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Objective The aim of this study was to determine the feasibility of using machine learning to 
establish the need for preclinical airway management for injured patients based on a standard-
ized emergency dataset.

Methods A registry-based, retrospective analysis was conducted of adult trauma patients who 
were treated by physician-staffed emergency medical services in southwestern Germany be-
tween 2018 and 2020. The primary outcome was to assess the feasibility of using the random 
forest (RF) and Naive Bayes (NB) machine learning algorithms to predict the need for preclinical 
airway management. The secondary outcome was to use a principal component analysis to de-
termine the attributes that can be used and advanced for future model development. 

Results In total, 25,556 adults with multiple injuries were identified, including 1,451 patients 
(5.7%) who required airway management. Key attributes were auscultation, injury pattern, oxy-
gen therapy, thoracic drainage, noninvasive ventilation, catecholamines, pelvic sling, colloid in-
fusion, initial vital signs, preemergency status, and shock index. The area under the receiver op-
erating characteristics curve was between 0.96 (RF; 95% confidence interval [CI], 0.96–0.97) 
and 0.93 (NB; 95% CI, 0.92–0.93; P<0.01). For the prediction of airway management, RF yielded 
a higher precision-recall area than NB (0.83 [95% CI, 0.8–0.85] vs. 0.66 [95% CI, 0.61–0.72], re-
spectively; P<0.01). 

Conclusion To predict the need for preclinical airway management in injured patients, attributes 
that are commonly recorded in standardized datasets can be used with machine learning. In fu-
ture models, the RF algorithm could be used because it has robust prediction accuracy. 

Keywords Intratracheal intubation; Machine learning; Bayes theorem; Wounds and injuries; De-
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INTRODUCTION

International guidelines recommend preclinical airway manage-
ment as a potential life-saving procedure for severely injured pa-
tients with traumatic brain injury and a Glasgow Coma Scale (GCS) 
<9; severe respiratory insufficiency, for example, due to thoracic 
trauma or airway injuries; or trauma-associated shock.1-3 Howev-
er, preclinical airway management is a high-risk procedure due to 
imminent hypoxia, challenging environmental conditions, and 
varying clinician experience in managing difficult airway situa-
tions.4,5 Because hemodynamic conditions and the patient’s state 
of awareness can change quickly, preclinical trauma care is a highly 
dynamic situation. Therefore, an ability to predict or exclude the 
need for airway management would assist decision-making. 
  In recent years, several machine learning models that can pre-
dict the need for endotracheal intubation in intensive care pa-
tients have been published. They are based on electronic medical 
record systems and common clinical hemodynamic and laborato-
ry parameters.6-9 In preclinical trauma medicine, no such model 
exists. 
  German emergency medical services are divided into paramed-
ic and emergency physician systems (grounded or air), which are 
alarmed by the rescue coordination center in parallel or sequen-
tially depending on the emergency. Certain medical interventions, 
such as drug therapy or airway management, are restricted by 
law to emergency physicians except when needed for resuscita-
tion or when an emergency physician is unavailable. German emer-
gency physicians recruit themselves mainly from fields such as 
anesthesiology, internal medicine, and surgery. The specialization 
can be achieved in parallel with main medical specialist training 
after two years of clinical practice, which must contain at least a 
6-month rotation in the accident and emergency department or 
intensive care unit.5,10 For quality improvement, the German state 
of Baden-Wuerttemberg (population, 11.1 million in 2020; area, 

35,751 km²; capital, Stuttgart) created a Center for Quality Man-
agement in Emergency Medical Services in 2011. Since then, all 
paramedics and preclinical emergency physicians have had to pro-
vide anonymous, digital documentation to the minimal emergen-
cy dataset (MIND).10,11 The MIND has the advantage of being used 
throughout Germany, and it also contains international standard-
ized examination findings, diagnoses, and interventions that are 
used in the German Trauma Registry and the German Resuscita-
tion Registry. Divided into subcategories according to the Advanced 
Trauma Life Support (ABCDE) algorithm at first contact and hos-
pital admission and supplemented by a free text anamnesis and 
history (including vital signs diagram) of pharmaceutical therapy 
and medical interventions, the MIND provides nationwide, stan-
dardized, emergency documentation. Although the free text and 
history sections are not available digitally, the MIND seems suit-
able for research with machine learning. 
  Therefore, the aim of this study was to evaluate the feasibility 
of building machine learning models to predict the need for pre-
clinical airway management in trauma patients. As a first step, 
attributes of the MIND that define patients who need preclinical 
airway management were identified. Second, two machine learn-
ing algorithms were tested to demonstrate the accuracy of the 
models.

METHODS

Ethical statements
This study is reported based on the TRIPOD (Transparent Report-
ing of a Multivariable Prediction Model for Individual Prognosis 
or Diagnosis) statement.12 The trial was approved by the Ethics 
Committee of the State Medical Association of Rhineland-Palati-
nate (No. 2021-15767-retrospektiv). The study is a retrospective 
registry analysis with anonymized data. Informed consent was 
waived due to the retrospective nature of the study. 

What is already known
Preclinical airway management is a high risk procedure. Other than a Glascow Coma Scale of less than 9 or acute respi-
ratory insufficiency, there are few methods to predict the need for preclinical airway management.  

What is new in the current study
We developed and validated a machine learning model to predict the need for airway management in injured patients.  
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Design and setting
Adult patients with multiple injuries who were primarily treated 
by a physician-staffed ground or air ambulance from 2018 to 
2020 were selected from the MIND. Dead patients and those re-
quiring resuscitation were excluded. Briefly, the MIND files of the 
remaining patients were preprocessed for attribute selection us-
ing medical causality and a principal component analysis (PCA). 
With the help of the resulting attributes, Naive Bayes (NB) and 
random forest (RF) models were trained and tested to find their 
accuracy in predicting whether those injured patients were given 
preclinical airway management. Patient selection, dataset cre-
ation, and the analyses are illustrated in Fig. 1.

Definition
The MIND does not yet contain anesthesia as an attribute. There-
fore, emergency general anesthesia in any injured patient was 
defined as documentation of invasive airway management, posi-
tive end tidal CO2 without noninvasive ventilation (NIV) at admis-
sion, documented invasive ventilation at admission and the use 
of a muscle relaxant, or any use of a muscle relaxant. The main 

assumption was the correct indication of preclinical emergency 
anesthesia.

Attribute selection and data preprocessing
The MIND includes more than 550 anonymized attributes, includ-
ing specialization of the physician, standardized clinical examina-
tion findings, medical diagnoses, injury patterns in relation to par-
ticular body parts (classified as none, mild, moderate, severe, or 
deadly by the attending physicians), blunt or penetrating trauma, 
and vital signs at first contact and hospital admission, including 
the GCS, heart rate, systolic blood pressure, respiratory rate, oxy-
gen saturation, end tidal CO2, temperature, blood glucose level, 
and pain level. Furthermore, electrocardiogram findings (at first 
contact and hospital admission), medication (without dosage or 
timing), treatment (NIV, invasive airway management, thoracic 
drainage, pelvic sling), infusion therapy (crystalloid/colloid infusion, 
blood products), age, preemergency status (PES; a preclinically 
adapted classification of the American Society of Anesthesiolo-
gists), time on site, and transport time are recorded in the datas-
et.13

Fig. 1. Flowchart for patient selection, dataset creation, and analysis. SQR-BW, Center for Quality Management in Emergency Medical Services Baden-
Wuerttemberg; MIND, minimal emergency dataset; SMOTE, synthetic minority oversampling method. a)A total of 24 attributes included: >550 attributes 
filtered by causality or potential correlation, then selected by principal component analysis (Wrapper).

SQR-BW register with MIND 3.1a)

Dataset

40% Test set60% Training set

SMOTE (tripling)

Analysis and comparison of a random forest  
model to a Naive Bayes approach

10x in different 
randomisation

130,000 Injured patients

26,765 Multiple injured patients
1,210 Exclusions
       869 Resuscitations
       6 Dead patients
       335 Insufficient documentations

1,451 (5.7%) With airway management
24,105 (94.3%) Without airway management 

103,235 Exclusions
       - Age ≤17 yr
        - �Resuscitation or death on scene
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  The datasets of patients with cardiac arrest were excluded be-
cause abstaining from resuscitation could bias the weighting of 
certain attributes. Only datasets with at least two of the follow-
ing three attributes, initial GCS, systolic blood pressure, and oxy-
gen saturation, were included because those parameters repre-
sent the guidelines’ recommendations.1-3

  In data preprocessing, generally accepted attributes in the train-
ing set with potential correlations but no medical causality were 
excluded from the machine learning analysis (e.g., place of acci-
dent), as were causal attributes without any frequent occurrence 
in one of the two classes. Attributes correlating with indications 
for airway management were identified using international guide-
lines about respiratory, neurological, or hemodynamic findings 
and injury patterns.2,3,14 However, because critical volume loss and 
(developing) shock are not directly recorded in the MIND, surro-
gate parameters such as pelvic sling or tranexamic acid were also 
included. 
  The imputation of missing data was not considered due to the 
nominal character of most attributes. Because the remaining at-
tributes all contributed with different weightings, a PCA was per-
formed on the whole dataset using the wrapper method with a 
bidirectional search and a C4 decision tree (J48) with tenfold cross-
validation (settings in Supplementary Table 2).15 The Java-based 
software Weka ver. 3.8.4 (University of Waikato, Hamilton, New 
Zealand) was used for the PCA and machine learning.16,17 Statisti-
cal comparison of the attributes between the two classes (airway 
management and no airway management) was performed with 
chi-square test, U-test, or t-test, as appropriate, in Microsoft Ex-
cel (Microsoft Corp., Redmond, WA, USA). A P-value of less than 
0.05 was defined as significant. Continuous variables are expressed 
as means and standard deviations, and categorical variables are 
expressed as percentages.

Class balancing, training, and testing 
The data were split into a 60% training set and 40% test set 10 
times with a randomized split procedure to define the performance 
of the algorithms with different frequencies of invasively venti-
lated patients. In general, machine learning algorithms tend to 
learn and predict the majority class, whereas most studies are in-
terested in the minority class. To handle that class imbalance prob-
lem for the minority class that received airway management, the 
synthetic minority oversampling method (SMOTE) algorithm was 
used to triple the airway management class in the training sets, 
but not in the test sets. SMOTE synthesis creates one new minor-
ity instance out of k=5 existing minority instances using the k-
nearest neighbor approach (Supplementary Table 3).18 This proce-
dure was chosen because Weka does not offer a cross-validation 

that uses SMOTE in training but not in testing. Tripling the mi-
nority class was an appropriate assessment to improve the pre-
dictions and prevent overfitting. For supervised machine learning, 
the NB and RF methods were chosen (Supplementary Table 4). 
Both algorithms can handle missing values. 

Model performance
All results are presented as means with 95% confidence intervals 
(CIs). As performance criteria, overall correctness, kappa value, 
the area under the receiver operator curve (AUC-ROC), sensitivity 
(need for airway management), specificity (no need for airway 
management), positive predictive value (PPV) and negative pre-
dictive value (NPV), and the precision-recall (PRC) area were cho-
sen.15 The Matthews correlation coefficient (MCC) was used to 
measure the quality of the two presented classes of very different 
sizes (range: –1, total disagreement; 0, random prediction; +1, 
perfect prediction).19 The cost-benefit calculation for the RF algo-
rithm was performed automatically for the lowest overall error 
rate. The performance across all 10 test sets was averaged and 
compared with a t-test (P<0.05 as significant, calculated in Mi-
crosoft Excel). 

RESULTS

Out of more than 130,000 injured patients, 26,765 patients with 
multiple injuries were selected. Of the selections, 869 resuscita-
tions, 6 fatal cases, and 335 insufficiently documented datasets 
were then excluded, leaving 25,556 datasets with 1,451 cases 
(5.67%) of airway management. 
  Data preprocessing identified 31 attributes with potential cor-
relation or medical causality. In the PCA, 24 attributes were se-
lected, among them auscultation, injury pattern without the up-
per limbs or soft parts, oxygen therapy, NIV, tranexamic acid and 
catecholamines, pelvic sling, vital signs, PES, and shock index. 
With the exception of initial systolic blood pressure and respira-
tory rate (P>0.05), the groups with and without airway manage-
ment differed significantly (Table 1). For further information 
about nonselected attributes see Supplementary Table 1.
  In overall correctness, the RF outperformed the NB (97.8 [95% 
CI, 97.57–98.03] vs. 93.55 [95% CI, 93.11–93.99], respectively; 
P<0.01). The RF reached a significantly higher kappa value (0.78 
[95% CI, 0.75–0.8]) than the NB (0.54 [95% CI, 0.52–0.56]; P<0.01). 
In the AUC-ROC analysis, the RF reached 0.96 (95% CI, 0.96–0.97), 
and the NB reached 0.93 (95% CI, 0.92–0.93; P<0.01) (Fig. 2A). 
Furthermore, the RF model had a significantly higher MCC than 
the NB approach (0.78 [95% CI, 0.76–0.8] vs. 0.56 [95% CI, 0.54–
0.57], respectively; P<0.01).
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Attribute
Airway management

P-value
Yes (n=1,451) No (n=24,105)

Thoracic drainage 14.0 0.2 <0.01a)

Colloid infusion 7.0 0.2 <0.01a)

Tranexamic acid 40.0 4.0 <0.01a)

Pelvic sling 27.0 4.0 <0.01a)

Catecholamine 43.0 1.0 <0.01a)

   Systolic blood pressure (mmHg) 137±29 138±28 0.29

   Oxygen saturation (%) 94±7 95±6 <0.01a)

   Heart rate (beats/min) 90±20 89±19 <0.01a)

   Respiratory rate (breaths/min) 16±5 16±5 0.24

Pain level (0–10)b) 5 (0–10) 5 (0–10) <0.01a)

Shock index 0.7±0.3 0.6±0.6 0.03a)

Preemergency status (1–4)c) 2 (1–3) 2 (1–3) <0.01a)

Glasgow Coma Scale (3–15)   15 (14–15)   15 (15–15) <0.01a)

Age (yr)d) 54.88±21.44 55.80±22.28 0.13

Male sexd) 72.0 60.0 <0.01a)

Values are presented as percentage, mean±standard deviation, or median (inter-
quartile range).
a)Statistically significant value (P<0.05). b)No pain, 0. c)Healthy, 1; moribund, 4.  
d)Baseline characteristics not used in the algorithm.

Table 1. (Continued)Table 1. Clinical findings and medical treatments for both classes with 
the attributes selected through the principal component analysis

Attribute
Airway management

P-value
Yes (n=1,451) No (n=24,105)

Auscultation 1 <0.01a)

   Obstruction/gasping/apnea 15.0 0.3

   Bronchial spasm 18.0 0.3

   Rhonchi 2.0 0.2

   Other 31.0 13.0

Auscultation 2

   Dyspnea±cyanosis 37.0 3.0 <0.01a)

Head injury

   None 36.0 65.0 <0.01a) 

   Mild 5.0 20.0 <0.01a)

   Moderate 15.0 13.0 0.05a)

   Severe 44.0 2.0 <0.01a)

Face injury <0.01a)

   None 77.0 83.0

   Mild 5.0 10.0

   Moderate 11.0 7.0

   Severe 7.0 0.6

Cervical spine injury  

   None 90.0 88.0 0.07

   Mild 2.0 6.0 <0.01a)

   Moderate 4.0 5.0 0.40

   Severe 4.0 0.7 <0.01

Thoracic/lumbar spine injury <0.01a)

   None 90.0 85.0

   Mild 1.0 5.5

   Moderate 4.0 8.0

   Severe 4.0 1.0

Thoracic injury

   None 68.0 77.0 <0.01a)

   Mild 3.0 9.0 <0.01a)

   Moderate 10.0 12.0 0.10

   Severe 19.0 2.0 <0.01a)

Abdominal injury

   None 85.0 92.0 <0.01a)

   Mild 1.0 2.0 <0.01a)

   Moderate 4.0 4.0 0.50

   Severe 10.0 1.0 <0.01a)

Pelvic injury

   None 83.0 87.0 <0.01a)

   Mild 2.0 5.0 <0.01a)

   Moderate 4.0 6.0 0.02a)

   Severe 1.0 2.0 <0.01a)

Lower limb injury <0.01

   None 76.0 72.0

   Mild 4.0 12.0

   Moderate 7.0 12.0

   Severe 13.0 3.0

Oxygen therapy 57.0 35.0 <0.01a)

Noninvasive ventilation 32.0 0.2 <0.01a)

(Continued on the next section)

  In predicting the use of airway management, the difference 
between the NB and RF results was not statistically significant 
(0.75 [95% CI, 0.73–0.76] vs. 0.73 [95% CI, 0.71–0.76], respec-
tively; P=0.38). The best PPV was gained with the RF (0.85 [95% 
CI, 0.84–0.87]; NB, 0.46 [95% CI, 0.44–0.49]; P<0.01). This also 
resulted in a larger PRC area for the RF (0.83 [95% CI, 0.80–0.85]; 
NB, 0.66 [95% CI, 0.61–0.72]; P<0.01) (Fig. 2B).
  Both algorithms yielded a very high specificity (RF, 0.993 [95% 
CI, 0.992–0.994] vs. NB, 0.947 [95% CI, 0.942–0.952]; P<0.01), a 
high NPV (RF, 0.984 [95% CI, 0.980–0.987] vs. NB, 0.984 [95% 
CI, 0.983–0.985]; P=0.85), and a high PRC area (RF, 0.996 [95% 
CI, 0.996–0.997] vs. NB, 0.992 [95% CI, 0.992–0.993]; P<0.01) 
(Table 2). 
  The average threshold of the RF model was 0.51 (95% CI, 0.49–
0.53). Due to the decision process used by the NB, no average 
threshold can be given for it. The three most important attributes 
in the RF were systolic blood pressure (0.306±0.019), head injury 
(0.305±0.013), and initial heart rate (0.294±0.018) (Fig. 3).

DISCUSSION

This study set out to develop a decision model for determining 
the necessity of preclinical airway management in adult trauma 
patients. Commonly recorded preclinical attributes such as injury 
pattern, certain examination findings, vital signs, and emergency 
medical interventions were found to be most influential in fore-
casting the need for preclinical airway management. Both models 



309Clin Exp Emerg Med 2022;9(4):304-313

André Luckscheiter, et al.

Fig. 2. Averaged (A) receiver operator curves for the overall performance and (B) precision-recall curves for the prediction of airway management by the 
Naive Bayes and random forest algorithms. AUC, area under the curve; CI, confidence interval.
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Table 2. Model performance and evaluation of random forest versus Naive Bayes 

Variable Random forest Naive Bayes P-value

Overall correctness (%) 97.80±0.37 (97.57–98.03) 93.55±0.71 (93.11–93.99) <0.01a)

Kappa 0.78±0.04 (0.75–0.80) 0.54±0.03 (0.52–0.56) <0.01a)

AUC-ROC 0.96±0.01 (0.96–0.97) 0.93±0 (0.92–0.93) <0.01a)

MCC 0.78±0.04 (0.76–0.80) 0.56±0.02 (0.54–0.57) <0.01a)

Sensitivity 0.73±0.05 (0.71–0.76) 0.75±0.02 (0.73–0.76) 0.38

   Positive predictive value 0.85±0.03 (0.84–0.87) 0.46±0.03 (0.44–0.49) <0.01a)

   PRC areab) 0.83±0.04 (0.80–0.85) 0.66±0.09 (0.61–0.72) <0.01a)

Specificity 0.993±0.002 (0.992–0.994) 0.947±0.008 (0.942–0.952) <0.01a)

   Negative predictive value 0.984±0.006 (0.980–0.987) 0.984±0.001 (0.983–0.985) 0.85

   PRC areab) 0.996±0.001 (0.996–0.997) 0.992±0.001 (0.992–0.993) <0.01a)

Values are presented as standard deviation (95% confidence interval). 
AUC-ROC, area under the receiver operator curve; MCC, Matthews correlation coefficient; PRC, precision-recall. 
a)Statistically significant value (P<0.05). b)Given for the prediction and exclusion of airway management.

developed here showed excellent results in excluding the need 
for airway management, but only the RF model had satisfactory 
accuracy in predicting it. Therefore, the feasibility of using ma-
chine learning to predict the need for airway management in pre-
clinical trauma patients has been confirmed, but the models need 

to be advanced. Nonetheless, even before a final model can be 
implemented in the electronic medical records, the attributes de-
termined here can already be used clinically to alert emergency 
physicians about trauma patients at increased risk of requiring 
airway management. For example, the absence of severe head or 
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thoracic injury, catecholamine therapy, thoracic drainage, or NIV 
could justify a later evaluation of airway protection. To the best 
of our knowledge, this analysis is the first to use machine learn-
ing to forecast airway management in a preclinical environment. 
However, several factors need to be considered to interpret and 
advance the results.

Database, attribute selection, and model comparison
The more distinct the pathological findings in the initial parame-
ters, the better the classification by the algorithms could be. How-
ever, differences in attributes such as GCS or oxygen saturation 
were marginal, and their averages were physiological, which was 
partly reported in other clinical modeling studies.8,20,21 This could be 
explained by belated documentation of paramedically stabilized 
vital signs. 
  Attribute choice is always a compromise between overgeneral-
ization (selecting only attributes with strong correlation or cau-
sality) and overfitting (selecting many attributes, even those with 
weak correlation). The PCA in this study filtered in attributes with 
strong indirect correlations with airway management. For exam-
ple, the use of catecholamines can be interpreted as a surrogate 
for hemodynamic instability before or after airway management 
in emergency anesthesia. Other surrogates were colloid infusion, 
pelvic sling, and tranexamic acid for potential blood loss (attri-
bute tourniquet not included in MIND). NIV can be discussed as a 
surrogate for respiratory failure or a method of preoxygenation. 
Although the shock index is only to some extent reliable for the 

diagnosis of shock, it had weight in combination with other attri-
butes.22,23 Because preclinical emergency physicians in Germany 
usually lack point-of-care and radiographic findings, they have to 
use a less-reliable clinical examination with baseline vital signs 
for their time-critical decision-making. The surrogate parameters 
used in this study can therefore be seen as a replacement for re-
al-time vital signs. They also reflect to some extent the recom-
mendations for airway management in patients with traumatic 
respiratory disorder, brain injury, and shock.1-3 Future prediction 
models in preclinical airway management should combine attri-
butes emphasized in the guidelines with selected surrogates that 
reflect the dynamics of preclinical emergency medicine to com-
pensate for any lack of real-time parameters. 
  Compared with other studies, a main distinction of this study 
is the restriction to initial vital signs and adaptation to preclinical 
conditions.2,3 Siu et al.20 used an additional blood gas analysis 
with sequential organ failure assessments at multiple time points 
for their RF model to predict the need for intubation in the first 
24 hours after a critical care admission (sensitivity, 0.88; specific-
ity, 0.66; AUC-ROC, 0.86; PPV, 0.73; NPV, 0.85). Arvind et al.6 in-
dicated a AUC-ROC of 0.84 and PRC area of 0.3 for their RF model 
for predicting mechanical ventilation in COVID-19 patients based 
on vital signs and a blood gas analysis. In neonatal intensive care, 
Clark et al.8 demonstrated a boosted logistic regression model 
with an AUC-ROC of 0.84. Politano et al.21 could predict urgent 
intubation in a trauma intensive care unit with an AUC-ROC of 
0.770 to 0.865 with the help of a boosted logistic regression us-

Fig. 3. Attribute weighting in the random forest model, given as means with standard deviation error bars. 
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ing multiple sampling windows for vital signs along with age, ox-
ygen partial pressure, and days since extubation. 

Model performance
With regard to the performance of both algorithms, several fac-
tors about their basic method of calculation and the prevalence 
of airway management must be considered. In this study, the ROC 
curve alone overestimates the model performance because of the 
class imbalance problem (94% without emergency anesthesia) and 
the very high specificities and negative predictive values. There-
fore, the goodness of class prediction can best be evaluated by 
the PRC area, which showed that the RF had a robust predication 
accuracy.24

  The basic assumption of the NB is the independence of all at-
tributes without any correlation. Such a level of independence is 
almost never found in real-world data. In this study, the auscul-
tation findings, respiratory rate, and oxygen saturation all influ-
ence one another, as do the GCS score and face and/or head inju-
ry. The decision process in favor of or against a class is performed 
by comparing the summed probability of the test case to the sum
med probability of the class, which leads to the shown bad cali-
bration. The advantage of an NB approach is its fast calculation 
and simple implementation. Also, the arithmetic means and vari-
ance are parameterized independently of all other variables.15

  Unlike in the NB, independence is not a basic assumption of an 
RF. Decision trees have the advantage of using the same attributes 
on different levels in different dependencies. In contrast to a sin-
gle decision tree model, an RF uses the bagging procedure, by 
which multiple random trees each calculate a prediction. Those 
are then averaged to reach a final decision. This explains not only 
why RF got better outcomes than NB but also the weights of cer-
tain attributes whose differences were marginal. Those same ef-
fects also appear in the PCA, because it also uses a decision tree 
model. Therefore, the RF is robust to outliers, works well with non-
linear data, and has a lower risk of overfitting than single decision 
trees. As a result, the RF could handle even the relatively small 
prevalence of airway management cases in the test sets, achieved 
a good PRC area, and had a robust performance.15,25 Given the 
prevalence between the different test sets, the RFs differ, and a 
final model cannot be given. 

Further limitations
Due to the former and following limitations, this study represents 
only a first attempt to build a sustainable, general model for pre-
dicting preclinical airway management. Overreliance on machine 
learning in high-risk situations can result in potential patient haz-
ards. Future models are also needed for internal and neurological 

patients. These results were developed in a physician-staffed emer-
gency medical system and therefore cannot be simply transferred 
to paramedic systems.26 The weighting of certain attributes could 
be changed by alterations in clinical practice. The timing of inter-
ventions is missing from MIND, which limits the applicability of 
the models presented here. Unlike previous prediction models for 
resuscitation, attributes such as trauma site were not included in 
the data used here. Whereas in resuscitation, the site of cardiac 
arrest is directly linked to bystander cardio-pulmonary resuscita-
tion, there is no such correlation for trauma site or mechanism 
and airway management, only for trauma severity.3,27 Unfortunate-
ly, that severity can only be assessed by the primary physical exam 
and not by later radiographic findings and hospital data. Although 
this study used data from a statewide emergency medical service, 
no independent external test set from another German region 
was used here. Therefore, predications of stability with regard to 
noise and overfitting must be restrained. Unlike in other studies, 
the imputation of missing values in this study was not reasonable, 
mainly due to static nominal, binary, or ordinal attributes.6,20 Whe
ther emergency physicians postponed endotracheal intubation 
because of a potentially difficult airway or a lack of experience 
cannot be stated because no further clinical records were avail-
able.5 Also, the correct indication for airway management and 
primary assessment according to the ABCDE algorithm could not 
be checked in every single case due to the retrospective design 
and dataset structure. In machine learning, unsupervised deep 
learning neural networks have recently outperformed supervised 
approaches such as the RF. However, those deep learning models 
require a large amount of data and computing power. Network 
creation is complex, unstandardized, and time-consuming. Be-
cause this study focused on a simple binary problem, and the data 
structure was inconsistent, RF and NB were chosen. The supple-
mentary data contain a first approach to a deep learning neural 
network, but it performed worse than the RF in predicting the need 
for airway management (Supplementary Table 5 and Supplemen-
tary Fig. 1). Nonetheless, a deep learning application might be suit-
able for future models, especially with real-time attributes.15

CONCLUSION

In conclusion, this study has shown the feasibility of using a ma-
chine learning model to predict the need for airway management 
in injured patients. The RF model combined a satisfactory predic-
tion performance with an excellent ability to exclude the need 
for airway management in trauma patients. Because the many 
attributes available can be a hindrance in quickly assessing trau-
ma patients, models such as those presented here could already 
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be used as surveillance tools in the background or to send the in-
tubation probability to the hospital, where additional resources 
could be activated. Embedded in a continuous electronic medical 
record and expanded by data about internal patients, real-time 
parameters and point-of-care tests, an RF-based prediction mod-
el could be made more reliable and support preclinical decision-
making or quality management. In the future, patients at risk could 
be identified at an early time with the help of such a machine 
learning model. 

SUPPLEMENTARY MATERIAL

Supplementary Table 1. All recorded attributes and their values 
together with the class comparison and reason for exclusion
Supplementary Table 2. Settings of the principal component anal-
ysis in Weka
Supplementary Table 3. Settings of the SMOTE algorithm in Weka
Supplementary Table 4. Settings of the random forest and Naive 
Bayes model in Weka
Supplementary Table 5. Performance of two deep learning net-
works before and after attribute selection
Supplementary Fig. 1. Averaged receiver operator curves (ROC) 
for (A) the overall performance and (B) the averaged precision-
recall (PRC) curves for the prediction of airway management of 
the Naive Bayes, the random forest algorithm, and the deep learn-
ing neural network (one dense layer with six neurons) after attri-
bute selection.
Supplementary materials are available at https://doi.org/10.15441/ 
ceem.22.335. Further supplementary data, including single ran-
dom forest models, are available upon reasonable request via e-
mail. Due to data protection, the datasets cannot be published, 
but research with the database is possible upon request to the 
Center for Quality Management in Emergency Medical Services 
Baden-Wuerttemberg (SQR-BW).
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Supplementary Table 1. All recorded attributes and their values together with the class comparison and reason of exclusion

Attribute
Airway management

P-value Reason of exclusion
Yes (n=1,451) No (n=24,105)

Trauma site No causality

Unknown 1.31 0.71 0.01a)

Home 24.60 28.43 <0.01a)

Retirement home 2.00 3.07 0.02a)

Workplace 7.79 6.84 0.16

Medical practice 0.21 0.54 0.09

Street 44.59 44.31 0.80

Public space 10.61 8.97 0.03a)

Hospital 1.45 1.24 0.48

Mass event 0.14 0.19 0.67

Educational institution 2.83 0.87 <0.01a)

Sport facility 1.03 1.47 0.18

Birth center 0.55 0.39 0.33

Other 2.89 2.98 0.80

Transportation No causality

Ground 59.06 86.34 <0.01a)

Air 1.59 1.82 0.50

Ambulant 39.35 11.84 <0.01a)

Emergency vehicle <0.01a) No causality

Ground ambulance 55.75 89.36

Air ambulance 44.25 10.64

Specialist and qualification Preprocessing, left out for generalization

Anesthetist 65.61 53.58 <0.01a)

Anesthetist with qualification in intensive care medicine 12.68 10.14 <0.01a)

Other 19.92 33.34 <0.01a)

Other with qualification in intensive care medicine 1.79 2.94 0.01a)

State of awareness Preprocessing

Other 0.34 0.40 0.75

Awake 69.06 84.22 <0.01a)

Unconscious 5.93 1.50 <0.01a)

Reacts to speech 7.51 6.16 0.04a)

Reacts to pain 3.86 1.90 <0.01a)

Sedated 7.31 1.56 <0.01a)

Unknown 6.00 4.26 <0.01a)

Dementia No causality

Yes 0.76 1.39 <0.01a)

No 99.24 98.61

Pathologic neurologic examination <0.01a) Preprocessing

Yes 9.92 6.47

No 90.08 93.53

Skin Preprocessing

Other 11.99 8.60 <0.01a)

Normal 29.57 66.85 <0.01a)

Exsiccosis 1.31 3.56 <0.01a)

Oedema 0.41 0.61 0.35

Cold sweat 9.51 4.11 <0.01a)

Missing value 47.21 16.28 <0.01a)

Aggressive 0.30 Preprocessing

Yes 8.34 7.57

No 91.66 92.43

(Continued on the next page)
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Attribute
Airway management

P-value Reason of exclusion
Yes (n=1,451) No (n=24,105)

Confusion <0.01a) Preprocessing

Yes 9.10 12.75

No 90.90 87.25

Acute CNS deficiency Preprocessing

None 96.76 97.64 0.03a)

Seizure 1.03 1.03 0.99

Stroke/bleeding 2.14 0.93 <0.01a)

Other 0.07 0.39 0.049a)

Pulmonary embolism 0.50 Too rare

Yes 0 0.03

No 100 99.97

Acute cardiac disease <0.01a) Too rare

Yes 1.38 2.61

No 98.62 97.39

Bronchial spasm 0.10 Too rare

Yes 0 0.16

No 100 99.84

Aspiration/hemoptysis

Yes 0.76 0.02 <0.01a) Too rare

No 99.24 99.98

Pneumothorax 0.04a) Too rare

   Yes 0.07 0.01

   No 99.93 99.99

Intoxication <0.01a) Too rare

   Yes 0.90 2.15

   No 99.10 97.85

Anaphylaxis 0.34 Too rare

   Yes 0 0.06

   No 100 99.94

Sepsis 0.48 Too rare

   Yes 0 0.03

   No 100 99.97

Hypothermia/hyperthermia 0.39 Too rare

   Yes 0.69 0.52

   No 99.31 99.48

Palliative condition 0.50 Too rare

   Yes 0 0.02

   No 100 99.98

Acute infection 0.40 Too rare

   Yes 0.14 0.23

   No 99.86 99.77

Acute abdomen 0.20 Too rare

   Yes 0.41 0.26

   No 99.59 99.74

Acute nontraumatic disease (summarized) 0.02a) Too rare

   Yes 9.17 11.06

   No 90.83 88.94

Upper limb <0.01a) Wrapper

   None 80.36 64.33

   Mild 4.96 16.64

   Moderate 8.68 16.66

   Severe 6.00 2.37

(Continued on the next page)

Supplementary Table 1. (Continued)
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Attribute
Airway management

P-value Reason of exclusion
Yes (n=1,451) No (n=24,105)

Severe limb trauma (summarized) <0.01a) Wrapper

   Yes 15.58 3.99

   No 84.42 96.01

Soft parts Wrapper

   None 89.32 93.03 <0.01a)

   Mild 3.58 4.52 0.10a)

   Moderate 3.79 1.98 <0.01a)

   Severe 3.31 0.47 <0.01a)

Burn <0.01 Too rare

   Yes 1.17 0.48

   No 98.83 99.52

Acute inhalation injury <0.01 Too rare

   Yes 0.76 0.11

   No 99.24 99.89

Electrical accident 0.80 Too rare

   Yes 0.14 0.12

   No 99.86 99.88

Chemical burn 0.60 Too rare

   Yes 0 0.02

   No 100 99.98

Diving accident 0.35 Too rare

   Yes 0 0.01

   No 100 99.99

Other trauma 0.35 Too rare

   Yes 1.10 1.40

   No 98.90 98.60

Neck collar <0.01a) Wrapper

   Yes 63.89 33.36

   No 36.11 66.64

Mechanism of trauma No causality

   Blunt 57.89 78.45 <0.01a)

   Penetrating 4.14 5.58 0.02a)

   Unknown 37.97 15.96 <0.01a)

Circumstances of trauma No causality, further details needed

   Biker 11.65 9.94 0.03a)

   Violent felony 4.48 1.68 <0.01a)

   Vehicle occupant 18.47 17.47 0.30

   Pedestrian 3.79 4.28 0.37

   Fall

      <3 m 24.47 30.98 <0.01a)

      >3 m 10.54 7.60 <0.01a)

   Bicyclist 12.06 11.82 0.78

   Assault 1.72 1.40 0.31

   Stabbed 0.34 0.64 0.16

   Shot 0 0.06 0.34

   Machine accident 0.55 0.71 0.47

   Burying 0.34 0.18 0.15

   Other modes of transport 0.83 0.92 0.71

   Other 4.89 6.37 0.02a)

   Unknown 5.86 5.93 0.43

Supplementary Table 1. (Continued)

(Continued on the next page)
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Attribute
Airway management

P-value Reason of exclusion
Yes (n=1,451) No (n=24,105)

Crystalloid infusion <0.01a) Too general

   Yes 93.87 86.02

   No 6.13 13.98

Blood products <0.01a) Too rare

   Yes 0.55 0.01

   No 99.45 99.99

Blood glucose level (mg/dL)   159.77±101.29 139.51±81.73 <0.01a) No causality

Age (yr)   54.88±21.44     55.8±22.28 0.13 Wrapper

Temperature (°C) 37.59±9.28 38.38±36.5 0.14 No causality

Systolic blood pressure <90 mmHg <0.01a) Preprocessing

   No 93.59 96.22

   Yes 6.41 3.78

Glasgow Coma Scale <9 <0.01a) Preprocessing

   No 85.87 96.67

   Yes 14.13 3.33

Transport time (min) 10.58±10.13 11.28±10.53 0.01 No causality

   Total 35.15 26.61 <0.01a) Preprocessing

   <10 32.67 33.60

   11–20 7.31 12.45

   21–30 3.65 3.37

   31–45 1.03 0.85

   >45 20.19 23.11

Time on side (min) 24.32±19.75 20.35 ±14.97 <0.01a) No causality

   Total 6.00 12.56 <0.01a) Preprocessing

   <15 41.42 45.48

   15–30 22.81 17.23

   31–45 8.34 3.51

   46–60 2.69 1.07

   >60 18.75 20.15

Prehospital time (min) 44.81±38.25 41.40±36.75 <0.01a) No causality

   Total 1.03 2.24 <0.01a) Preprocessing

   <30 9.65 13.76

   30–45 23.64 24.07

   46–60 29.22 24.31

   61–90 6.27 4.73

   >90 30.19 30.89

Male sex 72.00 60.00 <0.01a) No causality

Values are presented in percentage or mean±standard deviation.
Some attributes were combined because they appeared too rarely. For example, the diagnosis of hypertensive emergency, pulmonary oedema, myocardial infarction, and 
other acute cardiac diseases were combined to “acute cardiac disease.”
CNS, central nervous system.
a)Statistically significant value (P<0.05).

Supplementary Table 1. (Continued)
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Supplementary Table 2. Settings of the principal component analysis 
in Weka 

Setting
Principal component 

analysis
J48

Classifier J48 -

Do not check capabilities False False

Evaluation measure Accuracy -

Calc out of bag False -

No. of folds 5 3

Threshold 0.01 -

Search method Best first -

Best first direction Bidirectional -

Lookup cache size 1 -

Search termination 5 -

Batch size - 100

Binary splits - False

Collapse tree - True

Confidence factor - 0.25

Debug - False

No. of decimal places - 2

Do not make split point actual value - False

Reduced error pruning - False

Save instance data - False

Subtree raising - True

Unpruned - False

Laplace smoothing - False

MDL correction - True

MDL, minimum description length.
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Supplementary Table 3. Settings of the SMOTE algorithm in Weka

Setting SMOTE

Class value 0 (Minority class)

Debug False

Do not check capabilities False

Nearest neighbors 5

Percentage 200

SMOTE, synthetic minority oversampling method.
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Supplementary Table 4. Settings of the random forest and Naive Bayes 
model in Weka

Setting Random forest Naive Bayes

Batch size 100 100

Break ties randomly False -

Calc out of bag False -

Debug False False

Do not check capabilities False False

No. of decimal places 2 2

Max depth Unlimited -

No. of execution slots 1 -

No. of randomly chosen attributes 0 (= log_2(#predictors)+1) -
No. of iterations 100 -

Bag size percent 100 -

Supervised discretization - False

Kernel estimator - False
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Supplementary Table 5. Performance of two deep learning networks before and after attribute selection

Variable
Deep learning neural network

Before attribute selectiona) After attribute selectionb)

Overall correctness 96.51±0.31 (96.29–96.73) 96.68±0.17 (96.56–96.8)

Kappa 0.66±0.03 (0.64–0.68) 0.68±0.01 (0.67–0.69)

AUC-ROC 0.90±0.01 (0.89–0.91) 0.93±0.01 (0.92–0.93)

MCC 0.66±0.03 (0.64–0.68) 0.68±0.01 (0.67–0.69)

Sensitivity 0.73±0.04 (0.70–0.75) 0.74±0.04 (0.71–0.76)

   Positive predictive value 0.64±0.03 (0.61–0.66) 0.69±0.09 (0.62–0.76)

   PRC area 0.67±0.03 (0.65–0.69) 0.73±0.01 (0.72–0.74)

Specificity 0.95±0.08 (0.89–1.01) 0.98±0 (0.98–0.98)

   Negative predictive value 0.99±0 (0.98–0.99) 0.99±0 (0.98–0.99)

   PRC area 0.99±0 (0.99–0.99) 0.98±0.02 (0.97–1.00)

AUC-ROC, area under the receiver operator curve; MCC, Matthews correlation coefficient; PRC, precision-recall.
a)Two dense layers with 30 neurons each. b)One dense layer with six neurons.
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Supplementary Fig. 1. Averaged receiver operator curves (ROC) for (A) the overall performance and (B) the averaged precision-recall (PRC) curves for 
the prediction of airway management of the Naive Bayes, the random forest algorithm, and the deep learning neural network (one dense layer with six 
neurons) after attribute selection. AUC, area under the curve; CI, confidence interval.
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