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Abstract
Background: Gene co-expression networks (GCNs) are powerful tools that enable
biologists to examine associations between genes during different biological
processes. With the advancement of new technologies, such as single-cell RNA
sequencing (scRNA-seq), there is a need for developing novel network methods
appropriate for new types of data.

Results: We present a novel sparse Bayesian factor model to explore the network
structure associated with genes in scRNA-seq data. Latent factors impact the gene
expression values for each cell and provide flexibility to account for common features
of scRNA-seq: high proportions of zero values, increased cell-to-cell variability, and
overdispersion due to abnormally large expression counts. From our model, we
construct a GCN by analyzing the positive and negative associations of the factors that
are shared between each pair of genes.

Conclusions: Simulation studies demonstrate that our methodology has high power
in identifying gene-gene associations while maintaining a nominal false discovery rate.
In real data analyses, our model identifies more known and predicted protein-protein
interactions than other competing network models.

Keywords: Co-expression, Latent factor model, Networking, RNA sequencing,
Single-cell

Background
Deriving co-expression networks from gene expression data is a primary goal in numer-
ous biological studies. These networks, which are commonly referred to as gene co-
expression networks (GCNs), are constructed by identifying pairs of genes that have
significant associations between their expression profiles across samples. Genes are rep-
resented by nodes in GCNs and co-expression values are represented by edges that
connect pairs of nodes. These edges are undirected to indicate the relationships or depen-
dencies between genes, not the underlying cause of these associations. This makes GCNs
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different from gene regulatory networks, which have directed edges to infer causal rela-
tionships [1]. As demonstrated in [2], genes with similar expression patterns tend to be
involved in similar cellular processes and functions. Therefore, researchers are able to
identify novel interactions and relationships between genes by exploring GCNs [3, 4].
Many of the statistical methods for building GCNs have been developed for analyz-

ing data consisting of expression values averaged over bulk populations of cells, such as
microarray or bulk RNA sequencing; however, advancements in technology now allow
researchers to obtain expressions at the level of a single cell. By gathering information
from individual cells, new opportunities to study cellular heterogeneity are presented.
This is of particular interest in GCNs since mapping gene expressions across different
states of cells can lead to a better understanding of the biological mechanisms behind this
heterogeneity [5]. Single-cell RNA sequencing (scRNA-seq) provides new and exciting
opportunities to examine biological processes at a high resolution, yet at the same time,
this data presents new statistical and computational challenges (e.g., zero-inflation, high
cell-to-cell variability, multimodality) that have not been previously faced with bulk sam-
ple data [6]. Therefore, network algorithms initially developed for bulk samples are often
not suitable for single-cell analysis [7].
Some algorithms for network analysis in scRNA-seq data have been recently proposed,

but these methods fail to outperform general methods developed for bulk sample data [8].
To that end, we present a sparse hierarchical Bayesian factormodel to explore the network
structure associated with genes. The latent factors in our model adjust the gene expres-
sions for each cell to help accommodate for the zero-inflated and overdispersed attributes
of scRNA-seq data, and a GCN structure is constructed by examining the shared factors
between pairs of genes. We refer to our hierarchical Bayesian factor model as HBFM.
This manuscript is organized as follows. In the “Results”, we apply our method to both

simulated and real data and also compare the performance of our methodology to the
performance of other network methods. A brief summary of our proposed methodology
is provided in the “Discussion” and we highlight ourmain conclusions in the “Conclusion”.
Our proposed model and GCN inference is defined in the “Methods” section.

Results
Datasets

To demonstrate the feasibility of our methodology, we generated simulated datasets con-
sistent with our proposed methodology structure defined in the “Methods” section. Each
Ygi count was sampled from Poisson

(
μgi

)
, with μgi modeled from Eq. (1). The βg param-

eters were randomly sampled from Gamma(3,0.5) and the λif parameters were randomly
sampled from Lognormal

(
0,φf

)
.

For the network structures, we fixed the values of the α matrix. In each dataset, we con-
sidered G = 50 genes and sorted them into ten groups of five (e.g., Group 1 consisted
of genes 1 - 5, Group 2 consisted of genes 6 - 10), and all genes within each factor group
were assigned the same αgf values. In three of the datasets, we considered the same net-
work structure (Fig. 1a) consisting of 350 “true” edges using Fsim = 10 factors and varied
the number of cells to be either N = 125 (Sim 1),N = 500 (Sim 3), or N = 1, 000 (Sim 5).
In the other three datasets, we utilized a network structure of Fsim = 15 factors to simu-
late expression values, which created a network structure with 425 “true” edges (Fig. 1c).
Again, the numbers of cells were set to either N = 125 (Sim 2), N = 500 (Sim 4), or
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Fig. 1 a Heatmap of the “true” correlation structure in Sim 3 (F = 10,N = 500). b Heatmap of the estimated
correlation structure in Sim 3 by HBFM and F = 25 factors. c Heatmap of the “true” correlation structure in Sim
4 (F = 15,N = 500). d Heatmap of the estimated correlation structure in Sim 4 by HBFM and F = 25 factors

N = 1, 000 (Sim 6). In order to define the correlation structures, the values of φf were
fixed to be either 0.20, 0.35, 0.50, 0.65, or 0.80. In the simulations with Fsim = 10, each
fixed value of φf was used twice (e.g., φ1 = φ2 = 0.20, φ3 = φ4 = 0.35) and in the simu-
lation with Fsim = 15, each fixed value was used three times (e.g., φ1 = φ2 = φ11 = 0.20,
φ3 = φ4 = φ12 = 0.35).
To evaluate the performance of our methodology on data simulated from a structure

that differs from our proposed methodology, we generated count data from marginal
zero-inflated negative binomial distributions via the NORmal To Anything (NORTA)
algorithm [9]. The zero-inflated negative binomial distribution is a popular choice for
modeling scRNA-seq count data [10–12] and the NORTA algorithm allows us to induce
a “true” gene-gene correlation structure. Six datasets (Sim 7 - 12) were simulated with
the same number of genes, number of cells, and network structures as the six previously
described datasets (Sim 1 - 6). Therefore, the network structures for Sim 7, Sim 9, and
Sim 11 have 350 “true” edges (Fig. 1a) and the network structures for Sim 8, Sim 10, and
Sim 12 contain 425 “true” edges (Fig. 1c). Counts were generated with the rnorta function
from the R package SimCorMultRes [13] and the ZIM package [14] was used to estimate
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the parameters of the zero-inflated negative binomial distributions from G = 50 genes
randomly selected from the 101 genes considered in our case study analysis of the mouse
microglia cell (MMC) data from [15].
We also ran analyses on two real datasets to demonstrate the utility of our method on

real data. The expression counts for the mouse brain single-cell (MBSC) dataset from [16]
were downloaded from the Gene Expression Omnibus (GEO) database under accession
number GSE60361. For this analysis, we selected the G = 48 known and novel genetic
markers displayed in Figure S6 of the supplementary materials of [16]. Cells with a library
size of zero were removed, leaving a total of N = 2, 946 cells in this dataset. The second
dataset was obtained from the GEO database under accession number GSE90975 and
contains the gene expressions from single-cell analysis of neurodegeneration in microglia
cells of mice [15].We considered allN = 944 cells and analyzed theG = 101 differentially
expressed genes from Figure S1 of [15]. This second real dataset is referred to as mouse
microglia cell (MMC).

Simulation studies

Using the simulated data, we fit our proposed model (HBFM) by running the Markov
chainMonte Carlo (MCMC) sampling algorithm described in the “Methods” section. The
stochastic EM approach was run for 2,000 iterations, after an initial warm-up period of
100 iterations, and samples from the last 200 iterations of this approach were used to
obtain starting parameter values for the MCMC sampler. We ran the MCMC sampler for
4,000 iterations and used the last 1,000 iterations for inference.
Nine runs of HBFM were considered by selecting nine different choices for the number

of factors: F = 5, 8, 10, 12, 15, 18, 20, 22, and 25. For each choice of F, we ran eight separate
MCMC sampling chains in R [17], and used only the samples from the five chains with the
highest average marginal likelihood for inference. The Deviance Information Criterion
(DIC) was calculated using half the posterior variance of the deviance to estimate the
effective number of parameters [18], and the number of factors F with the lowest DIC was
selected as the “best” model choice. In the cases where F = 25 was chosen as the “best”
model, we ran an additional model with F = 28 factors to ensure that the upper bound of
our considered set was also the optimal choice for the number of factors. For each pair of
genes g and g′ in the “best” model, we tested for a significant relationship by using a 95%
credible interval (CI) for ρgg′ .
To evaluate the performance of our model against other gene network methods, we

ran the single-cell co-expression model LEAP [19] and the single-cell regulatory net-
work models of PIDC [20] and SCODE [21] on the simulated data. After creating a
symmetric correlation matrix with the LEAP package in R (i.e., selecting the maxi-
mum absolute correlation for each gene-gene pair), a permutation analysis was then
performed with this package using a false discovery rate (FDR) of 5% to determine
a cutoff for significant correlation values. PIDC was implemented in Julia [22] using
the basic usage code available at https://github.com/Tchanders/NetworkInference.jl. For
SCODE, we ran the R code available at https://github.com/hmatsu1226/SCODE and
averaged the results of 50 separate trials using the same parameters as the exam-
ple code provided on the GitHub page. The methods of LEAP and SCODE utilize a
pseudotime estimation of the cells and the R package monocle [23] was used for this
estimation.

https://github.com/Tchanders/NetworkInference.jl
https://github.com/hmatsu1226/SCODE
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We also included three popular network methods originally developed for bulk data in
our simulation studies: partial correlation, Bayesian networks, and GENIE3 [24]. Partial
correlation (PCORR) was implemented with the R package ppcor [25] using the Spearman
partial correlation coefficient. We performed the Benjamini-Hochberg [26] procedure
to control for FDR and defined 5% as the threshold for significant correlation values.
Bayesian networks (BN) were constructed in R with the bnlearn package [27]. After
learning a set of 1,000 bootstrap replicates with the hill-climbing algorithm, the optimal
network was created using model averaging [27]. The analysis for GENIE3 was performed
in R with the GENIE3 package using default parameters.
The methods of PIDC, SCODE, and GENIE3 output a matrix of scores/weights to

quantify evidence towards each gene-gene regulatory link, but these methods do not
determine a cutoff score/weight for identifying significant associations. To facilitate
comparison across the networks from each method, we chose the threshold for PIDC,
SCODE, and GENIE3 such that the number of edges in the constructed network was
equal to the number of edges determined by our HBFM method. By matching the num-
ber of edges to our method, we provide a direct comparison between these methods and
HBFM. In addition, SCODE and GENIE3 provide different scores/weights for the differ-
ent directions of edges in the network; therefore, we followed the procedure by [8] and
selected the directed edges with the higher magnitude to quantify the strengths of the
gene-gene associations for these methods.
For each simulated dataset, we compared the significant gene-gene associations iden-

tified by each method to the “true” gene-gene associations created by the simulated
network structure. Themeasures of true positive rate (TPR), FDR, area under the receiver
operating characteristic curve (AUC), and number of significant edges in the estimated
network were used to compare methods. When calculating the AUC, the inverse of the
adjusted p-value (inverse of the approximate “p-value” in HBFM) for each gene-gene asso-
ciation was utilized for PCORR and HBFM, and for the other methods, the association
value (or absolute value) provided for each network edge was used. We note that a differ-
ent threshold for edge selection in PIDC, SCODE, and GENIE3 may impact the TPR and
FDR results since the number of edges in the constructed network will change; however,
the AUC results will remain unchanged by the threshold choice. We found that the FDRs
for SCODE and GENIE3 tend to remain fairly stable across different threshold choices,
and the FDR of PIDC tends to increase as the threshold increases. The performances of
the different network methods are summarized in Tables 1 and 2.
From the simulation results, we see that our methodology performs quite well across

the different scenarios, as HBFM has consistently high power and low FDRs. In Fig. 1,
we visually provide comparisons of the correlation structures estimated by HBFM to the
“true” correlation structures of Sim 3 and Sim 4 to illustrate that our method is able to
recover the underlying correlation structures. The magnitude and direction of the esti-
mated correlation structures produced by HBFM tend to resemble the magnitude and
direction of the “true” correlation structures.
When examining the performances of all methods in the simulation studies, our model

outperforms the other methods across the TPR and AUC performance measures. Even
when the data was generated via the NORTA algorithm (Sim 7 - 12), our HBFM method
performs better than the other considered methods. LEAP tends to identify larger num-
bers of edges than the other methods, which leads to higher TPR than HBFM in some
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simulations. However, HBFM has a higher AUC andmuch lower FDR than LEAP in every
considered simulated dataset. In Sim 6, HBFM and PIDC perform very comparably when
the number of edges is the same. While PIDC has a slightly higher TPR and lower FDR
at this threshold, HBFM does have the higher AUC. The FDR of our method is also rea-
sonably controlled to a nominal level, especially compared to the FDRs of LEAP, SCODE,
GENIE3, and PCORR.While BN had lower FDRs than HBFM in some of the simulations,
it also identified the fewest number of edges and had lower TPR and AUC than HBFM.
Example heatmaps of the networks produced by all considered methods are provided in
Additional file 1 (Figures S1 - S3).
When using DIC as the criterion for our model selection, the best-fitting model often

contains more factors than the “true” simulated structure in the examples we’ve consid-
ered so far. However, we note that the additional factors provide more opportunities to
explore different factor structures within the model during MCMC sampling. For exam-
ple, a single factor from a model with F = 10 may be split into several factors when using
a model with F = 20. Therefore, it is not surprising that the “best” model choices contain
more factors than the “true” number of factors, Fsim, as these models are more likely to
explore the high regions of the posterior because they are less likely to get stuck during
sampling.

Case studies

The same network methods described in the “Simulation studies” section were applied
to the two real datasets. Since the “true” network structure of the real data is unknown,
we constructed three reference protein-protein interaction networks with the STRING
database [28] for each dataset to compare across the different methods. These reference
networks were created by adjusting the threshold for the minimum required interac-
tion score between pairs of proteins: high confidence (minimum score of 0.700), medium
confidence (minimum score of 0.400), and low confidence (minimum score of 0.150).
STRING computes these scores by combining the probabilities of different evidence
sources (e.g., text mining, experiments, databases) and correcting for the probability
of observing the interactions by random chance [29]. This is, of course, an imperfect
reference as any method may detect novel interactions that have not been previously
published. Likewise, some entries in STRING may represent published false positives.
However, on average, the method producing the network most similar to the known and
predicted protein-protein interaction STRING reference set should be considered as the
network most consistent with biological literature.
Because the methods of PIDC, SCODE, and GENIE3 do not have default parameters to

determine a cutoff score/weight for identifying significant associations, we have selected
the same number of top edges from each considered method and used those top edges
to evaluate the performance of the methods in the real data analysis. For each method,
we constructed a network and obtained the top 322 most significant gene-gene pairs, out
of the 1,128 possible pairs, for comparison in the MBSC analysis and the top 1,600 most
significant pairs, out of the 5,050 possible pairs, for comparison in the MMC analysis.
These values represent the number of protein-protein interactions in the low confidence
STRING reference sets. From the nine different numbers of factors considered for HBFM,
we selected F = 25 factors as the “best” choice for both theMBSC andMMCdata because
this factor choice had the lowest DIC.
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The UpSet plots [30] for the intersection between the top 322 associations in theMBSC
dataset and the top 1,600 associations in the MMC dataset identified by each network
method is displayed in Fig. 2. The dark circles in each column of the UpSet plot indicate
the methods associated with the intersection and the bar above each column repre-
sents the number of gene-gene pairs in the intersection. Interestingly, only 33 and 86
associations were common among all seven methods in the MBSC and MMC datasets,
respectively.
Table 3 displays the comparisons of the top associations from each method to the refer-

ence networks. In the MBSC analysis, HBFM has the most associations in common with
each STRING reference network. The 19 high confidence STRING interactions identified
by HBFM form a network of 14 distinct genes: Penk, Calb2, Reln, Npy, Sst, Lhx6, Pvalb,
Crh, Vip, Tbr1, Foxp2, Calb1, Cck, and Pax6. According to the STRING database, these
genes are associated with 127 significantly enriched biological process gene ontology
(GO) terms that include behavior, cerebral cortex development, learning or memory, and

Fig. 2 a UpSet plot of the top 322 gene-gene associations as determined by seven different methods for the
MBSC dataset. b UpSet plot of the top 1,600 gene-gene associations as determined by seven different
methods for the MMC dataset
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Table 3 The overlap between the top 322 gene-gene associations in the MBSC dataset and the top
1,600 gene-gene associations in the MMC dataset for each network method. Reference networks
were created by the STRING database

MBSC reference set MMC reference set

High Medium Low High Medium Low

HBFM, F=25 19 50 113 618 707 926

LEAP 19 45 100 263 357 678

PIDC 13 40 95 460 559 838

SCODE 9 27 74 167 247 517

BN 12 40 96 384 474 783

GENIE3 12 38 94 338 434 733

PCORR 14 40 102 263 346 582

Reference total 42 116 322 697 897 1600

forebrain development. LEAP also matched the same number of high confidence interac-
tions as our method in the MBSC analysis but did not match as many of the medium and
low confidence interactions.
For the MMC dataset, HBFM again has the highest number of associations in com-

mon with each STRING reference network. When comparing the methods to the high
confidence STRING network, HBFM matched 618 out of the 697 (88.6%) interactions
while PIDC had the second highest overlap matching only 460 of the 697 (66.0%) inter-
actions. The network of 618 high confidence interactions identified by HBFM consists
of 78 distinct genes that are associated with 271 significantly enriched biological process
GO terms. The most significant GO terms for these genes include translation, peptide
metabolic process, and organonitrogen compound biosynthetic process. Lists of the high
confidence interaction genes detected by our method in both the MBSC and MMC anal-
yses and their associated significantly enriched biological process GO terms are provided
in Additional file 2.
As an additional evaluation of our HBFM model, we created 100 posterior predictive

datasets (PPDs) [18] from each chain of the MMC analysis (500 PPDs in total) and com-
pared the overdispersion and proportion of zeros in these datasets to the overdispersion
and proportion of zeros in the MMC dataset. Each count Ygi of the PPDs was generated
from Poisson(μgi), with μgi modeled from Eq. (1) using parameter estimates (with the
exception of the λi parameters) from different iterations of the MCMC sampler. The λi
values were drawn randomly from Lognormal(0,φf ).
In Fig. 3a, the log(variance) is plotted against the log(mean) across all G = 101 genes

for the real expressions in the MMC dataset and the estimated expressions from a sin-
gle representative PPD. Both datasets display high cell-to-cell variability, as expected of
scRNA-seq data. In fact, even with the choice of Poisson for the (conditional) distribu-
tion of the counts, the PPDs generated from the parameters estimated from the MMC
dataset tend to generate variability that is comparable to the variability observed in the
real data. We can see that many genes from the PPD are overdispersed, especially those
with log(means) greater than 1, as in the true MMC data. From Fig. 3b, the gene expres-
sion in the MMC data is zero-inflated as the proportion of zero values for each gene
ranged between 0 and 0.99. In the PPD, the proportion of zeros for each gene tended
to be only slightly lower than what was observed in the real dataset. Nevertheless, the
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Fig. 3 Example comparison between the MMC dataset and one representative PPD generated by HBFM. a
The log(variance) vs. log(mean) scatterplot for each gene. b Boxplots of gene-specific proportion of zeros

proportion of zero expressions were still quite high and variable across the genes in the
PPD.
To further analyze the PPDs generated byHBFM, we selected nine genes from theMMC

dataset that represent the 10th through 90th percentiles of average gene expression and
examined the log(variance/mean) and proportion of zeros of these genes across all PPDs.
Figure 4a illustrates that across the PPDs, the estimated log(variance/mean) for most of
the genes is greater than 0, indicating variances that are larger than their corresponding
means. Also, for a majority of these genes, the true log(variance/mean) value is captured
across the PPD estimates. The estimated proportion of zeros for these genes across the
PPDs also capture the true proportion of zeros from the MMC dataset, as displayed in
Fig. 4b.

Discussion
In this manuscript, we have presented a hierarchical Bayesian factor model (which we
have referred to as HBFM) for constructing GCNs from scRNA-seq data. We do note
that our methodology constructs undirected networks to identify gene-gene associations
unlike some of the other considered methods (BN, GENIE3, LEAP, and SCODE) that do
provide directed edges to infer causal relationships. Inference between undirected and
directed graphsmay not be fully comparable, but rather than limit our comparison to only
methods for undirected graphs, we have included methods that estimate directed graphs
and have adjusted the comparisons using common strategies from the literature.
The number of genes (G) in the simulated and real datasets presented in this manuscript

is smaller than what is often considered for other scRNA-seq data problems, such as clus-
tering cells/genes and detection of differentially expressed genes. However, the use of a
smaller pre-screened set of genes is common among other complex network methods [5,
31]. In part, this is due to the GCN being determined by G ∗ (G − 1)/2 correlations, a
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Fig. 4 Properties of PPD estimates from a sample of nine genes in the MMC dataset. Genes were selected
based on percentiles (10th through 90th) of average gene expression. a Violin plots of estimated
log(variance/mean) for each gene across all PPDs. b Violin plots of estimated gene-specific proportion of
zeros across all PPDs. The blue stars represent the true values from the MMC dataset

quadratic number of parameters, making it difficult to numerically and graphically com-
municate results for largeG.While constructing a GCN as an exploratory analysis from an
entire dataset is possible with ourmethod, it may not be computationally practical. HBFM
performs Bayesian inference via iterative MCMC, which can become computationally
expensive as the number of genes (G) and number of cells (N) increase.
In light of these computational considerations, we typically recommend the user con-

sider some initial analysis such as clustering or differential expression to determine a
smaller set of genes, generally 100 or fewer, before using HBFM to estimate the GCN. On
a system with an Intel Core i7 processor (3.5 GHz) and 8 GB of RAM, the average run-
ning time for a single chain of HBFM with F = 25 factors was 20.1 hours for the MBSC
data (G = 48,N = 2, 946) and 11.2 hours for the MMC data (G = 101,N = 944). Also,
when it comes to choosing an appropriate number of factors (F) for our methodology, we
found that the correlation structure estimated by HBFM was reasonably stable across F
values greater than 10 in the simulation studies (see Figure S4 in Additional file 1). For the
analyses in this manuscript, we considered nine potential F values and ran eight chains
for each choice of F in parallel so that we could produce a thorough investigation of the
performance of our proposed methodology. However, a smaller set of F values (with all F
values greater than 10) can be considered for practical applications of HBFM.
In our methodology, the distribution of count values is defined to follow a Poisson dis-

tribution, conditional on the latent factors λi. While we acknowledge that the negative
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binomial distribution tends to be the preferred choice for modeling overdispersed data,
the latent factors of HBFM are random effects that help account for the additional vari-
ability across samples. After marginalizing out λi, E

(
Ygi

) = βg and Var
(
Ygi

) = βg +
β2
g

(
exp

{−φf |αgf |
} − 1

)
. As illustrated in the PPDs generated from the real MMC data,

HBFM is able to generate overdispersed and zero-inflated data that is consistent with the
features of the real data. Hence, the use of a Poisson distribution is not ameaningful draw-
back. As a potential extension of our methodology, a new parameter εgi ∼ Gamma

(
rg , rg

)

could be added to our model such that Ygi ∼ Poisson
(
μgiεgi

)
with μgi defined from

Eq. (1). The conditional distribution of Ygi would be Poisson but marginally the distri-
bution would be negative binomial with mean μgi and dispersion parameter dg = 1

rg .
Our preliminary analyses examining this conditionally negative binomial model version
indicated no improvement in inference.
We also note that the high resolution of scRNA-seq technology allows researchers the

opportunity to estimate “pseudotime” and obtain a temporal ordering of cells [23, 32].
The general idea is that at any given time, a cell population will consist of cells that
are at different stages of differentiation and development, and cells in different stages
will express different sets of genes. Our method does not directly take pseudotime into
account, but the latent factors (λ) are likely to adapt and capture this contribution on the
gene expression.

Conclusion
The results from our simulation studies demonstrate that HBFM is able to identify true
co-expressions while maintaining a nominal FDR across different numbers of cells and
different network structures, even when the data was simulated from a structure that
differs from our proposed methodology. Our case study analyses with the MBSC and
MMC datasets also demonstrate the practical use of HBFM for determining significant
gene-gene associations, as our model was able to detect more known and predicted
protein-protein interactions from the STRING database than the competitor network
methods. Overall, our proposed hierarchical Bayesian factormodel is a promisingmethod
for discovering gene-gene associations in future scRNA-seq network analyses.

Methods
Hierarchical Bayesian factor model

Let Ygi be the (count) expression for gene g (g = 1, . . . ,G) in cell i (i = 1, . . . ,N). We
assume each expression comes from the Poisson(μgi) distribution, where the mean μgi is
modeled through the representation

μgi = βg

F∏

f=1
exp

{
−φf

2
|αgf |

}
λ

αgf
if . (1)

Here, the parameter βg denotes the average expression for gene g. For each cell i, there
are F associated factors λi = {λi1, . . . , λiF} that impact the expression. These factors are
strictly positive and come from a Lognormal(0,φf ) distribution.We can think of each fac-
tor as representing a distinct attribute (e.g., cell stage, pseudotime point) that will only
influence a specific set of related gene expressions. The exponent of the f th factor λif is
αgf ∈ {−1, 0, 1}, and by using this set of discrete exponents for the factors, the expres-
sion for gene g is impacted only by the factors with αgf = −1 or 1. The adjustment
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term of exp
{
−φf

2 |αgf |
}
is included in Eq. (1) to ensure that E

(
Ygi

)
is equal to βg (after

marginalizing out λi) regardless of the αgf values.
Our defined factor structure provides the flexibility required to account for the typical

cell-to-cell variability of scRNA-seq data. For a given f, λif is unique to each cell and is only
activated for a particular gene when αgf �= 0. If the activated factors λ

αgf
if for a given gene

are much smaller than 1 (near zero), then μgi will be very small and account for the high
proportion of zeros typical of this data. Conversely, very large values of the factors will
increase μgi (relative to the baseline βg) and accommodate the occasional extremely large
count. We note here that Ygi follows a Poisson distribution conditional on the λi terms.
However, the variance of Ygi, marginal on λi, is equal to βg + β2

g
(
exp

{−φf |αgf |
} − 1

)
.

Thus, Ygi is conditionally Poisson but marginally overdispersed. So, despite the choice of
Poisson for the distribution of the count, our model is able to capture the high proportion
of zeros and large variance typical of single-cell data.
To finish specification of our Bayesian model, prior distributions for the remaining

parameters must be defined. We use a conditionally conjugate, non-informative prior
for the average expression of gene g, βg ∼ Gamma(0.001, 0.001). The prior for the scale
parameter of the factors is φf ∼ Lognormal (h1, h2), where h1 ∼ Normal(0, 100) and h2 ∼
Inverse Gamma(1, 1). For the exponent parameters, the prior is

∣
∣αgf

∣
∣ ∼ Bernoulli

(
θf

)

with θf ∼ Beta(1, 1). Here, we define P
(
αgf = 1

) = P
(
αgf = −1

) = θf
2 . Consequently,

P
(
αgf = 0

) = 1 − θf . The number of associated factors F is often unknown, but one can
fit multiple models with different numbers of factors and choose the most suitable model
based on a comparison of a model selection statistic such as the DIC described in [18].

Network structure

Posterior samples for model parameters are obtained with the MCMC algorithm defined
later in the “Model inference” section. At each iteration of the MCMC, a correlation
matrix is computed based on the current set of parameters, and we infer a GCN by exam-
ining the posterior distribution of this correlation matrix. Under our proposed model, the
sparse α = {

αgf
}
(g,f ) matrix imposes a crude network structure on the gene expressions.

Consider two genes g and g′, where g �= g′. If αgf αg′f �= 0 for some f, the expressions
Ygi and Yg′i are both impacted by the shared factor λif . Conversely, if genes g and g′ have
no shared factors (αgf αg′f = 0 for all f ), these genes are conditionally independent. To
quantify the association between gene g and gene g′, we examine the correlation (after
marginalizing out λi) between the values of log

(
μgi

)
and log

(
μg′i

)
.

We motivate our decision to use this specific correlation structure by considering the
matrix Ã = ααT . The

(
g, g′) element of this G × G matrix provides a summation of

the associated factors that are active in both genes g and g′ since ãg,g′ = ∑F
f=1 αgf αg′f .

When ãg,g′ > 0, the two genes have more factors with the same association (i.e., αgf =
αg′f = 1 or αgf = αg′f = −1) than factors with opposite associations (i.e., αgf = 1
and αg′f = −1 or vice versa). Conversely, when ãg,g′ < 0, the genes have more fac-
tors with opposite associations than factors with the same association. If ãg,g′ = 0, then
either no factors are in common between the genes or the number of factors with the
same association is equal to the number of factors with opposite associations for those
genes.
By recognizing that factors with a larger variance φf will have a greater influence on the

joint expression, we can weigh the shared factors by their variance. In fact, this weighted
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expression is exactly equal to the covariance (marginally over λi) between log
(
μgi

)
and

log
(
μg′i

)
,

Cov
[
log

(
μgi

)
, log

(
μg′i

)] =
F∑

f=1
φf αgf αg′f .

The active factors also increase the variance for log
(
μgi

)
,

Var
[
log

(
μgi

)] =
F∑

f=1
φf α

2
gf ,

which is important when addressing the zeros and overdispersion of scRNA-seq data.
From these covariance and variance expressions, the correlation between log(μgi) and
log(μg′i) is defined as

Corr
[
log

(
μgi

)
, log

(
μg′i

)] = ρgg′ =
∑F

f=1 φf αgf αg′f
√(∑F

f=1 φf α
2
gf

) (∑F
f=1 φf α

2
g′f

) . (2)

We illustrate the mechanics of this correlation structure by considering just one factor
f. If gene g and gene g′ have the same association with this given factor, the correlation
between log

(
μgi

)
and log

(
μg′i

)
is 1. When gene g has a positive association with factor

f and gene g′ has a negative association with factor f, the correlation is −1. Additionally,
if factor f is inactive for either of the genes, the correlation is 0. The significance of each
correlation is determined by analyzing the credible interval (CI) of ρgg′ in the posterior
distribution, as described in the “Network inference” section.
We note that each gene must have at least one active factor for our correlation structure

in Eq. (2) to be defined since Var
[
log

(
μgi

)]
is equal to 0 if all of the factors are inactive.

Utilizing the correlation structure (after marginalizing out λi) between Ygi and Yg′i would
avoid this issue, but the additional βg term in the variance leads to a correlation struc-
ture dependent on the average expression for each gene. For this reason, we do not focus
on the correlation structure between Ygi and Yg′i. Throughout, if (2) is 0

0 , we define this
correlation as zero to match the zero value for Corr

(
Ygi,Yg′i

)
.

Model inference

The posterior distribution for our hierarchical Bayesian model is complex, and soMCMC
is required for inference. For simplicity in our posterior distribution notations, let ψgif =
∏

f ′ �=f exp
{
−φf ′

2
∣
∣αgf ′

∣
∣
}

λ
αg f ′
if ′ . We utilize an MCMC sampler that iterates through the

following steps:

1 For g = 1, . . . ,G, update
βg ∼ Gamma

(
0.001 + ∑N

i=1 ygi , 0.001 + ∑N
i=1

∏F
f=1 exp

{
−φf

2 |αgf |
}

λ
αg f
if

)
.

2 For f = 1, . . . , F , update θf ∼ Beta
(
1 + ∑G

g=1|αgf | , 1 + G − ∑G
g=1|αgf |

)
.

3 For all g, f , sample αgf from a multinomial distribution with
p

(
αgf = 0| · · · ) = A

A+B+C ,
p

(
αgf = 1| · · · ) = B

A+B+C ,
p

(
αgf = −1| · · · ) = C

A+B+C .
Here, A,B, and C are defined as
A = (

1 − θf
)
exp

{
−βg

∑N
i=1 ψgif

}
,
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B =
(

θf
2

)
exp

{
−βg

∑N
i=1 exp

{
−φf

2

}
λif ψgif

}
,

C =
(

θf
2

)
exp

⎧
⎨

⎩
−βg

∑N
i=1

exp
{
− φf

2

}

λif
ψgif

⎫
⎬

⎭
.

4 Update h1 ∼ Normal
(

1/h2
1/100+F/h2 ∗ ∑F

f=1 log
(
φf

)
, (1/100 + F/h2)−1

)
.

5 Update h2 ∼ Inverse Gamma
(

F
2 + 1,

∑F
f=1

(
log

(
φf

)−h1
)2

2 + 1
)
.

6 For f = 1, . . . , F , use a Metropolis-Hastings step to update φf . The posterior
distribution for φf is

p
(
φf | · · ·

) ∝ φ
−N

2 −1
f exp

{
−

(
φf
2

∑G
g=1

∑N
i=1

∣
∣αgf

∣
∣ ygi +

∑N
i=1 log

(
λif

)2

2φf
+

(log(φf )−h1)2
2h2 + ∑G

g=1 βgexp
{
−φf

2 |αgf |
} ∑N

i=1 λ
αg f
if ψgif

)}
.

We propose a candidate value for φ
(c)
f through a pseudo-random walk from

Lognormal
(
φf , σ 2) and accept this value with the usual Metropolis-Hastings ratio.

If factor f is not active for any gene (i.e.,
∑G

g=1|αgf | = 0), then update φf from the
Lognormal(h1, h2) prior.

7 For all i, f , use a Metropolis-Hastings step to update λif . By defining
κ = ∑G

g=1 ygiαgf ,

τ = 2
∑G

g=1 I
(
αgf = 1

)
βg exp

{
−φf

2

}
ψgif ,

χ = 2
∑G

g=1 I
(
αgf = −1

)
βg exp

{
−φf

2

}
ψgif , where I(·) represents an indicator

variable, the posterior distribution for λif is

p
(
λif | · · ·

) ∝ λ κ−1
if exp

{
− 1

2

(
τλif + χ

λif
+ log

(
λif

)2

φf

)}
.

This posterior has a similar appearance to a generalized inverse Gaussian (GIG)

distribution with an extra exponential term
(

log
(
λif

)2

φf

)
. To that end, we propose a

candidate value for λ
(c)
if from GIG(κ , bτ , bχ), where the multiplicative factor of b

on τ and χ is used to create thicker tails in the proposal distribution. For our
sampling scheme, we set b to 0.9. Acceptance of the candidate value is determined
by the typical Metropolis-Hastings rules. If τ = χ = 0, factor f is not active and we
update λif from the Lognormal

(
0,φf

)
prior.

Due to the large number of model parameters and complexity of the posterior distri-
bution, it is possible for the MCMC sampler to get stuck exploring a local mode of the
posterior rather than exploring the entire posterior distribution. This is particularly an
issue with the one-at-a-time sampling for α, which does not allow for large scale moves
such as splitting or combining factors. To address this sampling problem, we implement
a stochastic EM approach [33, 34] to obtain initial values for our MCMC algorithm.
For the stochastic EM approach, we run the usual MCMC sampler but replace sampling

with optimization in several of the steps. Specifically, we optimize the following steps of
the sampler:

1 For g = 1, . . . ,G, update βg to its conditional posterior mode.
3 For all g, f , select the value of αgf with the highest probability: p

(
αgf = 0| · · · ),

p
(
αgf = 1| · · · ), or p (

αgf = −1| · · · ).
6 For f = 1, . . . , F , find φf that optimizes its respective conditional posterior

distribution. In this step, we utilize the optimize function from the base packages
in R [17].
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After randomly selecting starting values and running an initial MCMC sampling warm-
up period, the stochastic EM approach is implemented for a number of iterations (e.g.,
2,000 iterations) to ensure stabilization. Parameter estimates are then calculated by aver-
aging the samples generated from a final set of iterations (e.g., the samples from the last
200 iterations). In the case of the discrete αgf parameters, we select the value (either −1,
0, or 1) that has the highest frequency. The parameter estimates from this stochastic EM
approach are then input as the initial starting values of ourMCMC sampler. We choose to
run a number of MCMC chains (in parallel) and implement the stochastic EM approach
individually for each chain to produce different initial starting values. For final param-
eter inference, the lowest performing chains (i.e., the chains with the lowest marginal
likelihoods) are discarded from analysis.

Network inference

The association level network structure Ñ = {
ñgg′

}
(g,g′) between genes is obtained by

analyzing the posterior of the correlation matrix defined in Eq. (2). For each
(
g, g′) ele-

ment in the correlation matrix, M samples are used to calculate the posterior mean
ρ̂gg′ = 1

M
∑M

m=1 ρ
(m)

gg′ . This estimate provides a quantifiable value of association between
genes g and g′.
Since we are working in the Bayesian paradigm, we can examine the CI of the posterior

to determine whether or not genes g and g′ are associated with one another. By choos-
ing an appropriate level of significance α∗, two genes have a significant association when
zero is excluded from the 100 (1 − α∗)% CI. A second method to determine significant
associations from the posterior samples of ρgg′ is to find the smallest 100 (1 − a∗)% CI
that includes 0. The corresponding a∗ value would indicate the proportion of the poste-
rior distribution outside of the smallest CI that includes 0. Hence, we can think of a∗ as
an approximate “p-value” that can be used to rank correlations by significance.
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