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Abstract 

Background:  Radiomics is a new technology to noninvasively predict survival prognosis with quantitative features 
extracted from medical images. Most radiomics-based prognostic studies of non-small-cell lung cancer (NSCLC) 
patients have used mixed datasets of different subgroups. Therefore, we investigated the radiomics-based survival 
prediction of NSCLC patients by focusing on subgroups with identical characteristics.

Methods:  A total of 304 NSCLC (Stages I–IV) patients treated with radiotherapy in our hospital were used. We 
extracted 107 radiomic features (i.e., 14 shape features, 18 first-order statistical features, and 75 texture features) from 
the gross tumor volume drawn on the free breathing planning computed tomography image. Three feature selec-
tion methods [i.e., test–retest and multiple segmentation (FS1), Pearson’s correlation analysis (FS2), and a method that 
combined FS1 and FS2 (FS3)] were used to clarify how they affect survival prediction performance. Subgroup analysis 
for each histological subtype and each T stage applied the best selection method for the analysis of All data. We used 
a least absolute shrinkage and selection operator Cox regression model for all analyses and evaluated prognostic 
performance using the concordance-index (C-index) and the Kaplan–Meier method. For subgroup analysis, fivefold 
cross-validation was applied to ensure model reliability.

Results:  In the analysis of All data, the C-index for the test dataset is 0.62 (FS1), 0.63 (FS2), and 0.62 (FS3). The sub-
group analysis indicated that the prediction model based on specific histological subtypes and T stages had a higher 
C-index for the test dataset than that based on All data (All data, 0.64 vs. SCCall, 060; ADCall, 0.69; T1, 0.68; T2, 0.65; T3, 
0.66; T4, 0.70). In addition, the prediction models unified for each T stage in histological subtype showed a different 
trend in the C-index for the test dataset between ADC-related and SCC-related models (ADCT1–ADCT4, 0.72–0.83; 
SCCT1–SCCT4, 0.58–0.71).

Conclusions:  Our results showed that feature selection methods moderately affected the survival prediction perfor-
mance. In addition, prediction models based on specific subgroups may improve the prediction performance. These 
results may prove useful for determining the optimal radiomics-based predication model.
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Introduction
Non-small-cell lung cancer (NSCLC) accounts for 
approximately 85% of lung cancers [1], which makes 
it the leading cause of cancer mortality worldwide [2]. 
Although treatment decisions and prognostic of lung 
cancer have significantly improved over the years, a 
parallel improvement in terms of global survival rate 
has lagged [3]. Currently, the tumor-node-metastasis 
(TNM) staging system is the most reliable prognostic 
factor for lung cancer [4]. However, survival rates may 
vary between patients included in the same disease stage 
[5]. Therefore, new prognostic approaches are urgently 
needed to achieve a personalized medical treatment 
to improve disease outcome [6]. Personalized cancer 
treatment is now largely based on medical imaging [7] 
because it offers the advantages of being noninvasive, 
reproducible, and relatively easy to implement in clini-
cal practice [8]. Of particular interest is the work of Aerts 
et al. [9], who showed that features extracted from com-
puted tomography (CT) may be useful for predicting the 
outcome of NSCLC patients.

Radiomics is a high-throughput technique to quantify 
phenotypic features in medical images [9, 10]. These fea-
tures may help predict survival prognosis, preoperative 
distant metastasis, and histological subtype classifica-
tion [9, 11, 12]. In recent years, there have been several 
reports showing high accuracy of radiomics in predict-
ing histological classification of NSCLC. Liu et  al. [13] 
established a multi-subtype classification model for the 
four major histological subtypes of NSCLC [i.e., squa-
mous cell carcinoma (SCC), adenocarcinoma (ADC), 
large cell carcinoma (LCC), and not otherwise specified 
(NOS)] and investigated their classification performance 
and generalization ability. They showed an average clas-
sification accuracy of 0.89 on the training set and a clas-
sification accuracy of 0.86 on the test set. Zhu et al. [14] 
sought to distinguish SCC and ADC based on a radiomic 
signature. Their results showed an area under the curve 
(AUC) of 0.905 for the training cohort and an AUC of 
0.893 for the validation cohort, which indicated good 
performance of the radiomic signature in distinguishing 
between ADC and SCC. These studies that classified the 
histological subtypes of NSCLC showed that texture fea-
tures representing heterogeneity were essential in clas-
sifying each subtype. This is synonymous with the fact 
that each subtype has a different trend in radiomic fea-
tures (especially texture features), i.e., the way the tumor 
looks in the CT image. In addition to differences in radi-
omic features, significant differences in prognosis have 
been reported for each histological subtype [15, 16]. Abel 
et  al. showed that, compared to ADC, SCC was highly 
associated with local recurrence rates and was an inde-
pendent negative predictor of overall survival [15]. Thus, 

histological subtypes vary widely in all aspects, including 
phenotype, heterogeneity, and prognosis.

Many radiomics-based prognostic studies of NSCLC 
patients have used machine learning with mixed data-
sets of various subgroups [17–19]. In contrast, few 
studies focused on subgroups for prognostic analysis. 
Chaddad et  al. [20] performed a prognostic analysis in 
each NSCLC subgroup (i.e., histological subtypes, TNM 
stages, and clinical stages) and obtained an AUC of 0.757, 
0.703, 0.703, and 0.762 for LCC, T2, N0, and Stage I 
groups, respectively. In the abovementioned study, there 
was minimum evaluation of the improvement in predic-
tion performance by subgroup analysis because the anal-
ysis group was too limited. Yang et al. [21] developed and 
validated a radiomic method by integrating tumor and 
lymph node radiomics for the preoperative prediction 
of lymph node status in gastric cancer. They performed 
validation using subgroups in the test dataset and showed 
an improvement in prediction performance compared 
to the validation using the whole dataset. In the above-
mentioned study, there was minimal subgroup analysis 
because the training model itself used the whole dataset 
rather than subgroups.

As described above, there are only studies with mini-
mum evaluation of subgroup analysis, even though 
the trends of radiomic features differ in each subgroup 
because of differences in phenotype and heterogene-
ity. We hypothesized that proper training and valida-
tion using the NSCLC subgroup dataset would lead to 
high improvement in prognostic performance because 
it would eliminate differences in trends of radiomic fea-
tures. Therefore, this study investigated the radiomics-
based survival prediction for subgroup datasets with 
specific histological subtypes and T stages of NSCLC 
patients.

Materials and methods
Patient population and image acquisition
The dataset in this study included a total of 384 patients 
treated with radiotherapy for NSCLC in our hospital 
from January 2010 to October 2017. A subset of this 
dataset was classified by radiation oncologists with 
respect to tumor (T), lymph node (N), and metastasis 
(M) and classified into four standard clinical stages. In 
addition, the histological subtype of each patient was 
identified (i.e., SCC, ADC, LCC, and NOS). Further, all 
patients were labeled in terms of “survival,” “death,” and 
survival time in days from scan to death or to the date 
of last visit (i.e., censored). GE Light Speed RT16 (GE 
Medical Systems, Waukesha, WI, USA) was used at the 
resolution of 512 × 512 × slices to acquire CT images 
under free breathing, with the number of slices varying 
between subjects. The in-plane pixel size of the images 
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was 0.703–1.172 × 0.703–1.172 mm2, and the slice thick-
ness was 2.5 mm. For each scan, the gross tumor volume 
(GTV) was manually delineated by a radiation oncolo-
gist. Table 1 shows the demographic information of each 
patient. The dataset used in this study includes multiple 
clinical stages and chemotherapy status. This was done 
to reduce the bias outside of specific subgroup to evalu-
ate the prognostic performance of specific subgroups in 
the subgroup analysis described below. The following 
patients were excluded: patients without a histological 
subtype report (n = 27) and with a lack of GTV contours 
(n = 53). The data for the remaining 304 patients were 

divided into training and test datasets using strati-
fied sampling at the ratio of 80% and 20%, respectively, 
while maintaining a constant ratio of deaths to surviving 
patients.

Overall scheme
Figure 1 shows the overall scheme of this study. First, we 
extracted a number of radiomic features from GTV seg-
mentation for the whole dataset. Then, we divided the 
whole dataset into training and test datasets and applied 
three independent feature selection methods to the train-
ing dataset. Next, a least absolute shrinkage and selec-
tion operator (LASSO) Cox regression model was used to 
construct the model of radiomic features alone (radiomic 
model) and the model combining radiomic and clinical 
features (combined model). A test dataset was adapted 
to the constructed model, and the concordance-index 
(C-index) was used to evaluate the prognostic perfor-
mance. Next, specific subgroup datasets were created 
from the whole dataset. In the subgroup analysis, a five-
fold cross-validation was applied in model validation. The 
training dataset was subjected to the feature selection 
method that showed the best performance in the analy-
sis for All data. As with the analysis for All data, LASSO 
Cox regression model was used to construct the radiomic 
and combined models, and the model performance was 
validated by applying the test dataset to the constructed 
model.

Feature extraction
PyRadiomics [22] on 3D Slicer was used to extract 
radiomic features from GTV, which was resampled to 
1 × 1 × 1  mm3. A total of 107 features were extracted 
for each patient (Additional file  1: Supplementary A), 
which includes 14 shape features, 18 first-order statisti-
cal features, and 75 texture features. The shape feature 
quantified the diameter and volume of the region of 
interest (ROI) and the degree of irregularity. The first-
order statistical feature was used to create a histogram 
of pixel values and define features with respect to that 
histogram. The texture feature served to convert the 
relationships between pixel values into matrix to meas-
ure image uniformity and heterogeneity. In addition, 
the texture feature included gray-level co-occurrence 
matrix (GLCM, n = 24), gray-level dependence matrix 
(GLDM, n = 14), gray-level run length matrix (GLRLM, 
n = 16), gray-level size zone matrix (GLSZM, n = 16), 
and neighborhood gray tone difference matrix (NGTDM, 
n = 5). For the GLCM feature, the bin width was set to 
25 Hounsfield units. The radiomic features in PyRadiom-
ics were based on the Image Biomarker Standardization 
Initiative, which established the validated definitions 
and benchmarks of the features, except for four features: 

Table 1  Patient characteristics

Characteristics Total (n = 304)

Age (years: median [range]) 71 [22–93]

Gender

Male 252 (83%)

Female 52 (17%)

Histological subtype

Squamous cell carcinoma 135 (44%)

Adenocarcinoma 149 (49%)

Large cell carcinoma 7 (2%)

Not otherwise specified 13 (4%)

T stage

0 1 (0%)

1 93 (31%)

2 96 (32%)

3 49 (16%)

4 55 (18%)

N stage

0 110 (36%)

1 37 (12%)

2 103 (34%)

3 47 (15%)

M stage

0 253 (83%)

1 42 (14%)

Clinical stage

I 83 (27%)

II 25 (8%)

III 146 (48%)

IV 41 (13%)

Chemotherapy status

Yes 140 (46%)

No 164 (54%)

Survival time (days: median [range]) 598 [1–3364]

Survival status

Survival 126 (41%)

Death 178 (59%)
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shape_Maximum2DDiameterSlice, shape_Maximum2D-
DiameterColumn, shape_Maximum2DDiameterRow, 
and first-order_TotalEnergy [23].

Feature selection
The 107 radiomic features extracted from GTV were 
reduced using three independent feature selection meth-
ods. These three methods were applied to the training 
dataset in the whole dataset. This approach was used to 
determine the best feature selection methods in terms of 
prognostic performance. Then, the selection method that 
showed the best performance was used in the subgroup 
analysis.

Feature Selection 1 (FS1) selects only robust features 
using test–retest and multiple segmentation [9, 24]. The 
test–retest method uses a dataset created by Zhao et al. 
to evaluate the variability of tumor unidimensional, bidi-
mensional, and volumetric measurements on same-day 
repeat CT scans [25]. This dataset can be downloaded 
from the publicly available online Reference Image Data-
base to Evaluate Therapy Response (RIDER) test–retest 
dataset in the Cancer Imaging Archive (TCIA); this 

dataset consists of chest CT images of 32 patients that 
have been acquired twice at 15-min interval [26]. The 
test–retest method applies a radiomic analysis of tumors 
to two images of each patient and excludes features that 
significantly change over this short time as being less 
robust. The concordance correlation coefficient (CCC) 
served to evaluate the agreement between the values 
of two features, and feature selection was performed 
with CCC > 0.85 [24, 27, 28]. The multiple segmentation 
method uses a dataset created by van Baardwijk et al. to 
investigate whether auto-delineation reduces the inter-
observer variability compared to manual PET-CT–based 
GTV delineation [29]. This dataset can be downloaded 
from the publicly available online Quantitative Imaging 
Network multisite collection of lung CT data with nodule 
segmentations and RIDER data; this dataset consists of 
chest CT images of 20 patients that have been contoured 
by multiple physicians [26]. The multiple segmentation 
method uses a radiomic analysis of multiple ROIs of 
each patient and excludes features that vary significantly 
with small differences in contouring as being less robust. 
In addition, the intraclass correlation coefficient (ICC) 

Fig. 1  Overall scheme
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served to evaluate the agreement between the values of 
multiple features, and feature selection was performed 
with ICC > 0.8 [24, 30]. In this study, we used 23 radiomic 
features selected in a previous study by Kadoya et al., who 
already performed test–retest and multiple segmentation 
using the abovementioned dataset and method [24].

Feature Selection 2 (FS2) excludes one of the correlated 
features from the analysis as redundant based on the cor-
relation coefficients calculated by Pearson’s correlation 
analysis for all features [21, 31]. An absolute value of the 
correlation coefficient of 0.8 or greater was the threshold 
to indicate strong correlation between two features [31, 
32].

Feature Selection 3 (FS3) combines FS1 and FS2 [33, 
34]. After robust features are selected using test–retest 
and multiple segmentation, non-redundant features 
are selected using Pearson’s correlation analysis with a 
threshold of 0.8.

FS1, FS2, and FS3 are commonly used as feature selec-
tion methods for prognostic studies based on radiomics 
[9, 21, 33, 34]; therefore, we decided to adopt these fea-
ture selection methods in this study. MATLAB R2020a 
was used for all selection methods. Additional file  1: 
Supplementary B–D summarizes the robust and/or non-
redundant features selected by FS1, FS2, and FS3, which 
were 23, 28, and 9, respectively.

Clinical predictors
As long as clinical predictors significantly affect progno-
sis [17, 21, 35], the most representative clinical predictors 
were added to the features used in this study. We used 
a total of eight clinical predictors, namely, gender, age, 
each TNM stage, clinical stage, histological subtype, and 
chemotherapy status [36–38].

Construction of the LASSO Cox regression model
Two different models were constructed: a model of radi-
omic features alone using the selected features in FS1, 
FS2, and FS3 (radiomic model) and a model combining 
radiomic and clinical features using the selected features 
plus clinical predictors (combined model). The LASSO 
Cox regression model was used to construct the model 
to predict survival prognosis. This regression model has 
often been used for radiomic analysis [18, 39].

Depending on λ, which is the weight of the constraint 
term on the likelihood function, the LASSO operation 
shrinks all regression coefficients toward zero and zeros 
the coefficients of irrelevant features. Learning mod-
els strongly depend on λ, such that large λ simplifies 
the model, whereas small λ reduces the role of weights 
and causes overfitting. We applied a fivefold cross-
validation to prevent model simplification and overfit-
ting and to select optimal λ for the data. In the fivefold 

cross-validation, to obtain model parameters, the dataset 
used for training was randomly divided into five parts, 
four of which were used as training data, and the remain-
ing one was used as validation data. A model optimized 
for each λ for the training data was applied to the vali-
dation data, and the square error of residuals between 
the validation data and the model was computed. This 
treatment was repeated five times, and the five result-
ing square errors calculated for each λ were averaged to 
determine optimal λ for the smallest mean square error. 
Rad scores were calculated from linear combinations of 
features with nonzero coefficients at optimal λ. The rad 
score is represented by the sum of the nonzero coefficient 
features weighted by their respective coefficients (β), as 
shown in Eq. (1).

Statistical analysis
A Kaplan–Meier survival analysis served to evaluate 
the association between the rad score and survival. The 
median rad score calculated by Eq. (1) provided the 
threshold for dividing training dataset into high- and 
low-risk groups, and Kaplan–Meier curves were created 
for each risk group. Then, the log-rank test tested for sig-
nificant differences between high- and low-risk groups. 
The C-index was used to evaluate the prognostic per-
formance. The test dataset was applied to the rad score 
Eq. (1) and evaluated using Kaplan–Meier survival analy-
sis and the C-index as well as the training dataset.

Statistical analysis was performed using the R software 
3.6.1 (http://​www.R-​proje​ct.​org), where the R packages 
“survival”, “glmnet”, and “survminer” used the LASSO 
Cox regression model. Statistical significance was set at 
P < 0.05.

Subgroup analysis
The whole dataset containing 304 NSCLC patients was 
classified into histological subtypes and T stages to cre-
ate the subgroup datasets. The histological subtypes 
SCC, ADC, LCC, and NOS contained 149, 135, 7, and 13 
patients, respectively. However, the LCC and NOS sub-
types were excluded from the analysis because they con-
tained too few data to analyze. The T stages T0–T4 and 
TX contained 1, 93, 96, 49, 55, and 10 patients, respec-
tively. Again, T0 and TX stages were excluded from the 
analysis group because of too few data. For further analy-
sis by datasets with identical characteristics, the SCC and 
ADC subtypes were classified into T stages T1–T4. Alto-
gether, a total of 14 groups were included in the subgroup 
analysis. The SCC and ADC subtypes that contained all 

(1)Rad score =

n∑

i=1

βi · featurei

http://www.R-project.org
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T stages were denoted SCCall and ADCall, respectively, 
and those were further classified into T stages T1–T4 and 
denoted SCCT1, SCCT2, SCCT3, SCCT4, ADCT1, ADCT2, 
ADCT3, and ADCT4, respectively. Additional file 1: Sup-
plementary E lists the patient characteristics for each 
subgroup.

As shown in Fig. 1, a fivefold cross-validation was used 
to validate the constructed model in subgroup analysis. 
Each subgroup dataset was divided into five parts using 
stratified sampling, while maintaining a constant ratio of 
deaths to surviving patients; then, four parts were set as 
the training dataset and one part as the test dataset. Five-
fold cross-validation was used to ensure reliability of the 
model constructed with subgroup datasets with a small 
number of data. In addition, cross-validation may remove 
redundancy in the constructed model because, unlike the 
bootstrap method, it divides the dataset without allow-
ing duplication. The C-indexes of both the radiomic and 
combined models in the analysis for All data were aver-
aged for each feature selection method, and the method 
that produced the highest C-index was applied to the 
training dataset. Similar to the analysis for All data, the 
LASSO Cox regression model was used to construct radi-
omic models and combined models, and the test dataset 
was applied to each model. The Kaplan–Meier survival 
analysis and C-index were used to evaluate prognos-
tic performance of the constructed model. The C-index 
used in the evaluation is the average of C-indexes of the 
five models constructed by the fivefold cross-validation. 
To compare the results of the whole dataset and the sub-
group dataset under the same conditions, the same vali-
dation method as for the subgroup analysis was applied 
to All data.

To increase the reliability of this study, we applied the 
same subgroup analysis to a publicly available dataset 
(Lung 1, NSCLC-Radiomics) on TCIA [26]. Supplemen-
tal M indicates patient characteristics for this dataset. 
Other detailed information can be found in the paper 
by Aerts et al. [9]. Similar to the process applied to our 
dataset, after extracting 107 radiomic features from GTV 
of each patient in the Lung 1 dataset, Pearson’s correla-
tion analysis was applied to the training dataset as feature 
selection. We constructed radiomic models using only 
selected radiomic features. We also constructed com-
bined models by adding clinical features to the radiomic 
model. However, because the Lung 1 dataset did not 
contain information on the chemotherapy status, a total 
of seven clinical features were included, excluding the 
chemotherapy status. The analysis was limited to three 
groups, including All data (n = 287), SCCall (n = 82), and 
ADCall (n = 27), owing to the number of data in each sub-
group dataset. We applied exactly the same methods of 
learning and evaluation as described above.

Results
Table  2 shows the prognosis prediction performance 
when robust and/or non-redundant features are used in 
the analysis for All data. FS2 had the highest C-index of 
all selection methods in the training and test datasets for 
the radiomic model (0.64 and 0.61, respectively). Simi-
larly, FS2 had the highest C-index of all selection meth-
ods in the training and test datasets for the combined 
model (0.65 and 0.63, respectively). Therefore, FS2 with 
Pearson’s correlation analysis was applied for subgroup 
analysis.

Table 2  Prognosis prediction performance when robust and/or non-redundant features are used in the analysis for All data

FS Feature Selection, CI confidence interval

FS1: a method to select only robust features using test–retest and multiple segmentation

FS2: a method of excluding one of the correlated features from the analysis as redundant based on the correlation coefficients calculated by Pearson’s correlation 
analysis for all features

FS3: a method that combined FS1 and FS2

*P value < 0.05

Constructed model Total number of 
features

Training dataset Test dataset

C-index Hazard ratio (95%CI) C-index Hazard ratio (95%CI)

Radiomic model

FS1 23 0.63* 1.55 (1.30–1.85) 0.60 0.95 (0.82–1.10)

FS2 28 0.64* 3.96 (2.43–6.45) 0.61* 1.87 (0.88–3.99)

FS3 9 0.62* 1.84 (0.17–2.19) 0.60* 1.06 (0.01–2.08)

Combined model

FS1 + clinical 31 0.64* 2.22 (0.58–3.22) 0.62* 1.20 (0.45–2.87)

FS2 + clinical 36 0.65* 4.75 (2.99–7.56) 0.63* 2.24 (1.13–4.36)

FS3 + clinical 17 0.64* 2.62 (0.90–3.96) 0.62 0.94 (0.19–2.32)
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Table  3 shows the prognostic performance for each 
subgroup, and Additional file  1: Supplementary F–G 
show the prognostic performance of radiomic and com-
bined models in each subgroup with fivefold cross-vali-
dation. In addition, Additional file 1: Supplementary I–J 
show Kaplan–Meier curves when divided into low- and 
high-risk groups based on the rad score in the radi-
omic and combined models for each subgroup. To avoid 
complications, the case when it was closest to the mean 
C-index of the test dataset among the fivefold cross-
validation is shown. In the analysis of histological sub-
types and T stages, both the radiomic and combined 
models produced higher C-indexes than did All data 
for all subgroups (except for the SCCall group). In par-
ticular, the C-index of the test dataset in the radiomic 
model improved the most for the T1 group (0.62 ± 0.03 
for All data vs. 0.66 ± 0.04 for the T1 group), and that 
in the combined model improved the most for the T4 
group (0.64 ± 0.04 for All data vs. 0.70 ± 0.06 for the T4 
group). Kaplan–Meier curves representing the relation-
ship between the rad score and survival time also showed 
that patients in ADCall and each T stage were signifi-
cantly stratified between high and low rad score values 
compared to All data. The analysis of each T stage in the 
histological subtypes had different trends in the SCC 
and ADC groups. In the analysis of each T stage in the 
ADC group, both the radiomic and combined models 
produced higher C-indexes than the ADCall group for 
all groups. In particular, the C-index of the test dataset 
in the radiomic model increased the most for the ADCT3 

group (0.64 ± 0.02 for the ADCall group vs. 0.81 ± 0.03 
for the ADCT3 group), and that in the combined model 
increased the most for the ADCT1 group (0.69 ± 0.04 for 
the ADCall group vs. 0.83 ± 0.04 for the ADCT1 group). 
Conversely, in the analysis of each T stage in the SCC 
group, both the radiomic and combined models pro-
duced considerably lower C-indexes in the test data-
set of the SCCT1, SCCT2, and SCCT3 groups than of the 
SCCall group. In addition, all T stage groups in SCC failed 
to stratify high and low rad score values in the Kaplan–
Meier curves. In the analysis of all subgroups, the com-
bined model showed a slightly or moderately higher 
C-index than did the radiomic model (Table 3).

Figure  2 shows representative cases to illustrate the 
difference in heterogeneity between ADC and SCC. As 
an example, we show CT images of GTV in two cases 
selected from the low- and high-risk groups of the 
ADCT1 and SCCT1 test datasets that showed the closest 
values to the mean C-index among the fivefold cross-vali-
dation. The abovementioned image shows the largest ROI 
slice in GTV. For the low-risk groups, survival time for 
the two cases was 2606 and 1978 days in the SCCT1 group 
and 2623 and 1667  days in the ADCT1 group. For the 
high-risk group, survival time was 193 and 86 days in the 
SCCT1 group and 142 and 74 days in the ADCT1 group. 
We also show the value of the rad score in the combined 
model for each subgroup. In both the SCCT1 and ADCT1 
groups, the rad score equation includes the texture fea-
ture regarding uniformity. The abovementioned images 
show that, in the ADCT1 group, homogeneity is constant 

Table 3  Prognosis prediction performance for each subgroup

SCC squamous cell carcinoma, ADC adenocarcinoma, sd standard deviation

*P value < 0.05

Subgroup Radiomic model Combined model

Training, mean ± sd Test, mean ± sd Training, mean ± sd Test, mean ± sd

All data (n = 304) 0.63 ± 0.01* 0.62 ± 0.03* 0.65 ± 0.01* 0.64 ± 0.04*

SCCall (n = 135) 0.60 ± 0.03 0.59 ± 0.03 0.62 ± 0.04 0.60 ± 0.05

ADCall (n = 149) 0.66 ± 0.02* 0.64 ± 0.02* 0.70 ± 0.02* 0.69 ± 0.04*

T1 (n = 93) 0.66 ± 0.03* 0.66 ± 0.04* 0.70 ± 0.02* 0.68 ± 0.03*

T2 (n = 96) 0.64 ± 0.03* 0.63 ± 0.05* 0.66 ± 0.02* 0.65 ± 0.02*

T3 (n = 49) 0.68 ± 0.02* 0.65 ± 0.03* 0.68 ± 0.04* 0.66 ± 0.06*

T4 (n = 55) 0.65 ± 0.02* 0.63 ± 0.04* 0.72 ± 0.02* 0.70 ± 0.06*

SCCT1 (n = 40) 0.59 ± 0.05 0.57 ± 0.05 0.61 ± 0.03 0.58 ± 0.04

SCCT2 (n = 41) 0.57 ± 0.04 0.55 ± 0.04 0.61 ± 0.03 0.59 ± 0.05

SCCT3 (n = 26) 0.69 ± 0.05 0.58 ± 0.04 0.71 ± 0.08 0.59 ± 0.04

SCCT4 (n = 25) 0.71 ± 0.02 0.71 ± 0.04 0.74 ± 0.05* 0.71 ± 0.03

ADCT1 (n = 46) 0.78 ± 0.02* 0.75 ± 0.05* 0.84 ± 0.03* 0.83 ± 0.04*

ADCT2 (n = 48) 0.70 ± 0.02* 0.68 ± 0.05* 0.72 ± 0.01* 0.72 ± 0.05*

ADCT3 (n = 20) 0.83 ± 0.04* 0.81 ± 0.03* 0.83 ± 0.04* 0.81 ± 0.02*

ADCT4 (n = 27) 0.71 ± 0.05* 0.70 ± 0.05* 0.75 ± 0.03* 0.73 ± 0.02*
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in the low-risk groups, whereas homogeneity is sparse in 
the high-risk groups. The rad score value is also below 
the median (3.98) in the low-risk groups and above the 
median in the high-risk groups. Conversely, in the SCCT1 
group, the rad score value is below the median (0.17), 
despite the heterogeneity observed in the images in the 
high-risk group, which indicates a discrepancy between 
the images and radiomic features.

Similar results were observed in the subgroup analy-
sis using the Lung 1 dataset (Additional file  1: Supple-
mentary N–P). Compared to All data, the test datasets 
of both the radiomic and combined models produced a 
higher C-index for the ADCall group and a lower C-index 
for the SCCall group (Additional file 1: Supplementary N). 
The Kaplan–Meier curves, which show the case that was 
closest to the mean C-index of the test dataset among the 
fivefold cross-validation, showed that the ADCall group 
was significantly stratified between high and low rad 

score values, whereas the SCCall group was not (Addi-
tional file  1: Supplementary O). In addition, all three 
subgroups showed higher prognostic performance in the 
combined model than in the radiomic model.

Discussion
Prognostic analysis of NSCLC patients using radiomics 
used mixed data with various subgroups [17–19]. In this 
study, we investigated the radiomics-based survival pre-
diction for subgroup datasets with specific histological 
subtypes and T stages of NSCLC patients. The analysis 
of All data did not indicate high prognostic performance. 
However, the analysis of subgroups indicated better 
prognostic performance than did the analysis of All data. 
In particular, the analysis of each T stage in the ADC 
group produced a significant improvement in prognostic 
performance. This result suggests that the analysis of the 

Fig. 2  Representative cases to illustrate the difference in heterogeneity between ADC and SCC
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NSCLC dataset by specific histological subtypes and T 
stages may significantly improve survival prediction.

This study applied three independent feature selec-
tion methods to All data to determine the best method 
in terms of prognostic performance. In the test dataset 
for both the radiomic and combined models, the highest 
prognostic performance is obtained when using FS2. Sun 
et al. [40] showed that Pearson’s feature selection method 
(i.e., similar to FS2 in our method) in the Cox model pro-
duced the second highest C-index among the five selec-
tion methods. In addition, Leger et al. [41] also showed 
that the same Pearson’s feature selection method in the 
Cox model produced the highest C-index among the 12 
selection methods. These results are consistent with our 
result (i.e., FS2 had the highest C-index). Because the Cox 
model directly predicts the time to event with a simple 
regression equation, this model often produced overfit-
ting [41]. Pearson’s feature selection method is one of the 
filter-based methods, which can minimize overfitting by 
removing redundant feature interactions with high com-
putational efficiency [42]. On the basis of these charac-
teristics of the Cox model and Pearson’s feature selection 
method, it can be explained that this selection method 
was the most useful method for prognosis prediction 
with the Cox model.

Previous studies, which validated the prediction perfor-
mance by applying each subgroup dataset to the model 
trained with the whole dataset, have shown an improve-
ment in prediction performance compared to applying 
the whole dataset [21, 43]. However, these studies have 
not constructed training models using subgroup data-
sets and performed only minimal subgroup analysis. Our 
study is the first study to construct both All data and sub-
group models to perform prognostic analysis of NSCLC 
patients. The obtained results showed an improvement 
in prognostic performance in many subgroups (except 
for the SCCall, SCCT1, SCCT2, and SCCT3 groups) com-
pared to All data. In particular, the best prognostic per-
formance was achieved in the ADCT1 and ADCT3 groups 
(0.83 ± 0.04 and 0.81 ± 0.02, respectively). These are 
based on our hypothesis that high prognostic perfor-
mance is produced by eliminating differences in trends of 
radiomic features among subgroups with different prog-
nosis and heterogeneity. Therefore, the approach used in 
this study, in which the training model was constructed 
for each subgroup, may accurately reflect the characteris-
tics of each group as a radiomic feature and may improve 
the performance of prognostic predictions.

Compared to that in All data, there was an improve-
ment in prognostic performance in the ADC-related 
group, but there was a decrease in prognostic perfor-
mance in some SCC-related groups. Two reasons may 
explain the degraded prognostic performance from the 

SCC-related groups. First, ADC occurs at a different site 
than does SCC. In general, ADC most commonly occurs 
at the peripheral of lung parenchyma. Conversely, SCC 
consists of mostly hilar-type lung cancers near the hilar 
area. In fact, the data used herein indicated that tumors 
occurred in the pulmonary hilar area in 22% of the SCC 
group, but in 8% of the ADC group. If a tumor is adja-
cent to the hilar area (i.e., contacts the main bronchus 
near the bronchial area), its boundaries may be difficult 
to determine when contouring. Second, there is a differ-
ence in the heterogeneity of ADC and SCC. Many studies 
have already reported that the heterogeneity difference 
between ADC and SCC is accurately represented as radi-
omic features [13, 14, 44]. However, this heterogeneity 
difference by histological subtype may have a significant 
impact on prognostic prediction. In other words, in the 
ADC-related group, the radiomic features may properly 
reflect tumor heterogeneity on the images, whereas in 
the SCC-related group, they do not, and may not have a 
clear difference in the heterogeneity separating the low- 
and high-risk groups.

Some studies have shown the potential clinical util-
ity of the prognostic models based on radiomics analysis 
[9, 45]. This study aimed to achieve sufficient prognostic 
performance for clinical utility using an approach that 
focused on the prognostic analysis in subgroups with 
identical characteristics. Our results show relatively 
high prognostic performance in ADC-related subgroup 
datasets, which may bring us closer to potential clinical 
applications. However, there is a problem that must be 
addressed before future clinical applications are possi-
ble, i.e., the advent of therapies using immune checkpoint 
inhibitors and molecular targeted drugs. These therapies 
have considerably improved the prognosis of lung can-
cer patients [46]; thus, it is necessary to develop a prog-
nostic model that accounts for these factors. Recently, 
high association with radiomics and potential for high 
prognosis prediction has been reported in a dataset of 
patients treated with these therapies [47–49]. A future 
challenge is to reveal whether the model can be adapted 
to data from patients who have been treated with the 
abovementioned treatments.

Finally, this study has several limitations. First, it 
considers the type of subgroups analyzed. Although 
excluded from this analysis owing to the considerable 
variation in the number of data between groups, the 
prognostic performance can be improved by unifying 
clinical stages that treatments and heterogeneity greatly 
varied between groups. Second, this study is based 
on a relatively small number of patients. Because the 
number of data for some subgroups is quite small, the 
results obtained herein require further validation using 
a study based on more data. Third, it considers the 
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issue of contouring. Manual segmentation with a single 
oncologist was used in this study. Previous studies have 
reported that semi-automatic segmentation was useful 
owing to high reproducibility and reliability, although 
this method may have software dependence [50, 51].

Conclusions
This study investigated the radiomics-based survival 
prediction for subgroup datasets with specific histo-
logical subtypes and T stages of NSCLC patients. Our 
results showed that the models based on ADC-related 
groups and each T stage group had a higher C-index 
than had the models based on All data. Therefore, 
the prognostic analysis of specific subgroups can be 
expected to significantly improve the performance of 
prognostics.
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