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Abstract

Thousands of genome segments appear to be present in widely varying copy number in different 

human genomes. We developed ways to use increasingly abundant whole genome sequence data 

to identify the copy numbers, alleles and haplotypes present at most large, multi-allelic CNVs 

(mCNVs). We analyzed 849 genomes sequenced by the 1000 Genomes Project to identify most 

large (>5 kb) mCNVs, including 3,878 duplications, of which 1,356 appear to have three or more 

segregating alleles. We find that mCNVs give rise to most human gene-dosage variation – 

exceeding sevenfold the contribution of deletions and biallelic duplications – and that this 

variation in gene dosage generates abundant variation in gene expression. We describe “runaway 

duplication haplotypes” in which genes, including HPR and ORM1, have mutated to high copy 

number on specific haplotypes. We describe partially successful initial strategies for analyzing 

mCNVs via imputation and provide an initial data resource to support such analyses.

Introduction

Human genomes exhibit segmental copy number variation (CNV) at thousands of loci. Rare 

and de novo deletions and duplications, which are often large (100s of kb), are known risk 

factors in many human diseases1-6; thousands of smaller, common deletions and 
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duplications segregate in human populations7,8, many potentially contributing to complex 

phenotypes9-12. Analysis of CNVs, either via direct molecular analysis (for rare CNVs) or 

statistical imputation (for common CNVs), is now a routine activity in genetic studies8,13,14.

Perhaps the most intriguing form of CNV is the form that is today least characterized. Many 

hundreds of genomic segments (and perhaps far more) seem to vary in copy number in wide 

ranges and have resisted effective analysis by most molecular methods. These loci exist in 

more states than can be explained by the segregation of just two structural alleles. We and 

others have called such loci “multi-allelic CNVs” (mCNVs)7,15, though the specific alleles 

that segregate at these loci are unknown.

Cytogenetic analysis of a few multi-allelic CNVs has revealed tandem arrays of a genomic 

segment16-20. Such loci may evolve in copy number via non-allelic homologous 

recombination (NAHR)21, with mutation rates substantially higher than for SNPs. The 

actual frequency with which mCNV loci undergo such mutations is unknown, and might 

involve many structural mutations and the repeated recurrence of structurally similar alleles.

An important genome-wide survey of CNV by Conrad et al.7 ascertained many mCNVs 

using high-density arrays to ascertain CNV in 40 individuals, then analyzed these CNV 

regions using targeted arrays in 270 individuals. This data set has been the core scientific 

resource on common CNVs for many years. Reflecting limitations in array-based methods, 

however, the Conrad study inferred integer copy numbers only in the range of 0-5. A 

subsequent sequencing-based study by Sudmant et al. used early whole-genome sequence 

data from the 1000 Genomes Project pilot to assess CNV at sites annotated as segmental 

duplications on the human genome reference22; this work suggested that hundreds of such 

loci exhibit CNV, some with wide dynamic range, but studied CNV as a continuous 

variable, reflecting the analytical challenge of inferring precise integer copy-number 

states22. An important scientific need is to understand mCNVs in the genetic terms used to 

understand other forms of genetic variation – the alleles that generate variation at a site; the 

frequencies of such alleles; and the haplotypes that such alleles form with other variants.

Here we sought to use emerging whole-genome sequence data to answer these questions: 

What is the range of integer copy number for large mCNVs, and how common is each copy-

number level? What copy-number alleles give rise to such variation? What combinations of 

rare and common copy-number alleles segregate at each locus? How much do mCNVs 

affect the expression of the genes they contain? By what structural histories did these loci 

come to their present diversity? How can such variation be incorporated into the analysis of 

complex traits?

Results

Computational approach and initial results

High copy numbers have been hard to measure experimentally, especially at genome scale. 

Precise molecular quantitation is challenging because the ratios in DNA content from person 

to person at mCNVs (such as 4:3 and 7:6) are within the experimental noise of many 

approaches. Thus, most experimental measurements of mCNV copy number are 
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continuously distributed. Resolving these to accurate determinations of the discrete copy 

number state in each genome is a necessary first step towards a deeper population-genetic 

understanding of mCNVs.

In whole-genome sequence data, the number of sequence reads arising from a genomic 

segment can reflect the underlying copy number of that segment 22-26. However, a key 

challenge is to neutralize the many technical influences that both (i) vary between specific 

DNA samples or sequencing libraries, and (ii) also reflect sequence-specific properties of a 

genomic locus. For example, the G+C content of genomic sequences affects their 

representation in sequencing libraries due to PCR amplification bias, in a library-specific 

manner22 (Supplementary Figure 1). In DNA samples from proliferating cell lines, such as 

those used in the 1000 Genomes Project, locus-specific replication timing also influences 

read depth of coverage27. We found that analyzing many genomes together in a population-

based approach14 can address these and other technical influences (Fig. 1, Online 
Methods).

To obtain precise, integer measurements of diploid copy number for mCNVs, we extended 

the Genome STRucture in Populations (Genome STRiP) algorithm14 to apply its population-

based analysis to carefully normalized sequence representation measurements (Online 
Methods). Within Genome STRiP, we analyze the distribution of read depth for a genomic 

segment across many genomes using constrained Gaussian mixture models (Fig. 1,2, Online 
Methods). These models simultaneously infer the most-likely integer copy number for each 

genome and the confidence of each copy-number assignment, which we represent as copy-

number “likelihoods” (the likelihood of each potential copy-number “genotype” given the 

sequencing data, analogous to genotype likelihoods for SNPs 28-30). Population-level 

analysis also enables us to more accurately infer the correct range of absolute copy number 

by exploiting information inherent in the read-depth ratios between different copy-number 

classes and the relative frequencies of different copy-number classes (under Hardy-

Weinberg equilibrium models) (Online Methods).

The accuracy of this approach at individual loci encouraged us to use it to search the 

genome ab initio for CNVs (versus looking at sites of known segmental duplication 22 or 

sites with other evidence of duplication, such as aberrantly oriented read pairs 31). We 

scanned the human genome in overlapping windows, looking for segments where the read 

depth measurements deviated from a unimodal distribution (Fig. 1, Online Methods). When 

candidate CNV regions were found, we mapped them at higher resolution by testing 

multiple segments until the population-level copy-number distributions converged to 

multimodal distributions in which individuals’ estimated copy numbers clustered at a series 

of integer levels (Fig. 1, Online Methods). For CNV loci that are represented on the 

reference genome by two or more nearly-identical segments, we measured total copy 

number by integrating read depth measurements from positions that are unique genome-

wide and positions that are identical between the duplicated segments on the reference 

genome (Online Methods). Such population-scale approaches become more powerful in the 

simultaneous analysis of many genomes (Fig. 1,2).
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Using these approaches, we made a detailed ploidy map of 849 genomes from fourteen 

diverse human populations (Supplementary Table 1) from Phase 1 of the 1000 Genomes 

Project, sequenced at 4.8x median coverage (range 2.0x to 20.6x). We focused on CNV loci 

where we could obtain a clear series of discrete copy-number classes (Fig. 2) at this 

sequencing depth. We ascertained 8,659 CNVs (median length10.7 kbp) of which 1,449 

(16%) overlap protein coding genes. Some 4,781 of these CNVs appeared to be biallelic 

deletions; 2,522 were biallelic duplications; and 1,356 were multi-allelic (Supplementary 
Note). The distribution of observed diploid copy number at these loci ranged from zero to 

fifteen (Fig. 2, Supplementary Table 2).

Critical molecular evaluation of CNV and genotype calls

We sought to evaluate, by independent methods, the accuracy of these copy number 

determinations. Using data from Illumina Omni 2.5 and Affymetrix 6.0 SNP arrays for the 

same individuals, we applied an intensity rank sum (IRS) test that analyzes distributions of 

array probe intensity measurements across samples to estimate a false-discovery rate for the 

identification of CNV loci (Online Methods). This IRS test previously estimated false 

discovery rates (FDRs) of 2–83% for various deletion-discovery algorithms used in the 1000 

Genomes Project32. For the CNV discovery set in the current work, this same test estimated 

a 2.7% FDR, including 5.8% for duplication CNVs overall and 1.7% for duplication CNVs 

larger than 10kb (Supplementary Table 3).

We next evaluated the specific integer copy-number determinations in each genome (often 

called “genotypes” in analogy to crisp SNP genotyping 7,15,33). Importantly, our goal was 

not just rough correlation of different copy-number estimates, but determination of the 

correctness of each integer genotype call in each individual.

For a subset of the CNV sites and individuals, we could compare to the high-quality array-

based analysis by Conrad et al. (Supplementary Figure 2). Across 995 of these CNVs with 

at least 80% overlap in genome coordinates, our integer genotypes showed 99.9% 

concordance (exact agreement) with the integer genotype determinations from Conrad et al. 

and agreed at 99.0% of calls of the non-modal copy number (Supplementary Tables 4-5, 

Supplementary Figure 3, Supplementary Note). This is the first sequencing-based 

duplication call set to show such high, systematic genotype concordance with an array-based 

call set, indicating high accuracy and precision in both data sets.

These validation results were limited to the kinds of CNVs genotyped in the Conrad et al. 

study – where copy number ranges from 0 to 5. To evaluate our genotypes for higher-copy-

number CNVs, we turned to a recently developed molecular method, droplet digital PCR 

(ddPCR), which uses nanoliter-sized droplets to digitally count the number of copies of a 

genomic sequence in a DNA sample 34,35. We selected 22 high-copy CNVs with a wide 

dynamic range of copy number ranging from 1 to 9 (median 4, mean 4.47) and typed them 

using ddPCR in 90 HapMap samples. Integer genotype concordance was 99.9% 

(Supplementary Table 6) and consistent across the range of copy number evaluated (Fig. 3, 
Supplementary Figure 4). These data represent the first such resource for high-copy 

mCNVs (Supplementary Data).
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Alleles, phasing and haplotypes

Using these integer copy number determinations in 849 individuals, we next sought to infer 

copy number at the level of specific alleles or chromosomal copies. At mCNVs, the diploid 

copy of an individual can arise from multiple potential combinations of copy-number alleles. 

(For example, an individual with 7 copies of a genomic locus might have allelic copy 

numbers of 4 and 3; of 5 and 2; of 6 and 1; or even 7 and 0.) Additional information exists at 

a population level, however, since the distribution of copy numbers contains information 

about the relative frequencies of different copy-number alleles 36,37. There is also potential 

information in flanking SNP haplotypes that can potentially inform the analysis of 

individuals in whom multiple allelic combinations are possible36,37.

For each CNV, we partitioned the diploid copy number likelihoods among all potential 

combinations of copy number alleles and integrated this information with the genotype 

likelihoods for flanking SNPs in a population framework using the beagle4 imputation 

software 38 to phase each CNV (Online Methods). This approach allowed an initial 

estimate of the frequency of each underlying copy-number allele in multiple human 

populations (Supplementary Data, Supplementary Figure 5).

This analysis revealed a wide range of allelic architectures and copy-number ranges at 

mCNVs (Fig. 2b). Some 1,356 of the CNVs ascertained in this study were confirmed by this 

analysis to have three or more segregating alleles; 121 of these had four or more alleles, and 

45 had five or more. (Note that an “allele” in this analysis refers to the integer copy number 

of a genomic segment on a single chromosome; the same copy-number “allele” could in 

principle have arisen multiple times and encompass fine-scale differences that are outside 

the scope of the current analysis.) One result of this analysis was that not only the number, 

but also the fraction of duplication CNVs that are multi-allelic (35%) was greater than 

estimates from earlier studies. This is due to the larger sample size with its increased ability 

to ascertain low-frequency alleles; many duplication CNVs that we and others7,15 previously 

observed in only 2 to 4 copies per diploid genome turned out to have additional, higher-copy 

alleles at low frequency or in other human populations.

mCNVs are the human genome's largest source of gene dosage variation

These data made it possible to measure the impact of distinct classes of CNV on human 

variation in gene dosage. For each human gene, we estimated the frequency with which any 

pair of individuals differs in integer copy number of the entire gene, using the copy-number 

determinations from this study (Supplementary Note).

Intriguingly, this analysis indicated that mCNVs – a relatively small subset of all CNVs – 

contribute 88% of variation in human gene dosage (66 of the 75 gene copy-number 

differences present on average between any pair of individuals), approximately seven times 

more than the contribution of the more-numerous biallelic CNVs (Table 1). Several factors 

accounted for mCNV's large contribution to human gene dosage variation. First, 

duplications are more likely than deletions to affect protein-coding genes (Table 1), as 

reported previously7. Second, mCNVs contribute much more to gene-dosage variation than 

the more-numerous duplication CNVs do (Table 1). This latter result is largely due to allele 
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frequency; duplication CNVs appear to have a propensity to become multi-allelic as they 

reach higher allele frequencies in populations (Table 1, Supplementary Figure 6, 

Supplementary Tables 7-8). We hypothesize that this is due to increased opportunity for 

multicopy alleles to encounter one another in diploid genomes, where they may undergo 

further duplication due to NAHR.

Our data may well underestimate the contribution of mCNVs to gene dosage variation, as 

we have focused on mCNVs for which we could infer highly accurate integer genotypes, 

limiting the current analysis to CNVs with copy numbers generally less than 12. CNVs with 

even higher copy numbers appear to exist in human populations 22 and are likely to be 

multi-allelic.

Biallelic and multi-allelic CNVs tended to be over-represented in the same kinds of genes. 

As reported previously for CNVs in general,7 mCNVs were over-represented among genes 

with roles in extracellular biological processes and under-represented among genes involved 

in intracellular metabolic and biosynthetic pathways (Supplementary Table 9, 
Supplementary Figure 7).

Impact on gene expression

Given the large contribution of mCNVs to human gene dosage variation, we sought to 

understand their contribution to gene expression variation. In the simplest model, increased 

dosage of a gene could directly cause increases in expression of that gene. However, several 

factors might modify or abrogate such relationships; for example, tandem repeats could lead 

to dosage-dependent inactivation, as observed for transgenes in plants, flies, and 

mammals 39-42; or gene duplications might not include distal regulatory elements important 

for a gene's expression.

To address this question in one cell type, we utilized available mRNA-seq data derived from 

lymphoblastoid cell lines (LCLs) from 310 individuals whose genomes we had analyzed 

here 43 and asked whether variation in gene dosage is reflected in mRNA abundance. Most 

mCNV genes showed a strongly positive correlation between the gene's dosage in genomic 

DNA and that gene's mRNA expression (Fig. 4 and Supplementary Figure 8). RNA 

abundance tended to rise linearly with gene dosage (Fig. 4). Among 133 genes with 

evaluable expression levels in LCLs (RPKM > 2) that were contained within a common 

duplication CNV, the distribution of association p-values was dominated by low p-values, 

indicating a predominance of positive correlations, with only a few potential exceptions 

(Fig. 4). We conclude that the great majority of mCNVs affect RNA expression levels of the 

genes they contain. We further explore relationships between mCNVs and gene expression 

in Supplementary Table 10 and Supplementary Figure 9.

Imputation of the allelic states of mCNVs from SNPs

The above results show that hundreds of human genes exhibit common variation in dosage, 

structure and expression due to mCNVs. It will be important to understand how such 

variation contributes to human phenotypes. An initial study of common CNVs in six 

common diseases (1,500 cases per disease) by the WTCCC found few effects from common 
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CNVs 44; however, most discoveries of SNP association for complex phenotypes have 

required much larger samples (tens of thousands) and been made during meta-analysis of 

many GWAS data sets. Such discovery might be enabled if the states of mCNVs could be 

imputed from available SNP data.

We recently found that the 17q21.31 locus segregates in human populations in at least nine 

structural forms 35 and is somewhat tractable to imputation 35. However, the generality of 

such relationships is not known.

We sought to understand the extent to which mCNV imputation might be possible using our 

results as an imputation resource. Using the beagle438 software, we evaluated how 

effectively diploid copy number can be estimated from flanking SNP data for each CNV by 

performing leave-some-out analyses (Online Methods).

It is helpful to compare the results for mCNVs to results for simple deletion CNVs. 

Common deletion CNVs (a positive control) were overwhelmingly well-imputed (91% with 

r2 > 0.8), as expected from earlier work. By contrast, mCNVs showed a wide range of 

imputability, with common mCNVs (combined MAF > 10%) exhibiting almost an almost 

uniform distribution of imputation r2 from 0 to 1.0 (Supplementary Figure 10). This 

suggests that mCNVs span a wide range, from loci at which discrete copy-number alleles are 

well-imputed, to loci with recurring mutations and little sustained relationship of copy 

number to surrounding haplotypes.

A scenario that could potentially hinder the imputation of some mCNVs would occur if the 

duplication alleles were dispersed to distant genomic sites45,46. We looked for evidence of 

dispersed duplications using long-range LD and interchromosomal segmental duplications 

and found 15 CNVs with evidence of dispersal (Supplementary Tables 11-12, 

Supplementary Figure 11); however, these were a small fraction (2.2%) of the duplications 

evaluated, suggesting that distant dispersal is unlikely to explain the modest efficacy of 

imputation for many mCNVs.

Many features of the allelic architecture and copy-number distributions of mCNVs were 

predictive of their imputability. Lower average imputability was evident for mCNVs with 

wider copy-number ranges (Fig. 5a); larger numbers of alleles (Fig. 5b); higher average 

copy number (Fig. 5c); or a high “third+ allele frequency” (Fig. 5d) (i.e. when a mCNV's 

less-common alleles have relatively high frequency). All of these features of mCNVs are 

likely to be proxies for their historical mutation rates, the complexities of their mutational 

histories, and the consequent likelihood that a given flanking SNP haplotype presents with 

different copy-number states in different individuals.

“Runaway duplication” haplotypes

Some genic CNVs showed an intriguing pattern in which most individuals had low copy 

numbers, but some had far-higher copy numbers; the high copy numbers appeared to arise 

from alleles on which a genomic segment had duplicated many times. In each case, the 

individuals with high copy numbers were from the same continental population. One of 

these genes was HPR, which encodes a haptoglobin-related protein that is used in defense 
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against trypanosomes47. HPR was present at 2 copies in European population samples and 

1-2 copies in Asian population samples, but in 4-8 copies in about 25% of individuals 

sampled from African populations (Fig. 6). A second example was the ORM1 

(orosomucoid) gene, which was present at 2-3 copies (per diploid genome) in all African 

genomes analyzed but at up to 13 copies among Europeans, with high copy numbers 

particularly common among Southern Europeans (Fig. 6).

To better understand the mutational history of each locus, we analyzed the haplotypes on 

which low- and high-copy number alleles were segregating. At both ORM1 and HPR, the 

high-copy-number alleles were observed on a shared SNP haplotype, while the reference 

structural allele (with a single gene copy) segregated on many different haplotypes (Fig. 6). 

The haplotype uniformity and population specificity of the high-copy-number alleles 

suggest a recent, geographically unique origin. These relationships also indicate that these 

high-copy alleles have evolved by repeated, recurrent mutation on the same haplotype 

background.

Both HPR and ORM1 are functionally connected to disease loci. The HPR protein forms 

(together with APOL1) the Trypanosome Lytic Factor (TLF) that is a primary defense of 

human blood against trypanosomes47,48. APOL1 appears to have been under strong recent 

selection in African populations due to recently-arisen variants that protect against 

trypanosome infection while contributing to kidney disease49. The copy-number variation at 

HPR is similar to the Africa-specific SNPs at APOL1 in that it contains multiple new alleles 

that have quickly risen to high frequencies in African populations where trypanosomes are 

endemic49,50. ORM1, one of the most abundant glycoproteins in blood, is paralogous to 

ORMDL3, in which common variants associate strongly to risk of asthma51. It is intriguing 

to speculate that HPR and/or ORM1 may have quickly risen in copy number in response to 

geographically localized selection events.

Both HPR and ORM1 present examples of the partial efficacy of imputation for analysis of 

mCNVs. At both loci, SNP haplotypes readily distinguish the high-copy-number alleles 

from the more-common low-copy-number alleles (Fig. 6). However, SNP haplotypes do not 

readily distinguish the high-copy alleles from one another (Fig. 6). It seems likely that high-

copy-number alleles have frequently mutated into other high-copy-number states, while low-

copy-number alleles have remained stable. Understanding the actual mutation rates of 

mCNVs is an important direction for future work.

Discussion

We described computational approaches for identifying mCNVs and characterizing such 

polymorphisms in terms of alleles, allele frequencies, and haplotypes. The resulting data 

showed that mCNVs broadly impact genes and gene expression. Multi-allelic CNVs give 

rise to at least six times more gene-dosage variation than simpler, biallelic CNVs do (Table 
1), and such variation usually affects the expression level of the encompassed genes (Fig. 4).

Multi-allelic CNVs are not routinely evaluated in genome-wide studies based on SNP arrays 

or exome sequencing due to the limitations of these approaches for accurately measuring 
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copy numbers greater than four. Two studies have analyzed mCNVs using custom-designed 

targeted arrays, which appear to be more effective, though both studies noted the immense 

technical challenges involved and the consequent challenges of careful association analysis 

when copy number estimates are not precise integer genotypes44,52. Several features of 

mCNVs suggest that mCNVs will reward future efforts at analysis. First, most mCNVs 

affect just one or two genes, allowing functional effects to be assigned to specific genes. 

Second, associations to mCNVs will exhibit a clear direction of effect (i.e. certainty about 

whether more or less gene activity contributes to risk). Third, therapeutics based on such 

discoveries may benefit from the observation that dosage variation is present and tolerated in 

the general population.

But what is the best way to relate mCNVs to phenotypes? Increasingly abundant WGS data, 

together with analysis methods such as those here, could increasingly make direct 

association testing routine. But it will take many years (and substantial resources) for the 

sample size of WGS-based studies to approach the current size of array-based GWAS. For 

now, we believe that early insights might be gleaned from new analyses of large, extant SNP 

data sets.

Imputation from existing SNP data could be used to perform initial genome-wide scans to 

nominate specific mCNV loci for deeper analysis. Given the finding here that an imputation-

derived dosage estimate will only partially correlate with true copy number, such an 

approach would be only partially powered, but could draw compensating power from the 

vast numbers of individuals for whom dense SNP data are available. Based on observing at 

least nominal association to phenotype, follow-up evaluation could involve direct molecular 

analysis (which might strengthen the association signal) and conditional analysis relative to 

nearby variants. The finding that biallelic SNPs only partially correlate to mCNV copy 

number at many loci could empower conditional association analysis to disentangle the 

effects of mCNV alleles from effects of other, nearby genetic variants.

There are many important directions for future work. The analysis of mCNVs in larger 

population-based cohorts will yield new insights about the combinations of common and 

lower-frequency structural alleles that reside at each locus; such cohorts could also be used 

to create second-generation imputation resources that are more effective than the one here at 

imputing recurrently mutating mCNVs. Our work here has not addressed more complex 

forms of structural variation in which multiple duplications and deletions (affecting 

overlapping but distinct genomic segments) and inversions give rise to complex, compound 

structural alleles; such loci have to date required customized computational and molecular 

strategies35,45,53,54.

The elucidation of complex and recurrently mutating forms of genome variation will 

ultimately deepen our understanding of genome evolution and the ways in which these 

mutable loci contribute to human phenotypes.
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URLs

The catalog of CNVs ascertained in this study, including genotypes, allele frequencies and 

imputation results (including plots of flanking haplotypes) are available at http://

www.broadinstitute.org/software/genomestrip/mcnv_supplementary_data.

Online Methods

CNV discovery and genotyping

Discovery and genotyping of CNVs was performed using an enhanced version of the 

Genome STRiP software14 (internal version 1.04.1383, public release 2.0). Genome STRiP 

performs discovery and genotyping of CNVs by analyzing the data from many samples 

simultaneously in a population-based framework.

CNV site discovery was performed in two phases: one targeting uniquely-alignable portions 

of the reference genome (for this data set, positions where 36 base-pair reads can be 

uniquely aligned) and one targeting segmentally duplicated regions where the copy number 

in the reference genome is greater than one. For the uniquely-alignable portion of the 

genome, we utilized a pipeline which prospectively genotyped overlapping windows across 

the genome, using a window size of 5kb of alignable sequence and overlapping adjacent 

windows by 2.5kb (Discovery Set 1, Supplementary Note). For segmentally duplicated 

regions, we utilized the segmental duplication annotations from the UCSC genome browser 

to define potential CNV regions that were then evaluated by prospective genotyping 

assuming a reference allele copy-number of two, then subsequently filtering to select sites 

with clear evidence of polymorphism (Discovery Set 2, Supplementary Note). In both 

cases, site discovery was enhanced by improvements to the genotyping methods in Genome 

STRiP, particularly the normalization and interpretation of read depth information.

Normalization of read depth

Read depth of coverage was measured by counting sequenced DNA fragments overlapping a 

genomic interval of interest. To facilitate normalization, each fragment was counted as a 

point event, assigned to the coordinate that is the midpoint of the left-most read (for paired-

end sequencing). Reads were only counted if they mapped to locations which should be 

uniquely alignable based on the structure of the reference genome. In addition, for CNV 

analysis, we applied a “low complexity mask” that masked genome coordinates falling in 

regions of low-complexity sequence (as categorized by the RepeatMasker tracks from the 

UCSC browser). The raw read counts were normalized to correct for sequencing bias as a 

function of the G+C content in each sequencing library (Supplementary Note).

CNV genotyping model

To genotype a CNV interval, Genome STRiP fits a constrained Gaussian mixture model to 

the read depth signal across the interval, using data from all available DNA samples. The 

model incorporates sample-specific variance terms to model the variation in sequencing 

depth between samples. In our previous work on deletion variants, we used a mixture of 

three distributions, corresponding to diploid copy number classes of 0-2. For CNV 

genotyping, we fitted a mixture of multiple Gaussians, corresponding to a series of diploid 
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copy number classes from zero to a site-specific maximum. The maximum copy number 

modeled for each site was chosen based on the maximum read depth signal from any of the 

samples at that site. An advantage of the constrained Gaussian mixture model used in 

Genome STRiP is that in practice the mixture weights can be allowed to go to zero without 

adversely affecting the model fit. This eliminates the need to test and compare many 

different models with different numbers of copy number classes.

Assignment of absolute copy number

A key problem for multi-sample CNV calling algorithms that use clustering is to accurately 

estimate the correct absolute copy number for each cluster. The constrained mixture model 

used in Genome STRiP is advantageous in this respect, especially when large numbers of 

genomes are available for simultaneous analysis. The means of the copy number classes 

were required to scale as integer multiples (with a scaling parameter fitted from the data). 

Thus, the model is sensitive to the ratio between adjacent clusters, which can help to 

distinguish, for example, clusters of copy number 2-4 from clusters at copy number 4-6. To 

avoid over-fitting, we rejected models where the scaling parameter is too high (above 2.0) or 

too low (below 0.5).

Utilizing copy number parity

To further increase the accuracy of absolute copy-number determination, especially at high 

copy number, we borrowed information from the population allele frequencies of the 

samples being jointly analyzed. At autosomal loci, under assumption of Hardy-Weinberg 

equilibrium (HWE), the number of individuals that have even diploid copy numbers should 

not be less than the number of individuals with odd diploid copy numbers. (Intuitively, this 

is a generalization to mCNVs of the observation in SNP genotypes that the frequency of a 

heterozygote class should not exceed the combined frequencies of the homozygote classes.) 

At most sites, the allele frequencies will fall into a range where incorrectly shifted copy 

number assignments will cause strong deviation from HWE. For example, a CNV site with 

low to moderate variant frequency and diploid copy numbers of 2-4 will have a very 

different inferred allele frequency distribution if the diploid copy numbers are incorrectly 

shifted down to 1-3 or up to 3-5. Using this information increases the effective separation 

between likely cluster assignments by a factor of two at most CNV sites.

We exploit this information by performing a simple parity test on copy number. As we fit 

the mixture model, we estimate the number of even and odd copy numbers observed in the 

population. If the fraction of even copy numbers falls below a specified threshold parameter 

(default 0.4), we shift the cluster assignments towards a more likely model. This 

optimization can be disabled for small populations, family studies or highly-stratified 

populations.

Genotyping both unique and duplicated sequences

Previous versions of Genome STRiP analyzed read depth only at positions on the reference 

that are sufficiently unique that sequence reads should be able to align uniquely (based on 

read length and the repetitive structure of the reference genome). To genotype CNVs that are 

present in multiple copies on the reference genome, we extended our method to utilize 

Handsaker et al. Page 11

Nat Genet. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



positions that are non-unique on the reference by considering reads in reference k-mers that 

are not globally unique, but are present only at a small, fixed number of locations within 

paralogous genomic regions. The normalized read counts from such positions can be used to 

estimate the total copy number of a non-unique segment on the reference genome.

In segmentally duplicated CNV regions, the read counts from both the unique and non-

unique positions can be utilized together to estimate both the total copy number genome-

wide and the paralog-specific copy number. The unique positions represent paralog-specific 

differences (or paralog-specific variation, PSVs) that differentiate one paralog from the 

other, based on the reference genome.

CNV boundary determination

To determine the likely boundaries of a detected CNV, we employed a hill-climbing 

algorithm that tested many candidate CNV segments overlapping the CNV region to find the 

segment where the read depth distribution converges most strongly to a series of confidently 

predicted integer copy numbers in all analyzed samples (Supplementary Note). Starting 

with an initial CNV segment, we sampled the space of potential segment boundaries by 

alternately varying the left and right boundaries of the segment by several multiples of a 

fixed increment (10% of the initial segment length), then gradually halving the increment 

until a target boundary precision (200bp) or minimum segment length (2.5kb) was reached.

CNV phasing and imputation

Prior to phasing, the computed likelihoods for each diploid copy number call were converted 

to genotype likelihoods for haploid copy number alleles. At mCNV loci, the constituent 

copy number alleles are generally not known (e.g. a diploid copy number of 4 can arise from 

allelic copy numbers of 2+2 or 1+3). We first inferred the set of likely copy number alleles 

by enumerating all possible allelic combinations and employing an expectation-

maximization algorithm to estimate the allele frequencies and considering alleles that met a 

population-specific allele frequency threshold of 0.001 (Supplementary Note). We used 

these population-specific estimated allele frequencies as a prior on the genotype likelihoods 

as additional information to help resolve ambiguous allelic combinations (Supplementary 
Note).

Phasing and subsequent imputation experiments were performed using the beagle software 

package (beagle4, version r1128) and the 1000 Genomes Phase 1 reference panel supplied 

with the beagle software. Each CNV site was phased and imputed separately. For CNVs at 

segmentally duplicated sites where the segments were separated by more than 100kb, we 

attempted to phase and impute the CNV separately at each genomic location.

Imputation accuracy was evaluated by performing a series of leave-out trials at each CNV 

site. In each trial, the CNV genotypes for 10 individuals were masked and the genotypes for 

these individuals were imputed from the rest of the cohort. This was repeated for the entire 

cohort using disjoint sets of 10 individuals at a time. The imputed genotypes were compared 

to the measured diploid copy number for the withheld individuals, using squared correlation 
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(Pearson's r) between the inferred diploid copy number in each individual (Supplementary 
Note).

Estimation of CNV false discovery rate using SNP array data

We used the IRS (intensity rank sum) test implemented in the Genome STRiP software 

package to evaluate false discovery rate. This test ranks the normalized SNP array probe 

intensity values from the SNPs underneath each CNV and performs a rank-sum test across 

the set of array probes to determine whether samples with genotypes that are below (or 

above) the expected reference copy number have statistically lower (or higher) probe 

intensities. The false discovery rate was estimated from the distribution of p-values across 

the evaluated sites, considering deletions and duplication sites separately (Supplementary 
Note). The overall call set FDR was estimated as a weighted average of the rates for each 

variant category.

CNV genotype analysis with droplet digital PCR

We screened a subset of 96 genomic DNA samples from the YRI2 (Yoruba in Ibidan, 

Nigeria) cohort of the Coriell 1000 Genomes Project samples for 32 multi-allelic CNV and 

segmental duplication target sites ascertained from sequencing data (Supplementary Table 
13) using droplet digital PCR (ddPCR, Bio-Rad Laboratories) and standard protocols 

(Supplementary Note). Primer/probe ddPCR assays for each target were custom designed 

by Bio-Rad Laboratories based on a set of target genomic regions from sequencing data 

analysis. At CNV sites in segmental duplications on the reference genome, the assays were 

designed to genomic locations with identically duplicated sequence to measure total copy 

number across the duplicated segments.

Effect of gene dosage on gene expression

RNA sequencing data was downloaded from the Geuvadis project web site. For CNVs that 

fully overlapped genes, we computed the Pearson's correlation coefficient between the CNV 

integer copy number and the normalized gene expression quantitation from the RNA 

sequencing data.

P-values for gene expression were calculated using 10,000 random permutations and a one-

sided test with Pearson's correlation coefficient as the test statistic. In each trial, we 

randomly permuted the mapping between genes and CNVs. To control for potential 

interactions between genes and nearby but non-overlapping CNVs, we generated 

permutations where genes were always assigned to CNVs on a different chromosome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ascertainment of multi-allelic copy number variations (mCNVs) across the human genome. 

Multi-modal patterns of variation for a high-frequency CNV (orange box represents the true 

extent of the CNV) can be detected in multiple windows (w1 – w6) that overlap the CNV 

segment (a). Where read-depth distributions from adjacent windows are highly correlated 

across many genomes, these windows are merged to increase power for genotyping (b). To 

more precisely estimate the genome sequence affected (c) many candidate intervals (green 

bars, i1 – i4) are tested; intervals for which the data most strongly coalesce to integer 

genotypes with high posterior likelihoods define the estimated CNV boundaries (i3).
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Figure 2. 
Determination of the copy-number levels and alleles present at mCNV loci. Histograms of 

normalized read depth (a) are fitted with a Gaussian mixture model to infer integer copy 

number level (“genotype”) for 849 genomes. Colors represent copy number calls at 95% 

confidence; samples in gray have less-confident copy number calls. Similar plots for all 

mCNVs ascertained in this study are provided in the supplementary web resource. (b) 
Distribution of observed diploid copy numbers across 8,659 CNVs ascertained in this study. 

The size of each circle represents the number of CNVs in each category. Colors indicate the 

minimum number of copy-number alleles necessary to represent the observed dynamic 

range of copy number variation observed at each site. For example, the blue circles represent 
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deletions and duplications, and the various other colors represent classes of multi-allelic 

CNVs with various copy-number ranges and numbers of alleles.
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Figure 3. 
Critical evaluation of copy number genotypes by droplet digital PCR (ddPCR). Across 38 

genomes evaluated, copy number genotypes from sequencing data were compared with 

measurements from ddPCR. Panel (a) shows data for 6 of the 22 loci evaluated. Plots for all 

loci are in Supplementary Figure 4. Across the 22 loci, the two methods showed 99.9% 

genotype concordance at confidently called sites.
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Figure 4. 
Relationship of gene copy number (in genomic DNA) to gene expression (in mRNA) for 

multi-allelic CNVs. (a) At four typical genic mCNVs, inter-individual variation in gene 

expression levels appears to arise strongly from gene dosage variation. For clarity, 

individual points show data for all 310 genomes that have corresponding RNA data (not just 

outliers) overlaid on a summary box plot showing median, inter-quartile range, and whiskers 

extending to the most extreme point no more than 1.5 IQR from the box edge (Tukey 

convention). Supplementary Figure 8 shows such analyses for many more genes. (b) 
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Across all genic mCNV loci that are expressed in lymphoblastoid cell lines, the distribution 

of p-values (in tests for positive correlation between gene expression and gene dosage) is 

dominated by low p-values. P-values calculated using 10,000 random permutations 

(Supplementary Note).
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Figure 5. 
Relationship between imputability of mCNVs and features of each mCNV locus. 

Imputability from current reference panels (here measured by imputed dosage r2) relates to 

multiple features of each mCNV, including (a) the copy-number range of the mCNV (the 

difference between the highest and lowest observed diploid copy numbers); (b) the number 

of common (MAF > 1%) copy-number alleles segregating at the site; (c) the mean copy 

number of the mCNV; and (d) the combined frequency of all copy-number alleles after the 

two most common. All quantities were calculated for the EUR population cohort for 184 

mCNVs with MAF > 1%. In panels a and b, a small amount of random variation is added to 

the discrete x-axis values to aid visualization. CNVs for which at least one individual SNP 

showed even partial correlation to copy number (p < 10−3) in the EUR population are 

plotted in blue, CNVs lacking such SNPs in gray.
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Figure 6. 
Haplotypes with “runaway” copy number. (a) Copy number distribution and haplotype 

structure of a multi-allelic CNV encompassing the HPR gene. About 25% of the non-

admixed African individuals sampled by the 1000 Genomes Project exhibit HPR copy 

numbers greatly increased (4-8) relative to those observed in individuals sampled from all 

the non-African populations (generally no more than 2). The branching green plots on the 

right show SNP haplotypes in the region around the HPR locus, in chromosomes sampled 

from African populations (YRI and LWK). The origin in the middle of the haplotype plot 

corresponds to the edges of the HPR mCNV; the branches show places at which flanking 

haplotypes begin to diverge due to mutation or recombination. The thickness of each branch 

indicates haplotype frequency; shading indicates allele frequency of the individual SNPs 

used to define haplotypes. Haplotypes carrying high-copy HPR alleles (with more than one 

HPR copy) are indicated by black lines at branch tips with a line segment for each extra 

copy above one. Almost all the high-copy alleles appear to segregate on the same haplotype 
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background. (b) A similar analysis of a mCNV affecting the ORM1 gene, which appears to 

have greatly expanded in copy number on a specific haplotype, producing many different 

high-copy alleles.
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Table 1

CNV impact on gene dosage

Number of genes differing in copy number between two individuals

Category # CNVs Genic CNVs Genes Singletons AAF < 1% AAF < 5% AAF > 5% Overall

Deletions 4,781 70 88 0.12 0.33 0.54 5.04 5.58

Duplications 2,522 194 314 0.40 1.28 2.32 1.06 3.38

Multi-allelic 1,356 126 231 n/a 0.80 2.62 63.27 65.89

Total 8,659 390 633 0.52 2.41 5.48 69.37 74.85

Contributions of three forms of CNV (deletions, biallelic duplications, and multi-allelic CNVs) to gene dosage variation among humans. Multi-
allelic CNVs, which comprise only about 15% of the CNVs ascertained, give rise to more than 85% of human gene dosage variation, measured as 
the number of genes (on average) that differ in copy number between randomly chosen pairs of individuals. AAF – alternate (non-reference) allele 
frequency.
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