the 3D mesh

model to demonstrate how they are scaled together. Fig 8 compares the updated peak forces or

moments (similar to Table 1) that can be resisted by the scaled percentile models. For the male

model, extensor strength increased for models with percentiles, except for the 40th and 95th

percentile models whose values are slightly smaller than the models preceding them. Flexion

strength increased mostly for models with percentiles, except for the 5th, 40th, and 90th percen-

tile models. Lateral bending strength also increased mostly with percentiles, except for the

40th, 70th, and 95th percentile model. Axial rotation strength showed a very similar pattern to

lateral bending, except for the 90th percentile model. For the female model, strengths increased

consistently with percentile models for all moment directions.

Discussion

The aim of this study was to develop anthropometrically scaled neck musculoskeletal models

and validate their strengths. 50th percentile male and female full body musculoskeletal models

with detailed neck musculature were developed and optimized. The strengths of optimal 50th

percentile models are close to target values in flexion, extension, and axial rotation, all within

10% differences or less. The lateral bending strength was however relatively high in the male

model (9.8%) and relatively low for the female model (-8.3%). This is likely because the female

has a smaller neck circumference than the male (Table 5 and Table 6) despite similar neck

Fig 7. Placement of (A) the rectus capitis anterior and(B) lateralis in the model.

https://doi.org/10.1371/journal.pone.0219954.g007
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Table 4. Maximum isometric muscle forces of the original model and the final optimized and scaled male and female models.

Maximum Isometric Force (N)

Original model Optimized male model (final) Optimized female model (final)

stern_mast 86.1 221.58 88.4

cleid_mast 43.1 123.3 44.5

cleid_occ 43.1 123.3 43.0

scalenus_ant 65.8 74.07 65.2

scalenus_med 65.8 77.77 60.2

scalenus_post 36.8 43.47 37.3

long_cap_sklc4 48.0 123.57 50.8

long_col_c1thx 14.4 41.2 19.2

long_col_c1c5 14.4 41.2 20.4

long_col_c5thx 14.4 41.2 11.8

trap_cl 132.0 155.93 122.3

trap_acr 348.6 411.83 327.8

splen_cap_sklc6 55.0 65.02 44.1

splen_cap_sklthx 53.2 62.84 48.4

splen_cerv_c3thx 50.1 59.16 29.8

semi_cap_sklc5 91.7 108.3 74.8

semi_cap_sklthx 101.5 119.92 77.2

levator_scap 109.2 128.99 99.5

longissi_cap_sklc6 34.3 40.54 31.0

longissi_cerv_c4thx 52.2 61.71 41.1

iliocost_cerv_c5rib 36.4 43.0 34.7

rectcap_post_maj 58.8 69.46 38.4

rectcap_post_min 32.2 46.55 29.3

obl_cap_sup 30.8 40.02 25.8

obl_cap_inf 68.3 80.70 50.5

omohyoid 26.3 75.2 26.5

sternohyoid 20.3 58.1 21.1

sternothyroid 22.8 65.2 23.4

semi_cerv_c3thx 107.1 126.54 102.5

supmult-C4/5-C2 14.7 17.39 9.7

supmult-C5/6-C2 19.3 22.77 17.6

supmult-C6/7-C2 15.8 18.71 14.0

supmult-T1-C4 16.3 19.28 10.8

supmult-T1-C5 11.7 13.80 8.8

supmult-T2-C6 6.5 7.65 3.9

deepmult-C4/5-C2 7.4 8.79 4.4

deepmult-C5/6-C3 12.3 14.55 9.6

deepmult-C6/7-C4 16.1 18.99 9.5

deepmult-T1-C5 12.3 14.55 7.5

deepmult-T1-C6 8.3 9.83 7.7

deepmult-T2-C7 14.0 16.54 9.1

deepmult-T2-T1 14.0 16.54 9.1

rectcap_ant - 92.6 60.19

rectcap_lat - 92.6 60.19

https://doi.org/10.1371/journal.pone.0219954.t004
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lengths (see also [37]). The neck circumference affects the scaling of muscle path and their

moment arms, especially on bending. In addition, many muscles were modeled as straight

lines, while in real life these are closer to the body and would have smaller moment arms. Mus-

cles can be modeled as running closer to the body using wrapping objects or via points. Such a

neck model has been developed by Suderman et al. [23,38,39],but they cautioned that the

model can be very sensitive to wrapping object or via point kinematics and inter-individual

differences in muscle paths and joint kinematics.

Several studies in literature have performed comparable muscle parameter optimization

studies [40–42]. Some used Monte Carlo methods to match muscle activation during a partic-

ular movement [41,42] and compared whether muscle parameters were within physiological

limits after the optimizations. Others explored the effects of measurement errors during exper-

imental data collection and parameter estimation during inverse kinematics and dynamics

Table 5. Body height, mass, neck circumference and length of the 12 percentile male models that have been created together with data for the 50th percentile male.

These data are reproduced from the ANSUR II database [36].

Male

Percentile Stature (m) Body Mass (kg) Neck Circumference (cm) Neck Length (cm)

1st 1.60 57.8 34.6 8.0

5th 1.65 64.4 36.0 8.7

10th 1.67 68.2 36.7 9.2

20th 1.70 73.4 37.5 9.7

30th 1.72 77.4 38.3 10.1

40th 1.74 81.0 38.9 10.4

50th 1.76 84.6 39.5 10.8

60th 1.77 88.0 40.2 11.1

70th 1.79 92.0 41.0 11.4

80th 1.81 96.6 41.8 11.8

90th 1.84 104.4 43.2 12.4

95th 1.87 110.7 44.3 12.9

99th 1.93 124.7 46.8 13.8

https://doi.org/10.1371/journal.pone.0219954.t005

Table 6. Body height, mass, neck circumference and length of the 12 percentile female models that have been created together with data for the 50th percentile

female. These data are reproduced from the ANSUR II database [36].

Female

Percentile Stature (m) Body Mass (kg) Neck Circumference (cm) Neck Length (cm)

1st 1.48 46.4 29.1 7.9

5th 1.53 51.3 30.2 8.7

10th 1.55 54.6 30.7 9.1

20th 1.58 58.5 31.3 9.6

30th 1.60 61.6 31.9 10.0

40th 1.61 64.5 32.4 10.3

50th 1.63 66.8 32.8 10.6

60th 1.64 69.5 33.3 10.9

70th 1.66 72.6 33.8 11.3

80th 1.68 76.4 34.5 11.6

90th 1.71 82.4 35.5 12.2

95th 1.74 87.1 36.3 12.7

99th 1.78 98.3 38.5 13.6

https://doi.org/10.1371/journal.pone.0219954.t006
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[40]. The novelty of our optimization method resides in the bilevel optimization process that

employs a global optimizer for parameter sampling and a local gradient based optimizer for

static muscle torque prediction. The developed optimization method has the advantages in its

versatility and capability in maintaining muscle parameters automatically within physiological

limits.

The strength data of the different percentile models were compared to each other. The gen-

eral trend was as expected, strength increased with increasing percentile. For the male model,

Fig 8. Comparison of the peak resistible forces and moments for the 13 (A) male percentile models and (B) female

percentile models.

https://doi.org/10.1371/journal.pone.0219954.g008
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there were however some instances where the next percentile had slightly lower or similar

strength to the previous percentile model. This could be due to the scaling methods and non-

proportional increase of neck length and circumference. In our method, muscle optimal forces

were scaled with respect to estimated muscle volume and muscle paths (that determine

moment arms) were scaled based on skeletal geometry. As a result, strength was not scaled lin-

early. While increase of neck circumference generally increases the muscle forces and moment

arms, increase of neck length (or height) decrease the muscles’ capability to resist forces

applied at those specific application locations on the head. The two competing trends could

lead to non-monotonical increases or even decreases of neck strength with percentile, if no

further muscle optimization is performed.

For maximum isometric muscle force optimization, the physiological ranges of muscle

forces were constrained by muscle volume distributions. It is difficult to compare muscle vol-

ume distributions between the different neck models since total muscle volumes often differ

and sometimes models have different numbers of muscles included. For example, the models

by Oi et al. [5] and Borst et al. [24] do not include exactly the same muscles. There is a large

variation in muscle volume distribution, even in the neck models developed by the Vasavada

research group. The original model had relatively low sternocleidomastoid and levator scapu-

lae volumes, while volumes of semispinalis cervicis and multifidus, and longissimus cervicis

were relatively high. The combined semispinalis cervicis and multifidus, however, deviated a

lot from the muscle volumes reported by Zheng et al. [8,9]. Since there was such a large differ-

ence in neck muscle volume distribution between the different models, we also compared their

PCSA distribution. The muscle volumes in the different models are based on experimental

measurements and combined with measurements of fiber lengths to obtain PCSAs. The PCSA

distribution was similar between the models for most muscles. The PCSAs in Oi and Pandy’s

model [5] were the same as those in our original model, while the PCSAs in Suderman’s model

[39] and Borst’s model [24] were very different. Zheng’s 50th percentile male was also very sim-

ilar in PCSA to our model, only the multifidus muscles were different.

To accurately represent muscle strengths, individual muscle volume, directly related to the

muscle’s PCSA, or force generation capability, must be known. Zheng et al. [8] showed that

individual muscle volume proportions (the ratio of the individual neck muscle volume to the

total neck muscle volume) are almost fixed or insensitive to anthropometry. In addition, these

volume proportions are not gender specific for most neck muscles, although small gender dif-

ferences existed for three neck muscles (obliqus capitis inferior, longus capitis, and sternoclei-

domastoid). Based on the above findings, we can create subject-specific or percentile neck

models by scaling the generic male or female model accordingly.

There are some limitations in the approach of this study. A constant body density was

assumed, while in reality density of the different body segments will differ depending on their

bone, fat, and muscle mass content. Furthermore, the density was chosen to match the mass of

the 50th percentile ANSUR II male and female to the volume of their 3D model. This means

that the mass of a different body composition may be slightly under or over estimated. How-

ever, for the current study, this is deemed acceptable, as body density cannot easily be pre-

dicted by anthropometry alone. Future improvement can be made by specifying body part

specific mass density.

It should also be noted that an anthropometric model generated with AMG software repre-

sents the average person with user-provided anthropometric measurements. The models are

not personalized at the level of vertebral geometry, which would require MRI or CT scans. In

this study, percentile models were generated to represent specific percentiles from the ANSUR

II database. The developed methodology can also be used to represent the anthropometry of a

specific person and a larger number of measurements can be used if more details are desired.
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However, as mentioned above, average body density is used, so body fat and muscle percent-

age is not taken into account. Also, the strength of the scaled model will be that of an average

person of that anthropometry and not of the specific person. Nonetheless, strength could be

further personalized with the bilevel optimization method presented here if subject specific

dynamometer measurements of neck strengths are given.

Conclusions

In conclusion, a new methodology was developed to quickly generate anthropometric neck

musculoskeletal models that were interactively scaled for anthropometry and muscle strength.

This method was implemented in an anthropometric model generation software that allows

users to generate new musculoskeletal models with interactive adjustment of anthropometric

parameters (such as height, weight, neck circumference) without the need of subject-specific

motion capture or medical images. 50th percentile male and female models based on the

ANSUR II database were developed and optimized with a novel bilevel optimization method

to possess strengths comparable to experimentally measured values in the literature. Other

percentile models generated from automated scaling of the 50th percentile models were also

presented and compared. The resultant models are reasonably accurate in terms of both mus-

culoskeletal geometry and strength, which proves the effectiveness of the developed methodol-

ogy. We also applied the same methodology for anthropometric scaling of other

musculoskeletal models such as upper extremity models and lumbar spine models for different

applications [43]. Our method provides the capability to interactively generate accurate

human musculoskeletal models with anthropometric scaling and a fast and convenient way to

produce custom models for dynamic musculoskeletal simulations and analyses.
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