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Background: Many biological clocks related to aging have been linked to the

development of cancer. A recent study has identified that the inflammatory aging

clockwas an excellent indicator to trackmultiple diseases. However, the role of the

inflammatory aging clock in glioblastoma (GBM) remains to be explored. This study

aimed to investigate the expression patterns and the prognostic values of

inflammatory aging (iAge) in GBM, and its relations with stem cells.

Methods: Inflammation-related genes (IRG) and their relations with chronological

age in normal samples from the Cancer Genome Atlas (TCGA) were identified by

the Spearman correlation analysis. Then, we calculated the iAge and computed

their correlations with chronological age in 168 patients with GBM. Next, iAge was

applied to classify the patients into high- and low-iAge subtypes. Next, the survival

analysis was performed. In addition, the correlations between iAge and stem cell

indexes were evaluated. Finally, the results were validated in an external cohort.

Results: Thirty-eight IRG were significantly associated with chronological age (|

coefficient| >0.5), andwere used to calculate the iAge. Correlation analysis showed

that iAge was positively correlated with chronological age. Enrichment analysis

demonstrated that iAgewas highly associatedwith immune cells and inflammatory

activities. Survival analysis showed the patients in the low-iAge subtype had

significantly better overall survival (OS) than those in the high-iAge subtype (p <
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0.001). In addition, iAge outperformed the chronological age in revealing the

correlations with stem cell stemness. External validation demonstrated that iAge

was an excellentmethod to classify cancer subtypes and predict survival in patients

with GBM.

Conclusions: Inflammatory aging clock may be involved in the GBM via

potential influences on immune-related activities. iAge could be used as

biomarkers for predicting the OS and monitoring the stem cell.
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1 Introduction

Glioblastoma (GBM) is the most common primary

malignant tumor in adults, accounting for 48% of primary

malignant tumors in the central nervous system (CNS)

(Batash et al., 2017). Although the multidisciplinary

treatments were taken, the median survival of GBM is

merely approximately 15 months (Alifieris and Trafalis,

2015). The development of GBM is an evolutionary

biological procedure with sequential steps, including

genetic alteration, abnormal immunological functions,

chronic inflammation, etc. (Waters et al., 2019; Ruff et al.,

2020). It’s reported that the incidence of GBM rises

dramatically after 54 years old and reaches a peak at the

age of 74–85 years old (Ostrom et al., 2015). Several studies

have identified that aging is a well-defined risk factor for

GBM incidence and prognosis (Thakkar et al., 2014; Le Rhun

et al., 2019).

Individual physical performance and health status markedly

vary across chronological ages, at an accelerated or decelerated rate.

It’s well appreciated that people at the same chronological age could

have different physiological functions, while the individual at

different chronological age may have same physiological

conditions. Therefore, biological age, rather than chronological

age, may be a more accurate biomarker to predict an individual

age-related disorder. Aging is an inevitable time-dependent state and

shares similar hallmarks with cancer (Aunan et al., 2017). One of the

prominent features of aging is the stem cell exhaustion, which loss

the capacity to maintain cellular homeostasis and repair injury

(Rossi et al., 2008). Another hallmark in aging is the increase of

low-grade inflammation, which is accompanied by the

accumulation of proinflammatory damage and the dysfunction of

immune cells (López-Otín et al., 2013). Contrary to acute

inflammation, the aging cells secret diverse cytokines and induce

the chronic adaptive immune response.

In 1863, Prof. Rudolf Virchow proposed the hypothesis

that cancer may originate from chronic inflammation

(Balkwill and Mantovani, 2001). Over the past century,

the complex interplays between cancer and inflammation

have been revealed. Nowadays, the mainstream view is that

the GBM is cancer-induced inflammation, since the

inflammation seems to be driven by oncogenes in GBM.

In addition, radiation and cellular senescence could induce

inflammation in GBM (Yeung et al., 2013). Cytokines

released from inflammatory cells could promote tumor

growth, enhance angiogenesis and induce metastasis

(Coussens and Werb, 2002). Maybe the most meaningful

clinical application is inflammation and anti-cancer therapy,

and much data demonstrated that the anti-inflammatory

drugs could reduce the tumor risk by 30% in some

malignancies (Friis et al., 2015). Although the

significances of inflammation are extensively explored,

there are no standard methods to monitor the

inflammatory cells changes and establish the reference

values for age-related inflammation in GBM.

Recently, Prof. Furman David and his collaborative team

have constructed a metric to estimate the age of systemic

inflammation, termed inflammatory aging clock (Sayed et al.,

2021). Similar to the epigenetic clock and transcriptomic

clock, the inflammatory age (iAge) could track multifaceted

aging phenotypes and have clinical significance in

translation medicine. However, the potential applications

of iAge in GBM have never been studied. Considering the

intricated communications between inflammation and GBM,

we systematically investigated the roles of iAge in GBM. We

found that iAge was closely correlated with chronological

age, and strongly correlated with inflammatory cell

responses. Survival analysis showed that iAge could serve

as a prognostic biomarker for overall survival (OS).

Furthermore, the iAge could precisely predict GBM stem

cells (GSC) stemness. Collectively, our findings provided

evidence to depict the inflammatory clock, and

characterize the iAge of patients with GBM.

2 Materials and methods

2.1 Acquisition of inflammation-related
gene expression and clinical information

Inflammation-related genes (IRG) expression profiles

were downloaded from the Cancer Genome Atlas (TCGA,
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https://portal.gdc.cancer.gov/), which contained the RNA-

seq data and clinical information. The batch effect and

normalization of the raw data in each sample were

completed by the “sva” and “DESeq2” packages,

respectively. We only recruited samples with complete

RNA-seq data and clinical information, and excluded the

patients with incomplete or unavailable information. The

clinical information of patients with GBM included gender,

age, tumor grade, TNM stage, OS, and survival status. In

addition, patients with survival time less than 30 days were

also excluded to reduce censored data and avoid survival

bias. Two hundred IRG were retrieved from the previous

study (Liang et al., 2021), and gene items were available in

Supplementary Table S1.

2.2 Expression profiles of inflammation-
related genes in pan-cancers and
functional enrichment

The detailed summary of IRG was retrieved from the

hallmark gene sets from the Molecular Signatures Database

v7.4 (http://www.gsea-msigdb.org/gsea/msigdb/index.

jsp),which contains 200 IFRGs. To investigate the IRG

expression levels, we estimated the IRG expression profiles

between tumors and corresponding normal samples in

20 cancers from TCGA. Next, significantly differentially

expressed genes were compared between normal and tumor

groups. Genes with |log2 fold change, logFC| > 1.5 and false

discovery rate (FDR) <0.05 were considered significantly

different.

To explore the IRG functions and possible mechanisms

involved in the GBM, we performed the Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis by the “clusterProfiler” package (Yu

et al., 2012). Three levels annotations of KEGG were

downloaded from KEGG Pathway Maps (https://www.kegg.

jp/kegg-bin/get_htext?br08901.keg) (Shi et al., 2019). Then, to

verify whether the pattern of differentially expressed genes

appears randomly, we conducted the randomization test and

repeated it 1,000 times. Next, to determine whether up- and

downregulated IRG were significantly enriched in the

inflammation-related activities, we performed the ROAST

test by the “limma” and “statmod” packages. ROAST test is

an alternative hypothesis that all target genes could be

expected to regulate in the same direction (Wu et al., 2010).

2.2.1 Data collection and curation of the
inflammatory aging clock-related inflammation-
related genes

According to age classification criteria proposed by Zhu

et al. (2019), we divided chronological ages into four

categories: the young group: ≤ 44 years old; the middle-

aged group: 45–59 years old; the old-young group:

60–74 years old; old group: ≥75 years old. To identify

inflammatory aging clock-related IRG, we calculated the

correlation coefficients between IRG and chronological age

in normal samples from pan-cancers. Then, the predicted

iAge was calculated based on the formula: iAge = C * (β1 * X1
+ β2 * X2 + β3 * X3 + ... βm * Xm). iAge is the predicted

inflammatory age; C is the chronological age; β is the

coefficient and X represents the IRG expression level.

2.2.2 Characterization of glioblastoma subtypes
and survival analysis based on inflammatory age

To predict the subtypes of patients with GBM, we divided

patients into high- and low-iAge subtypes according to the

median of iAge. Patients’ prognosis and survival status

between high- and low-iAge subtypes were compared by

the “reshape2”, “ggplot2” packages (Zhang et al., 2021).

To explore the survival values of the iAge-related IRG in

patients with GBM, we first performed the univariate Cox

regression analysis. Then, the random forest algorithm was

applied to further screen the prognostic genes, and the seed

was set as 12345678. The importance of each IRG, hazard ratio

(HR), confidence interval (CI) and out-of-bag estimates were

calculated. This work was done by the “randomForestSRC”

package (Yuan et al., 2020).

2.3 Inflammatory age and stem cell index

To explore the associations between inflammation and

stem cells in GBM, we analyzed the relationships between

predicted age, chronological age and stem cell index using

linear regression. The stem cell index included mRNA

expression-based stemness index (mRNAsi), epigenetically

regulated mRNAsi (EREG-mRNAsi), DNA methylation-

based stemness index (mDNAsi), DNA methylation-based

mDNAsi (EREG-mDNAsi) (Malta et al., 2018). Every stem

cell index in each sample was obtained from the published

study (Malta et al., 2018). The details of the stem cell index

were provided in Supplementary Tables S2, S3.

2.4 External validation

We apply the Chinese Glioma Genome Atlas (CGGA)

(http://www.cgga.org.cn/), a glioma-related resource with

genomic and clinical data, to validate the results from

TCGA. Patients were recruited for analysis according to the

inclusion criteria: 1) primary GBM; 2) single GBM; 3)

complete clinical information and genomic data. The

external validation serves two purposes: 1) to verify

whether iAge was an effective method to classify the GBM

subtypes; 2) to verify whether iAge was a prognostic tool to
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FIGURE 1
The flowchart of overall study design. Data acquisition and iAge establishment were based on TCGA dataset, and validation was from GEO
database. TCGA, the Cancer Genome Atlas; iAge, inflammatory age; GBM, glioblastoma; CGGA, Chinese Glioma Genome Atlas.

FIGURE 2
IRG expression profiles in pan-cancers and GBM. (A) The expression landscape of IRG in pan-cancers. Y axis represented the IRG relative
expression level. Every purple dot indicated one tumor sample, while the normal sample in green. p values were calculated based on the two-tailed
Student t-test. (B)Heatmap of IRG expression patterns in four different chronological age groups. Red represented the IRG high expression, while the
low expression in blue. (C) Pie chart of the IRG. Spearman correlation showed 38 IRG (20%) were significantly associatedwith age (|coefficient| ≥
0.5, p < 0.05). (D)Distribution of IRG on chromosomes. The 38 IRGweremarked by red boxes. (E)Network analysis among 38 IRG. Red lines indicate
the positive correlation, while negative in blue.

Frontiers in Genetics frontiersin.org04

Zhu et al. 10.3389/fgene.2022.925469

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.925469


predict patients’ survival. The overall study design is

presented in Figure 1.

2.5 Statistical analysis

Wilcoxon matched-pair signed test was used to compare the

gene expression differences between normal and 20 tumor

samples. The statistical criteria of functional enrichment

analysis were as follows: logFC > 1 and p < 0.05. Spearman

correlation was used to correlation coefficients between IRG and

chronological age, and the |coefficient| ≥ 0.5 was regarded as

significant correlation. Cox regression was performed to select

the prognostic factors. Log-rank test was applied to compare the

survival differences, and the Kaplan-Meier curve was established

to visualize the results. p < 0.05 was considered statistically

significant. All the analyses were completed using R language

software (version 4.0.3).

3 Results

3.1 Inflammation-related genes
expression profiles in different
chronological age groups

Chronological age refers to the length of time that one person

has lived from birth to the time of calculation. To explore the

expression profiles of the 200 IRG, we first collected the pan-

cancers samples (n = 6249) and their corresponding normal

samples (n = 702). The results showed the IRG expression levels

were distinct between normal and tumor tissue in pan-cancer

(Figure 2A). Then, we classified the normal samples (n = 702)

into four groups according to the age classification criteria

described above. The heatmap demonstrated the IRG

expression pattern was significantly different among the four

groups (Figure 2B). Next, we downloaded the GBM samples (n =

168) with complete clinical information and transcriptome data

from TCGA according to the inclusion criteria, and we calculated

the coefficients between IRG expression and chronological age in

patients with GBM. The basic clinical information of patients

with GBM was shown in Table 1. The results showed that there

were 38 genes were significantly associated with chronological

age (|coefficient| ≥ 0.5) (Figure 2C). The 38 IRG expression

profiles in GBM samples were provided in Supplementary Table

S4, and their correlations with age were provided in

Supplementary Table S5. To further characterize the 38 IRG,

gene positions in chromosomes were shown in Figure 2D. Next,

we performed the network analysis among the 38 IRG, and the

results were visualized in Figure 2E.MACRO, ADGRE1, IL15RA,

RHOG, RNF144B, CXCL8, PLAUR, GNA15, C5AR1, CCRL2,

PVR, LDLR, HRH1, IL18, CDKN1A, IRF1 and RAF1 had

negative correlations. The other IRG had positive correlations.

3.2 Model construction of the
inflammatory clock

The inflammatory aging clock was constructed to predict the

inflammatory age based on the IRG expression levels and their

correlations with chronological age. We controlled for iAge to

ensure the authenticity and reliability of results. Through the

linear regression, we found 38 IRG were significantly associated

with chronological age (|coefficient| ≥ 0.5, p < 0.05), and used

them to calculate the iAge according to the formula described

above. The landscape of chronological age and iAge in patients

with GBM was shown in Figure 3A. Linear regression

demonstrated that they had a positive correlation (R = 0.62,

p < 0.001) (Figure 3B). There were several abnormal prediction

values (approximately 150 years old), suggesting the excessively

activated inflammatory response. Next, we randomized the

patients with GBM into training group and test group to

evaluate the accuracy of the inflammatory aging clock.

Training and test groups both exhibited excellent fitness and

agreement (R = 0.77, p < 0.001; R = 0.64, p < 0.001) (Figures

3C,D, respectively). And the clinical characteristics of the

training and test groups can be seen in Table 2.

3.3 Functional enrichment

To explore the physiologies and functions in which iAge was

involved, KEGG functional categories were performed. KEGG

results showed that the 38 genes were enriched in cell growth, cell

death, immune system, and immune diseases (Figure 4A).

Further analysis showed that iAge was significantly enriched

in cellular senescence, cytokine-cytokine receptor and signal

pathways. Consistent with the KEGG, GO results found the

38 genes were strongly associated with cellular response and

TABLE 1 Basic clinical information of patients with GBM in TCGA
(n = 168).

Characteristics No.

Age (y) 59.23 ± 13.56

Gender

Male 108 (64.29%)

Race

White 149 (88.69%)

Karnofsky score 76.13 ± 14.69

Tumor longest dimension (cm) 0.77 ± 0.24

Survival status

Dead 135 (80.36%)

Survival time (y) 1.98 ± 0.85

Data were presented in number (%) or mean ± SD.
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immunological activities (Figure 4B). The above results indicated

that iAge was strongly correlated with cellular senescence, and

immunological activities. To determine the significance of the

iAge-related IRG classification, we performed the randomization

test with 1000 iterations. The result showed there was 75.8%

probability of appearing in the iAge-related pathways

(Figure 4C). Then, we used the ROAST algorithm to identify

whether the iAge-related IRG were significantly enriched in the

inflammatory activities. The results demonstrated that iAge-

related IRG were highly correlated with inflammation

(Figure 4D). Furthermore, the gene set analysis revealed that

the up- and downregulated genes with expression changes were

FIGURE 3
Correlations analysis between iAge and chronological age. (A) Differential pattern of iAge and chronological age. Above the X-axis is the iAge,
and chronological ages below the X-axis. (B) Scatter diagram showed the correlations between iAge and chronological age in the entire cohort (B),
training cohort (C) and test cohort (D).

TABLE 2 Basic clinical information of patients with GBM in training and test group.

Clinical characteristics Training
group (n = 84)

Test group (n = 84) p value

Age (y) 57.14 ± 14.00 61.14 ± 12.97 0.39

iAge (y) 62.97 ± 15.69 70.19 ± 21.15 0.55

Gender

Male 52 (61.90%) 56 (66.67%) 0.52

Race

White 70 (83.33%) 79 (94.05) 0.03

Karnofsky score 77.38 ± 14.13 74.64 ± 15.49 0.19

Tumor longest dimension (cm) 0.75 ± 0.28 0.80 ± 0.18 0.06

Survival status

Dead 60 (71.43%) 75 (89.29%) 0.004

Survival time 2.25 ± 0.79 1.76 ± 0.63 0.034

Data were presented in number (%) or mean ± SD.
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FIGURE 4
Functional enrichment analysis. (A) KEGG enrichment analysis showed the 38 IRG were strongly associated with cellular response and
immunological activities. (B) GO enrichment analysis demonstrated that IRG had close relationships with inflammatory cell activation, cellular
response and immune cell activities. (C) iAge-related IRG randomization test result. The p value implied the probability that iAge-related IRG are
randomly involved in the inflammatory activities. Gene set bar (D) and barcode plot (E) analysis. iAge-related IRG were visualized as a shaded
rectangle. The red bars represented the upregulated IRG, while the downregulated ones in blue. The enrichment scores above and below the shaded
rectangle indicated the enrichment levels.
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strongly correlated with iAge (Figure 4E). In a nutshell, the iAge-

related IRG have close relationships with inflammatory activities.

3.3.1 Characterization of the glioblastoma
subtypes based on inflammatory age

We firstly calculated the iAge of each patient according to the

above formula, and classified patients with GBM into high-iAge

subtype (n = 84) and low-iAge subtype (n = 84). Then, we used

three methods to evaluate the utilities of iAge clock: 1)

Kaplan–Meier survival curve with the log-rank test between

different subtypes; 2) iAge plot to visualize the predicted

inflammatory age of each patient; 3) Survival status to

illustrate patients’ outcomes. Our results showed that patients

in the low-iAge subtype had significantly better OS than those

with high-iAge (Figure 5A). Figure 5B demonstrated the iAge

plot of each patient. With the increase of iAge, more and more

patients died (Figure 5C). For these analyses, we controlled for

age, Karnofsky score, gender, race and tumor size, because of the

reported effect of each variable on the survival. Taken together,

we successfully divided patients into high- and low-iAge

subtypes.

3.4 Associations between inflammatory
age and survival

To evaluate the influence of iAge on patients’ survival, we

first investigated the correlations among the clinical features in

the two GBM subtypes by the “ggcor” package. We observed

there were no significant clinical differences between the two

groups (Figure 6A). The univariate Cox regression results

demonstrated there were 42 significant prognostic IRG for OS

(p < 0.05) (Figure 6B). Figure 6C displayed the top 15 significant

prognostic IRG (TNFSF9, TNFSF15, PTGIR, PTGER2, PLAUR,

MEFV, MARCO, IL4R, GNA15, DCBLD2, CXCL6, CD70,

CCL20, C5AR1, AQP9). They were all risk factors for OS

(HR > 1). Next, the random forest was used for further

selection. The relations between the number of trees and error

rate were shown in Figure 6D (the left box). The gene importance

was demonstrated in Figure 6D (the right box).

3.5 Correlations between the
inflammatory age, chronological age and
stem cell index

Stem cell index is a comprehensive score describing the degree

of similarity between cancer cells and stem cells. Thus, stem cell

index can be regarded as the quantitative presentation of cancer

stem cells. Age is a negative indicator of cell stemness, and a higher

stem cell index implies a higher dedifferentiation ability and

malignancy (Zhang et al., 2021). To explore whether iAge is a

factor affecting stem cell differentiation, we calculated the

correlations between prediction age, chronological age and four

stem cell indexes (mRNAsi, EREG-mRNAsi, mDNAsi, EREG-

mDNAsi). Our data demonstrated that iAge is a negative factor

of mRNAsi (R = −0.44, p < 0.01) andmDNAsi (R = −0.34, p < 0.01)

(Figures 7A,C, respectively), which generally indicated that iAge

could serve as a useful biomarker to deduce the stem cells

characteristics and help to understand the cancer progression.

We observed no significant correlations between iAge, EREG-

mRNAsi and EREG-mDNAsi (Figures 7B,D, respectively). The

chronological age had no close relationships between mRNAsi,

EREG-mRNAsi, mDNAsi, EREG-mDNAsi (|R|<0.2, p > 0.05)

(Figures 7E–H, respectively). Collectively, our findings suggested

FIGURE 5
GBM subtype classification based on iAge. (A) Kaplan–Meier
survival curve with log-rank test between high- and low-iAge
subtypes. (B) Visualization of the iAge plot in high- and low-iAge
subtypes. The inflection point refers to themedian of iAge. (C)
Survival distribution plot. The red dots represent the dead, and bule
represent the alive.

Frontiers in Genetics frontiersin.org08

Zhu et al. 10.3389/fgene.2022.925469

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.925469


that iAge is a better factor reflecting the GSC stemness superior to

chronological age.

3.6 External validation of inflammatory
age in CCGA

A total of 388 patients with GBM were downloaded from

CGGA. According to the inclusion criteria described above, we

excluded 172 patients (n = 163 for recurrent andmultiple GBM, n =

9 for unknown survival time). Finally, 216 patients with GBM were

recruited for analysis. According to the original 38 IRG calculated in

the TCGA, we used the same genes to construct the iAge in the

CGGA (The expression data of the 38 genes were provided in

Supplementary Table S6). Then, we calculated the iAge of each

patient according to the above formula. To test whether iAge is an

appropriate method to classify patients into different subtypes, we

set the median of the iAge as the threshold to divide these

216 patients into high- and low-iAge subtypes (n = 108, 108,

respectively). The data demonstrated that patients in the low-

iAge subtype had significantly better OS than those in high-iAge

subtype (Figure 8A). Figure 8B demonstrated the iAge distributions

of each patient, and patients in different subtypes were marked with

different color. In addition, with the increase of iAge,more andmore

patients died (Figure 8C). The available data implied iAge was a

useful tool to classify GBM subtypes.

Finally, to validate the prognostic values of iAge in patients

with GBM, we performed the survival analysis and calculated the

annual survival probability. The median overall survival was

1.26 years, with the 5-year survival rate of 15%. The survival

probability decreased per year relative to the total survival time

(Figure 9).

FIGURE 6
Survival analysis of IRG for OS in patients with GBM. (A) Correlations analysis between clinical information and subtypes groups. The data
demonstrated there were no significant clinical differences between the two clusters. (B) Volcano plot demonstrated the significant prognostic
genes with p < 005. (C) Forest plot showed the top 15 significant prognostic IRG. (D) Relations between number of trees and error rate, and the out-
of-bag importance of each IRG.
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4 Discussion

Tumorigenesis is a multiple process involving a series of cellular

changes that accumulate over time. Recent works revealed that some

critical inflammatory components are dramatically elevated alone

with age, especially in the tumors, such as GBM (Balkwill and

Mantovani, 2001; Yeung et al., 2013; Kotas and Medzhitov, 2015).

Thus, it’s reasonable to speculate that age played vital roles in

inflammatory cells and the initiation of GBM. The latest study

demonstrated that aging could be utilized to detect the inflammatory

phenotypes in age-related disease (Sayed et al., 2021). To elucidate

whether inflammation is influenced by age in GBM, we

comprehensively explored the associations between age and

inflammations through bioinformatics. In the present study, we

found that the inflammatory aging clock was a reliable method to

predict the inflammatory age and classify the GBM subtypes.

Moreover, the GSC indexes decreased with the predicted

inflammatory age. Functional enrichment analysis implied that

the inflammatory aging clock was engaged in GBM by

inflammation-related activities, immune cells, and immune

response.

The proposed iAge model was constructed based on a similar

algorithm that Horvath S adopted (Horvath, 2013). It’s optimal

for the identification of the major inflammatory age contributors.

Unlike other well-established cancer clocks (Horvath and Raj,

2018; Choukrallah et al., 2020), iAge is capable of capturing the

inflammatory features, and strives to explain the complicated

cross-talks between chronic inflammation and age. In this study,

we found the iAge had the same tendency with the chronological

age (R > 0.5), implying inflammatory dysfunctions are prone to

accumulate when getting older. This result was accordant with

the previous study, which pointed out that physiological aging

usually brings with the activation of inflammatory signals and

persistent inflammations (Franceschi and Campisi, 2014). More

importantly, we applied the inflammatory clock to depict the

differences between iAge and chronological age. The results

unraveled that GBM is characterized by abnormal

inflammatory expression patterns, and the age differences

between iAge and chronological age could help to understand

the GBM development.

Tumors with exactly the same histopathology may have

completely different therapeutic responses and survival

outcomes as a result of molecular heterogeneity. Current

various subtypes have fully considered the key molecules that

drive GBM progression, but failed to help improve survival (Lee

et al., 2018). Owing to the large-scale studies emphasizing the

significances of genome and inflammation, thus, we tentatively

classified the patients with GBM based on the inflammatory

aging clock. The results showed our subtype was robust and had

good discrimination ability to cluster patients based on iAge. The

subtypes classification derived from consensus clustering have

aggregated multi-omics data, designated inflammation and

survival information, and may successfully reflect the relations

between GBM and inflammation. In addition, previous work

FIGURE 7
Correlation analysis between stem cell index, iAge, and chronological age. Correlation scatter plots depicting the relations between iAge and
mRNAsi (A), EREG-mRNAsi (B), mDNAsi (C) and EREG-mDNAsi (D). Similarly, Relations between chronological age and mRNAsi, EREG-mRNAsi,
mDNAsi and EREG-mDNAsi were shown in (E–H), respectively. p < 0.05 was considered as statistical significance.
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revealed the roles of cancer clock in survival are context-

dependent across different tumors (Lin and Wagner, 2015),

suggesting the inflammatory clock may be a double-edged

sword. In our study, survival analysis demonstrated that the

inflammatory clock was a prognostic factor for OS, and could be

utilized as an assessment tool for patients’ outcomes.

The inflammatory and immunological response failures to

recognize and destroy malignant cells may be a result of the

initiation of GBM. Our data revealed significant master genes of

IRG in GBM. In accordance with previous studies, IL4R was

demonstrated to be a useful biomarker for inflammation, and

immunotherapy response (Puri, 1999; Ellingson et al., 2021).

Similarly, CD70 was an essential component maintaining

aggressiveness and recurrence, as well as inflammation and

immune, suggesting IRG could help to unlock the resident

GBM microenvironment (Seyfrid et al., 2022). In addition,

IRG could act as promising biomarkers to predict prognosis

in patients with GBM (Qiu et al., 2020; Seyfrid et al., 2022). Our

study appears to be a novel result revealing the inflammatory

presence and serve as potential biomarkers to predict survival.

GSC are responsible for therapeutic resistance and tumor

recurrence (Sharifzad et al., 2019). Tumor progression is usually

accompanied by the loss of cell differentiation and the acquisition of

stemness. The regulation of GSC stemness involves intrinsic and

extrinsic mechanisms, such as the immune system and tumor

microenvironment (Lathia et al., 2015). Inflammatory cells inside

the microenvironment could lead to an immunosuppressive

situation that favors tumor growths (Lathia et al., 2015). In this

study, we found the GSC stemness decreased with the increase of

age. The iAge led us to assess the relationships between cancer stem

cells and GBM, and provided us a method to identify inflammatory

factors that may influence cancer development based on iAge.

Furthermore, it’s notable that the iAge outperformed the

chronological age in revealing the relevance with stem cell

stemness (Figures 6A,C,E,G), implying that GSC with low iAge

harbor more substantial tumor-promoting properties. Since all the

tissues and organs are derived from stem cells, confirmation of stem

cell characteristics by iAge will reflect the individual physical

conditions and disease development. These findings implicated

that iAge may be an appropriate candidate to monitor the GSC

stemness.

The strength of this study is that we explored the inflammatory

aging clock in GBM for the first time with reliable and repeatable

statistical methods, and validated in an external cohort.

Undeniably, there are also several limitations. Firstly, the iAge

clock proposed by Prof. Furman David et al. was mainly based on

blood immunome (Sayed et al., 2021). It’s universally known that

variation in gene expression is extensive among tissue specimens

and blood. Differences of iAge sources between blood and tissue

specimens are inevitable. While it’s reasonable to identify the

causality between iAge and GBM in the context of

transcriptome data from TCGA, the biological aging clock

needs to be experimentally tested in further study. Secondly,

despite the proven utilities of iAge to characterize the patients’

subtype and predict the survival by the theoretical algorithm, it

may be not applied in the real-world study. Thirdly, the exact

mechanisms between inflammatory aging clock and GBM are

unclear, although enrichment analysis was performed andmay not

completely mirror the physiologies in vivo. Finally, the iAge does

not apply to all types of cancers because of the tumor

heterogeneities. Notwithstanding its limitations, this study shed

FIGURE 8
Validation of GBM subtype classification based on iAge from
CGGA. (A) Kaplan–Meier survival curve with log-rank test between
high- and low-iAge subtypes. Patients in the low-iAge subtype had
higher probabilities to survive longer (p = 0.01). (B)
Visualization of the iAge plot in high- and low-iAge subtypes. The
inflection point refers to the median of iAge. (C) Survival
distribution plot. The red dots represent the dead, and bule
represent the alive.
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light on the link between inflammation and age in GBM, and these

shortcomings will be resolved if there were enough data from a

real-world study.

In conclusion, we identified the physiological importance

and function of the inflammatory aging clock in GBM, which can

be used to predict survival and monitor the stem cell. We

provided novel insights into how iAge is a critical event for

the development of GBM. Elucidation of the relations between

inflammation and age will ultimately aid in the creation of new

therapy that targets GBM.

FIGURE 9
Kaplan–Meier estimates for conditional survival up to 6 years in 216 patients given 0–6 years’ survival. Every column indicated the survived year,
and every row represented the survival percentage. The Kaplan-Meier curves were truncated at themaximal survival time (Upper). Survival probability
table of each year was shown in numerical form (Middle). The number of total survived patients were represented in numerical form corresponding
to the 0–6 years (Bottom). For example, if a patient has survived 3 years, the probability to be alive at 4th and 5th years is 72% and 57%,
respectively.
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