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Despite the wealth of single-cell multi-omics data, it remains challenging to predict the consequences of novel 
genetic and chemical perturbations in the human body. It requires knowledge of molecular interactions at 
all biological levels, encompassing disease models and humans. Current machine learning methods primarily 
establish statistical correlations between genotypes and phenotypes but struggle to identify physiologically 
significant causal factors, limiting their predictive power. Key challenges in predictive modeling include scarcity 
of labeled data, generalization across different domains, and disentangling causation from correlation. In light of 
recent advances in multi-omics data integration, we propose a new artificial intelligence (AI)-powered biology-

inspired multi-scale modeling framework to tackle these issues. This framework will integrate multi-omics 
data across biological levels, organism hierarchies, and species to predict genotype-environment-phenotype 
relationships under various conditions. AI models inspired by biology may identify novel molecular targets, 
biomarkers, pharmaceutical agents, and personalized medicines for presently unmet medical needs.
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1. Introduction

A fundamental challenge in biology is predicting phenotypes, con-

sidering the complex interactions between genotypes and environmen-

tal influences and perturbations [1]. Organismal phenotypes encom-

pass observable physical characteristics (e.g., eye color), behavioral 
patterns (e.g., memory), physiological functions (e.g., blood pressure), 
and clinical manifestations (e.g., pain). However, an organism’s phe-

notype does not directly emerge from its genotype. Several interme-

diate phenotypes, known as endophenotypes [2], delineate molecular 
attributes at an intermediate level of organization, complexity, or scale 
between the molecular/genetic level and the organismal phenotype. En-

dophenotypes typically include RNA expression, protein expression and 
post-translational modifications, metabolite concentrations, and similar 
molecular markers. To establish linkages between genotype, environ-

ment, and phenotype, it is essential to utilize endophenotypes as a means 
of connecting an organism’s genetic foundation to its observable traits.

The latest advances in sequencing and high-throughput technologies 
have generated vast amounts of multi-omics data, including genomics, 
epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, 
glycomics, cytomics/cellomics, microbiomics, metagenomics, radiom-

ics, interactomics, and chemical genomics [3]. With the exception of 
genomics and epigenomics data that characterize genotypes, and mi-

crobiomics, metagenomics, and chemical genomics data that provide 
environmental information, most omics data reveals the molecular land-

scape of distinct endophenotypes at various levels. These omics data 
are crucial in linking genetic information to phenotypic outcomes and 
predicting phenotype responses to environments. Ultimately, endophe-

notypes can serve as biomarkers and offer specific targets linked to 
disease causes, thereby facilitating the development of effective and safe 
therapeutic interventions.

While each omics type provides a unique perspective on molecular 
processes within cells, tissues, or organisms, it is essential to integrate 
all layers of omics data to fully comprehend the complexity and in-

terdependencies of biological systems [4]. First, rooted in the central 
dogma of molecular biology, it is necessary to connect multiple lev-

els of omics data—from DNAs and RNAs to proteins and phenotypic 
outcomes—to understand how genetic information is converted into 
functional molecules and ultimately, phenotypes. Second, integrating 
data across multiple omics levels enables the identification of key reg-

ulatory elements that act as critical control points in cellular pathways, 
revealing the complex interactions and feedback loops governing cel-

lular processes. Finally, individual omics datasets provide only partial 
information about a biological system. Their integration will enhance 
the predictive power of computational models aimed at establishing con-

nections between genetics and phenotype.

The human body comprises a diverse array of cell types. These cells 
are organized in a hierarchical structure: cells combine to form tissues, 
tissues form organs, and organs collaborate to create a functional or-

ganism. Cells communicate through chemical signals such as hormones 
and neurotransmitters. Recent advances in single-cell and spatial omics 
techniques now make it possible to observe and quantify heterogeneous 
cellular processes and cell-cell communications across an organism’s hi-

erarchical levels at single-cell resolution [5–8]. Spatial single-cell omics 
data will be crucial in linking molecular events to organism phenotypes 
[9–12]. Therefore, it is critical to integrate omics data across biological 
scales—from cell to tissue to organ to organism.

Beyond integrating omics data across biological levels and organis-

mal scales, it is imperative to also integrate data across different species 
[13–15]. Omics studies in model systems are essential for advancing bi-

ological understanding. Model organisms have long been instrumental 
in investigating gene functions, regulatory mechanisms, cellular pro-

cesses, tissue formation, organ development, and genetic factors influ-

encing complex behaviors. Genetically engineered models are invalu-

able tools for understanding molecular disease mechanisms, evaluating 
potential treatments, and assessing therapeutic interventions’ safety and 
efficacy. Recent advances in functional genomics, such as CRISPR-Cas9 
and perturb-seq, now enable large-scale assessments of gene functions 
and dissection of gene regulatory networks using model organisms. As 
multi-omics data from model organisms becomes increasingly accessi-

ble, innovative methods are needed to transfer this knowledge to human 
contexts, thereby advancing fundamental and translational biomedical 
sciences.

Cross-level, cross-scale, and cross-species multi-omics data inte-

gration, along with predictive modeling of genotype-environment-

phenotype relationships, will not only generate new insights into 
life’s fundamental principles but also drive the identification of novel 
molecular targets, biomarkers, pharmaceutical agents, and personalized 
medicines for unmet medical needs. The target-based drug discov-

ery and development approach, which emerged following the human 
genome revolution and now dominates the pharmaceutical industry, is 
widely recognized as time-consuming, expensive, and often unproduc-

tive. A recent survey indicates that over 90% of approved medications 
originated from phenotype-based drug discovery and development [16]. 
Perturbation functional omics profiling provides a quantitative, mecha-

nistic, and high-throughput phenotype readout for compound screening, 
thereby significantly enhancing the potential of phenotype-driven drug 
discovery [17].

In summary, elucidating the genetic and molecular foundations of 
complex human traits and disorders, and predicting organismal pheno-

types under diverse genotypic and environmental interactions, requires 
integrating multi-omics data across modalities, biological levels, and 
species (Fig. 1). This review paper first summarizes available pertur-

bation omics data and examines recent machine learning advances, 
with a focus on deep learning techniques for multi-omics data inte-

gration. Due to the exponential growth of deep learning literature, the 
paper coverage is necessarily selective but representative of current 
field trends. The methodology for paper selection is detailed in the sup-

plemental material. The paper then critically examines limitations in 
current methodologies and proposes two solutions to address existing 
challenges: biology-inspired, AI-driven framework for multi-omics in-

tegration and multi-scale predictive modeling. This framework aims to 
predict human phenotypic responses to unprecedented perturbations. 
By bridging computational and biological approaches, it holds promise 
for illuminating fundamental life principles and discovering new molec-

ular targets, biomarkers, pharmacological agents, and personalized ther-

apies for currently intractable diseases.

2. Data resources to support the predictive modeling

Predictive modeling of phenotypes from genotypes under perturba-

tions needs labeled data. Recent advances in perturbation omics tech-

niques have generated extensive datasets by deliberately manipulating 
biological systems using methods like CRISPR gene editing, RNA inter-

ference (RNAi), and small molecule treatments. These interventions are 
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Table 1
Perturbation data resource, *linked data resource.

Source Perturbation Type Molecular Profiling Assay Readout Datasets Included

TCGA [18] Drug Genomic, transcriptomic, epigenomic, 
proteomic

Clinical and survival data 33 tissue types

LINCS Data Portal 
[19,20]

Drug, CRISPR-Cas9, 
ShRNA

Perturbed transcriptomic, proteomic Transcriptomic, proteomic, kinase bind-

ing, cell viability, cell growth inhibition, 
apoptosis, morphology

LINCS 1000, LINCS proteomic, ChEMBL*, 
Tox21*, Cell Painting morphological 
profiling assay*

DepMap [21] CRISPR-Cas9, RNAi 
screen, drug

Genomic, transcriptomic, proteomic Perturbed genomic, transcriptomic, pro-

teomic, drug sensitivity, drug response

CCLE, GDSC, CTRP

scPerturb [28] CRISPR-cas9, 
CRISPRi, CRISPRa, 
TCR stim, 
cytokines, drug

Single-cell RNA sequencing 
(scRNA-seq), proteomic, epigenomic

Perturbed scRNA-seq, proteomic, chro-

matin accessibility

Sci-plex, 44 public single-cell 
perturbation datasets

PharmacoDB [30] Drug Genomic, transcriptomic, proteomic Drug sensitivity, drug response CCLE, GDSC, NCI-60, PRISM, FIMM, 
GTRP, GRAY, gCSI

ProteomicsDB [31] Drug Proteomics, transcriptomics Posttranslational modifications (PTMs), 
perturbed proteomics, phenomics

DecryptE, DecryptM, GeneCards*, 
UniProt*, OmniPathDB* and Gene 
Information eXtension (GIX)*

Fig. 1. Illustration of the three axes of multi-omics data integration: (1) Cross-

level Integration, representing the integration of omics data across molecu-

lar layers (DNA, RNA, protein, metabolites, and networks) to enable model-

ing molecular interplays; (2) Cross-species Integration, capturing understand-

ings across model organisms (e.g., C. elegans, mouse, and human) to improve 
translational research; and (3) Multi-scale Integration, spanning molecular to 
population-level data, across scales from single molecules to whole organisms 
and populations to connect molecular phenotypes to organismal phenotypes.

then systematically measured using various molecular profiling tech-

niques, which provide detailed ‘readouts’ or labels that capture the 
system’s response to each perturbation. Although these data are highly 
biased to certain biological conditions (cell types, diseases, etc.) and per-

turbation types, they are the starting point for machine learning. Several 
representative data sets are listed in Table 1 and summarized below.

TCGA (The Cancer Genome Atlas) [18] is a comprehensive resource 
that has molecularly characterized thousands of primary cancers and 
matched normal samples across diverse cancer types. By integrating data 
on genetic mutations, gene expression, methylation, and protein pro-

files, TCGA provides a robust framework for understanding the molecu-

lar mechanisms of cancer, aiding in the identification of biomarkers and 
therapeutic targets.

LINCS (Library of Integrated Network-based Cellular Signatures), 
part of the Connectivity Map (CMAP) project, aims to elucidate cellular 
responses to various perturbations, including small molecule treatments 
and genetic modifications. Using high-throughput techniques, LINCS 
generates extensive datasets on gene expression and protein levels. The 
LINCS Data Portal provides access to data from multiple sources [19,20].

DepMap (Dependency Map) [21] is a pioneering initiative that sys-

tematically identifies the genetic and chemical dependencies of can-

cer cells. Through high-throughput CRISPR-Cas9, RNAi, and chemical 
screens, it maps essential genes and pathways critical for cancer cell 
survival. This comprehensive resource integrates data from several plat-

forms, including the Cancer Cell Line Encyclopedia (CCLE) [22,23], 
Genomics of Drug Sensitivity in Cancer (GDSC) [24,25], and the Cancer 
Therapeutics Response Portal (CTRP) [26,27].

scPerturb [28] focuses on single-cell perturbation studies, providing 
detailed insights into how individual cells respond to genetic modifica-

tions and other perturbations. By employing advanced single-cell RNA 
sequencing techniques, scPerturb captures the heterogeneity and dy-

namic responses of single cells, enabling researchers to unravel gene 
functions, regulatory networks, and the impact of genetic changes at 
unprecedented resolution. It offers an integrative dataset from 44 pub-

lished works, incorporating various methods and Sci-Plex [29].

PharmacoDB [30] is an integrative database that consolidates phar-

macogenomic data from multiple high-throughput drug screening stud-

ies. It provides a platform for exploring drug responses across diverse 
cancer cell lines, facilitating the identification of drug efficacy, resis-

tance mechanisms, and potential biomarkers. PharmacoDB supports per-

sonalized medicine by linking molecular profiles with drug sensitivity 
data, advancing the development of tailored therapeutic strategies.

ProteomicsDB [31] is a comprehensive database that integrates hu-

man proteomic data from numerous high-throughput proteomics exper-

iments. It provides detailed information on protein expression, post-

translational modifications (PTMs), and protein interactions. The plat-

form also highlights recent studies on decrypting the molecular basis 
of cellular drug phenotypes (DecryptE [32]) and analyzing drug actions 
and protein modifications through dose- and time-resolved proteomics 
(DecryptM [33]).

3. State-of-the-art of machine learning methods for multi-omics 
data integration and predictive modeling

3.1. Unsupervised learning

One of the major technical challenges in multi-omics data integration 
is handling data distribution shifts. These shifts primarily arise from two 
sources: technical confounders, such as batch effects, and biological con-

founders (e.g., sex, age, disease state, etc.). Traditional statistical meth-

ods have laid the foundation for multi-omics data integration. These 
methods include a variety of techniques, such as correlation-based anal-

ysis (e.g., BindSC [59], Seurat v3 [60], Scanorama [61], and MaxFuse 
[62]), matrix factorization (e.g., iNMF [63] and LIGER [64]), Bayesian-

based methods (e.g., MOFA + [65]), nearest neighbor-based approaches 
(e.g., fastMNN [66] and Seurat v4 [67]), and dictionary learning (e.g., 
Seurat v5 [68]).

Another traditional yet powerful class of approaches is kernel meth-

ods, which project data into high-dimensional feature spaces to un-

cover complex, non-linear relationships. For instance, multi-kernel lin-

ear mixed models with adaptive lasso (MKpLMM) have demonstrated 
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Table 2
Representative state-of-the-art computational methods for multi-omics data integration toward predictive modeling of genotype-environment-phenotype relation-

ships.

Learning Methods Representative 
Papers

Modality Notes

Unsupervised Autoencoder ScVI [34] scRNA-seq Effective in removing batch effects; however, it is constrained to analyzing 
only single modality data

scANVI [35] scRNA-seq Facilitates label transfer with uncertainty measures in semi-supervised 
learning; limited to a single modality

TotalVI [36] scRNA-seq, surface protein Learns a joint probabilistic representation of both RNA and proteins; but 
requires paired measurements and does not align domains across different 
experiments

Cobolt [37] mRNA-seq, scRNA-seq, 
ATAC-seq, scATAC-seq

Offers guided multimodal integration for paired RNA-seq and ATAC-seq 
data, but the assumptions of a multinomial distribution might ignore the 
biological context of different modalities

MultiVI [38] scRNA-seq, scATAC-seq, 
surface protein

Guides multimodal integration accounting for modality-specific noise; uses 
a symmetric approach for joint representation, though affected by data 
sparsity

scMVP [39] scRNA-seq, scATAC-seq Provides non-symmetric multimodal integration with multi-head attention 
and cycle-GAN; but requires paired sample data

GLUE [40] scRNA-seq, scATAC-seq Triple-omics integration while simultaneously inferring regulatory 
interactions; adversarial training may lack stability

Biolord [41] scRNA-seq, drug, dosage, 
cell line

Encodes cellular identity attributes separately for better representation; 
needs exploration of unknown attributes to improve generalizability

ChemCPA [42] Bulk & scRNA-seq, drug, 
dosage

Incorporates compound structure and bulk RNA-seq data with adversarial 
training to adapt to single-cell data; effective for unseen compounds but 
needs evaluation on unseen cell lines

Transformer scGPT [43] scRNA-seq, scATAC-seq, 
surface protein, Perturb-seq

Foundation model trained on over 10M cells, capable of learning 
cell-specific information; requires paired data and limited reliability in 
zero-shot settings

GeneCompass 
[14]

Cross-species, scRNA-seq, 
perturb-seq, LINCS1000

Foundation model trained over 12OM cells cross-species incorporating prior 
knowledge; confined to transcriptomic data

Prophet [44] Cell state, treatment, 
phenotypic readout

Strong generalizability to unseen cell states and interventions; limited to 
non-true OOD scenarios, fixed representations risk error propagation

SATURN [45] Cross-species, scRNA-seq, 
protein sequence

Enables cross-species analysis by merging protein language models with 
scRNA data; challenges exist due to the absence of direct orthologs and it 
requires paired data

Other techniques scCLIP [46] scRNA-seq, scATAC-seq Employs contrastive learning for multimodal single-cell data; paired sample 
data is mandatory

MatchCLOT 
[47]

scRNA-seq, scATAC-seq, 
surface protein abundance

Combines contrastive learning with optimal transport; reliant on paired 
sample data

Supervised Multimodal Yang et al. 
[48]

Image, RNA-seq, ATAC-seq, 
Hi-c

Integrates various data types for cancer models; each model is specific to 
one type of cancer and requires paired data

Faisal et al. 
[49]

H&E WSIs and molecular 
profile features

Correlates histopathological images with molecular profiles; demands 
paired data and is specific to individual cancer models

DSIR [50] DNA methylation, mRNA 
and miRNA expression

Utilizes a similarity matrix for cancer subtyping; dependent on paired data 
and tailored to individual cancers

DLSF [51] DNA methylation, mRNA 
and miRNA expression

Applies a cycle autoencoder to extract a consistent sample manifold at the 
multi-omics level; also requires paired data for each cancer model

MOMA [52] DNA methylation, mRNA 
and miRNA expression

Processes genes and methylation data using a geometric approach; models 
need to be individually trained for each cancer type and paired data is 
needed

Knowledge graph 
and other 
techniques

Lee et al. [53] Bulk & scRNA-seq Develops patient-specific cell-cell communication networks to predict 
immune checkpoint inhibitors efficacy and uncover key pathways; yet, it 
simplifies complex network relationships

BioBridge [54] Protein, molecule, disease, 
biological process, 
molecular function, and 
cellular component

Leverages knowledge graphs to transition between unimodal foundations 
without fine-tuning; lacks quantitative evidence for molecular generation 
tasks

One for all 
[55]

Literature category 
description, molecule 
property description, 
relation type description

Constructs text-attributed graphs for diverse cross-domain associations; it 
does not meet the state-of-the-art performance for individual tasks

GEARS [56] Gene-gene interaction, 
scRNA-seq

Integrates GNN with a gene-gene interaction knowledge graph; limited to 
the same cell type and experimental condition, with confounding factors 
from combinatorial perturbational data

TxGNN [57] Biological process, protein, 
disease, phenotype, 
anatomy, molecular 
function, drug, cellular 
component, pathway, 
exposure

Identifies therapeutic candidates in a zero-shot setting and includes 
expert-validated model interpretation; noisy and incomplete medical 
knowledge graphs limit predictive power, and contradictory relationships 
between entities are overlooked

PinnacleAI 
[58]

Protein-protein interaction, 
scRNA across various cell 
types and tissues

Generates contextualized representations across protein, cell type, and 
tissue hierarchies with multi-level attention mechanisms; limited to cell 
types or tissues in the training set, making it less effective for predicting 
diseases not represented in healthy subjects
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their efficacy in high-dimensional multi-omics prediction tasks. These 
methods can identify predictive regions as well as predictive layers of 
omics data through a data-driven approach [69]. Kernel fusion tech-

niques, which combine multiple omics layers using kernel-based repre-

sentations, have proven effective in tasks such as disease subtype clas-

sification [70]. Additionally, pathway-induced multiple kernel learning 
(PIMKL) leverages biological pathways to construct specialized kernels 
for robust predictive modeling [71]. Comprehensive reviews further 
highlight the versatility and adaptability of kernel methods in address-

ing challenges associated with omics data integration [72].

Our focus, however, is on deep representation learning methods, 
which have shown great promise in addressing these challenges (Ta-

ble 2). Representative techniques include autoencoders, transformers, 
and contrastive learning. The strength of these methods lies in their 
ability to operate without requiring labeled phenotypic data, which is 
often scarce and infeasible to obtain.

3.1.1. Autoencoder

Deep generative models, particularly Variational Autoencoders 
(VAEs), are at the forefront of analyzing complex, high-dimensional 
single-cell sequencing data. VAEs employ an encoder to interpret input 
data and a decoder to reconstruct it, learning a latent distribution. The 
objective that it optimizes is to mirror the input while minimizing the 
Kullback-Leibler divergence between the latent embedding’s prior and 
posterior distributions.

scVI [34] models gene expression in scRNA-seq data using VAE with 
a zero-inflated negative binomial distribution, conditioned on batch an-

notations and two unobserved variables: a cell-specific scaling factor 
and a latent biological variable. Neural networks map these latent vari-

ables to the distribution parameters, producing batch-corrected, normal-

ized transcript estimates for differential expression and imputation. A 
separate neural network, trained via variational inference and stochastic 
optimization, approximates the posterior distribution of latent variables, 
ensuring scalable and accurate analysis of single-cell RNA-seq data.

The same group further developed scANVI [35], which integrates 
semi-supervised learning with cell type annotations. It can be useful 
for transfer labels while measuring uncertainty, especially when dealing 
with complex label structures such as hierarchical cell types. However, 
both models are limited on RNA-seq data as a single modality.

TotalVI [36] took advantage of the CITE-seq technique, which can si-
multaneously measure the abundance of the proteins on the cell surface, 
to provide the opportunity for multifaceted analysis of both RNA-seq 
and the functional information in proteins. It uses VAEs to learn a joint 
probabilistic representation of the paired measurements that counts for 
batch effects for both modalities. The RNA modeling strategy is simi-

lar to scVI [34]. The protein modeling explicitly has modality-specific 
technical factors such as a protein background, which enable a denoised 
view of data. However this method requires paired measured samples, 
nor there is domain alignment consideration.

More recent tool Cobolt [37] introduces a symmetric multi-modal 
VAE network for multi-omics data integration with a Product of Experts 
model (PoE) model [73]. PoE combines the variational posteriors of the 
multiple modalities (the experts) by taking their product and normal-

izing the result. It was trained on paired multi-omics data to guide the 
integration of unpaired data, resulting in a joint representation of single-

cell RNA-seq and ATAC-seq datasets, which can be beneficial for various 
downstream tasks. Despite its guidance on the unpaired datasets, this 
method assumed a multinomial distribution for both modalities which 
may cause potential information loss.

In contrast, MultiVI [38] employs a modality-specific noise system 
suited to both gene expression and chromatin accessibility, with neg-

ative binomial distribution and Bernoulli distribution respectively. In 
contrast to Cobolt’s PoE technique, MultiVI utilizes a distributional 
mean and penalization strategy for a more optimized integration of la-

tent embeddings. Moreover, its ability to incorporate cell surface protein 

abundance broadens its scope, allowing for a richer understanding of 
cellular properties.

The strengths of both MultiVI and Cobolt, which implemented sym-

metric multimodal VAE for joint modality representations, are tem-

pered by the challenges of extreme sparsity and random noise in the 
datasets. These factors can confound the biological variance, posing 
obstacles to downstream analysis and scalability of the model. Ad-

dressing this, scMVP [39], employs a non-symmetric framework that 
enables the construction of a unified latent space for scRNA-seq and 
scATAC-seq data. This is achieved via a clustering consistency-enforced 
multi-view VAE, which is further enhanced by multi-head self-attention 
mechanisms and a cycle-GAN module, thereby increasing the robustness 
across both modalities. However, it again requires simultaneous multi-

modality measurements with individual cells to function effectively.

To address the challenge of information loss when integrating data 
across different modalities, GLUE [40] employs a modality-specific 
graph VAE to refine the feature transformation process by modeling reg-

ulatory relationships between chromatin regions and genes. It learns not 
only local but also global information. With a scalable adversarial align-

ment, GLUE also enables the integration of three modalities such as gene 
expression, chromatin accessibility, and DNA methylations.

Biolord [41] is a deep generative method designed to predict cellular 
responses to unseen drugs and genetic perturbations. It uses an autoen-

coder to separately encode multiple attributes of cellular identity, along 
with a single encoding for unknown attributes. This setup defines a de-

composed latent space, serving as the input for the generative module to 
provide measurement predictions. The authors claim this design disen-

tangles the representation with respect to known attributes. However, 
further exploration of the representation of unknown attributes would 
enhance the model’s generalizability.

Hetzel et al. introduced ChemCPA [42] a model that incorporates 
knowledge about compound structures and transfers bulk RNA-seq data 
into both identical and different gene sets between source (bulk) and tar-

get (single-cell) datasets. It uses an encoder-decoder architecture with 
adversarial training, allowing the model to disentangle representations 
of various attributes and study the effects on specific sources. Although 
the model was evaluated on unseen compounds, it would be more in-

teresting if it could also work on unseen cell lines.

3.1.2. Transformer

In research areas such as natural language processing (NLP) and com-

puter vision (CV), Transformer as highlighted by the attention mecha-

nism has gained significant attention in recent years, as evidenced by its 
successful deployment in foundation models. Pioneering models such 
as BERT [74], GPT [75,76], PaLM [77,78], and LLaMA [79] have set 
benchmarks in NLP as well as DALL-E [80] in CV have made significant 
contributions to various downstream tasks. In a biological context, sim-

ilar to how words construct a sentence, genes construct cells. Analogous 
to how natural language acts as a foundational layer for interpreting 
human behavior, the transcriptome similarly serves as a fundamental 
layer for unraveling the intricacies of gene regulatory mechanisms in 
biology. Studies have utilized single-cell transcriptomic data to con-

struct pre-trained foundation models, such as scGPT [43], Genefomer 
[81] and scFoundation [82]. The representative work scGPT constructed 
the first foundation model through pretraining on over 10 million cells 
with a 12-layered transformer architecture. It also supports multiple 
omics data integration from paired data sources. The utilization of the 
self-attention approach over genes enables the encoding of gene-gene 
interaction, and the cell conditional tokenization also allows the model 
to learn cell-specific information, such as different batches and sequenc-

ing modalities. However, this technique is constrained by paired data, 
and exhibits limited reliability in zero-shot settings [83].

While foundation models have achieved notable successes in a va-

riety of downstream tasks, their potential has not yet been leveraged 
for cross-species data integration. However, the conserved nature of 
gene regulatory mechanisms across different species presents an out-
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standing opportunity to delve into the complexities of gene regulation 
through such integrative analysis. Bridging the cross-species analytical 
gap, GeneCompass [14] emerges as an innovative foundation model, 
extensively pre-trained on a vast dataset comprising over 120 million 
single-cell transcriptomes from human and mouse origins. It integrates 
gene IDs, expression values, and prior knowledge together as gene to-

kens, implementing a 12-layer transformer model for encoding. It also 
facilitates a variety of downstream tasks through supervised learning, 
encompassing gene regulatory network elucidation, predictions of drug 
effects, gene dosage implications, and cellular responses to perturba-

tions. However, GeneCompass is limited to transcriptomics data.

The same group recently developed another method, Prophet [44], 
for cellular phenotype prediction, which integrates cell states, treat-

ments, and phenotypic readouts. Each component is tokenized into a 
joint embedding space using different feature encoding strategies, and a 
transformer with a regression head is applied to learn the relationships 
between these components. While the authors demonstrated the model’s 
generalizability to unseen cell states and interventions, it does not fully 
address an out-of-distribution (OOD) scenario where the distribution be-

tween training and testing data is significantly different. Additionally, 
the representations of cell states and interventions are fixed, meaning 
potential errors could propagate into the training process and distort the 
predictions.

3.1.3. Other techniques (contrastive learning etc.)
SATURN [45] stands out as the first model that combines protein 

embeddings, generated using large protein language model ESM2 [84], 
with gene expression from scRNA-seq datasets. Overcoming the chal-

lenges of absent direct one-to-one orthologs, it couples protein embed-

dings with gene expression, employing soft clustering to form ‘macro-

gene’ groups. This approach allows the model to learn universal cell 
embeddings that bridge differences between individual single-cell ex-

periments even when they have different genes. It combines training 
with conditional autoencoders with ZINB loss inspired by Lopez et al. 
[34], and other learning metrics by forcing the different cells within 
the same dataset far apart using weakly supervised learning and similar 
cells across the dataset closer to each other in an unsupervised manner. 
But it requires paired information.

scCLIP [46] introduces a novel application of transformers to 
scATAC-seq data, drawing inspiration from the contrastive learning 
principles of CLIP [85], it trains a pair of transformer-based encoders 
on multimodal single-cell data, utilizing a contrastive loss function for 
optimization. The result is scCLIP’s adeptness at integrating multimodal 
data into a singular, unified embedding space, with the scalability to ac-

commodate extensive tissue and organismal data from large-scale atlas 
projects.

Recent applications of optimal transport (OT) in single-cell data 
analysis have enabled the identification of cellular dynamics and the 
alignment of multi-omics datasets. MatchCLOT [47] leverages these ad-

vancements by training two modality-specific encoders to project single-

cell multimodal measurements onto a unified latent space. A novel 
OT algorithm is then employed for the soft-matching of cells between 
modalities, using batch labels to narrow the search space and mitigate 
distribution shifts.

3.2. Supervised learning

Supervised learning techniques, which combine diverse data types 
like imaging, genomic, and transcriptomic data to improve prediction 
tasks, have gained considerable attention in recent years. These meth-

ods often utilize modality-specific networks (e.g., convolutional neu-

ral networks for image data, fully connected networks for sequencing 
data) to capture local features, while joint representations are learned 
through shared latent spaces that promote cross-modal integration. De-

spite their strengths, these techniques typically require paired datasets 

from multiple modalities, which can limit their scalability and gen-

eralizability. Here, we introduce two major approaches: multi-modal 
supervised learning and knowledge graph.

3.2.1. Multi-modal supervised learning

Yang et al. [48] propose a method using autoencoder across differ-

ent modalities to achieve integration, each modality is encoded using 
a local network, such as a convolutional network for image data, fully 
connected network for sequence data (RNA-seq and ATAC-seq), graph 
convolutional network for Hi-C. The joint representations are learned 
from the shared latent space, facilitating the translation between differ-

ent modalities via a combination of encoders and decoders.

Faisal et al. [49] adopt a deep learning-based multimodal fusion 
algorithm to integrate H&E whole slide images (WSIs) and molecular 
profile features, including Copy-Number of Variation (CNV), RNA-seq, 
and Mutation Status (MUT). Their method is particularly rigorous for its 
comprehensive application in survival prediction and patient risk strat-

ification, enhanced by a focus on interpretability through the analysis 
of feature importance and gene attributions.

Deep Subspace Integration Representation (DSIR) [50] represents 
another technique for multi-modality integration, utilizing deep sub-

space learning to simultaneously learn the local and global structures. 
By constructing a consensus similarity matrix, DSIR finetunes its model 
for cancer subtype identification through spectral clustering.

Similarly, DLSF [51] also obtains the self-representation coefficient 
matrix for disease subtype identification, what it differs from DSIR is 
the exploration of the shared global similarity structure, because DLSF 
uses cycle autoencoders with a shared self-expressive layer to adaptively 
extract a consistent sample manifold a multi-omics level.

Moreover, a geometrical approach Module-based Omics Data Inte-

gration MOMA [52] vectorizes genes and modules, using the vector sum 
of genes within a module to represent it. The incorporation of an atten-

tion mechanism as a mediator allows the model to identify the most 
related modules among multiple omics data types, by training with var-

ious tasks of predicting phenotypes.

For all the multi-modal techniques mentioned above, despite their 
potential for cross-modal integration, those approaches require paired 
data from the various modalities and are tailored to individual cancer 
types, limiting their generalizability.

3.2.2. Knowledge graph and other techniques

Graph (network) representation has been widely applied in systems 
biology to represent biological organizations and interactions [86]. It is 
successful in integrating diverse types of biological and chemical data 
for representing genotype-environment-phenotype relationships [87]. 
Compared with multi-modal supervised learning, graph learning di-

rectly encodes complex interactions between entities and captures se-

mantic relationships underlying data. This allows for the seamless in-

tegration of information from diverse sources, the deduction of new 
information based on existing knowledge, and a deeper understanding 
of context and interconnections between entities.

Lee et al. [53] propose a machine learning model to predict can-

cer response to immune checkpoint inhibitors (ICIs). The network is 
constructed on cell-cell communication with cell types as nodes and 
communication strength as edges, which is deconvoluted from the pa-

tient’s bulk tumor transcriptomics data. The model can also identify 
key communication pathways that are consistent with single-cell level 
information. However, the graph is shallowly designed and more so-

phisticated deep learning models could be utilized to reveal complex 
relationships.

BioBridge [54] is representative of the integration of multimodal 
foundation models. To overcome the singularity of foundation mod-

els by applying knowledge graphs to learn the transformation between 
one unimodal foundation model and another, and only the bridge mod-

ule needs training while all the base foundation models are kept fixed, 
resulting in great computational efficiency. A various ranges of predic-
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tion tasks can be performed via BioBridge including cross-modality re-

trieval tasks, semantic similarity inference, protein-protein interaction, 
and cross-species protein-phenotype matching. But it lacks quantitative 
evidence for molecular generation tasks.

The OFA [55]approach suggests using text-attributed graphs to rep-

resent the diverse cross-domain attributes and connections in a graph 
to combine various types of graph data. This method involves convert-

ing these descriptions into feature vectors in the same embedding space 
using language models, regardless of their original domain. Addition-

ally, the method introduces “nodes-of-interest” to standardize how we 
approach different graph-related tasks using a single task. OFA also uses 
a unique method called graph prompting by adding special structures 
to the graph that act like prompts, allowing the model to perform a 
wide range of tasks without fine-tuning. The model is designed to han-

dle various fields, such as citation networks, molecular structures, and 
knowledge bases. Despite the strengths of this method, the performance 
for individual tasks seems suboptimal.

Integrating deep learning with a knowledge graph of gene-gene in-

teractions, GEARS [56] predicts transcriptional responses to both single 
and multigene perturbations using single-cell RNA sequencing data from 
perturbational screens. It employs a Graph Neural Network (GNN) to 
study genetic relationships and perturbational expression changes, en-

abling predictions for gene combinations not experimentally perturbed. 
However, the model is limited to the same cell type or experimental con-

dition, and its reliance on combinatorial perturbational data introduces 
confounding factors that need further addressing.

More recently, TxGNN [57] has been introduced as a graph foun-

dation model for drug repurposing. It explicitly identifies therapeutic 
candidates under a zero-shot setting, by implementing metric learning 
to transfer knowledge from well-studied disease to incurable diseases 
with no treatment. Biomedical knowledge is encoded with GNN, and a 
decoder incorporated with auxiliary information from similarity-based 
metric learning is further used to address the representation of the dis-

ease that may be sparsely annotated. The authors also include a model 
interpreter that is further validated by human experts. However, medi-

cal knowledge graphs are noisy and often incomplete, limiting model’s 
predictive power, more information of molecular interactions may be 
further addressed. Additionally, the contradictory relationships between 
various entities in the knowledge graph are overseen.

PinnacleAI [58] stands out as a context-specific model for protein 
representation learning, it combines the information from multiple hi-

erarchies including protein-protein interaction, cell type-to-cell type in-

teractions and tissue-tissue interactions. The model has protein-, cell 
type- and tissue-level attention mechanisms that enable the algorithm 
to generate contextualized representations of proteins, cell types and 
tissues in a single unified embedding space. But this work again is lim-

ited to the cell types or tissues in the training set, failing to predict the 
specific diseases may not be represented in healthy human subjects.

4. Challenges in machine learning techniques

Despite significant progress in applying machine learning to the 
integration of multi-omics data and predictive modeling of genotype-

environment-phenotype relationships, several challenges persist. These 
include the need for biologically informed representation learning, 
scarcity and ambiguity of labeled data, inability to generalize out-of-

distribution, and dealing with incomplete and noisy graphs.

4.1. Need for biologically informed representation learning

A fundamental hurdle arises from the multi-level hierarchical orga-

nization of biological systems, as discussed in the Introduction section. 
On one hand, multiple statistically insignificant variations at a lower 
level can collectively result in significant changes at a higher level (e.g., 
gene expression) [88]. Hence, a network biology approach is imperative 
to enhance biological signals [89]. On the other hand, many genotypes 

exert a pleiotropic effect on complex diseases and traits [90]. Conse-

quently, a higher-level endophenotype demonstrates greater discrimi-

natory power concerning the organismal phenotype than a lower-level 
one. Therefore, a cross-level modeling approach is necessary to simulate 
the asymmetrical information transmission process between genotype 
and phenotype [91]. This, in turn, will enhance model interpretability 
and facilitate the elucidation of molecular underpinnings of phenotypes 
[92,93].

4.2. Scarcity and ambiguity of labeled data

The scarcity of labeled data significantly hinders the application of 
machine learning in the predictive modeling of genotype-environment-

phenotype relationships through multi-omics data. Current multi-modal 
learning often necessitates paired omics data with shared labels, a chal-

lenge exacerbated by the infrequent availability of such labeled data in 
many instances. For example, transcriptomics and proteomics data from 
the brain tissues of Alzheimer’s disease patients can only be obtained 
from post-mortem persons. Consequently, constructing a practical ma-

chine learning model for living patients relies on genomics or brain 
imaging data, despite transcriptomics and proteomics data exhibiting 
stronger predictive power for phenotypic responses to drug treatments 
and other environmental influences than genomics and brain imaging 
data.

The issue of phenotype label ambiguity is a concern that has not re-

ceived sufficient attention in machine learning. Recent efforts, including 
Human Phenotype Ontology (HOP) [94] and Phenotype and Trait On-

tology (PATO) [95], pave the way to address this problem. HPO is 
a standardized, comprehensive vocabulary that describes human phe-

notypic abnormalities encountered in genetic disorders. It provides a 
systematic way to characterize and classify observable traits, symptoms, 
and clinical features associated with human diseases. PATO provides a 
standardized vocabulary for describing phenotypic qualities in a manner 
that can be consistently applied across different species. However, addi-

tional efforts are needed to incorporate ontologies into machine learning 
models.

4.3. Inability to generalize out-of-distribution

A more pressing data issue emerges with an out-of-distribution 
(OOD) scenario, where new unseen cases differ significantly from the 
data used to train the model [96]. Technological limitations and human 
biases have illuminated only a fraction of the vast biological and chem-

ical universe. For instance, among over 20,000 human genes, only pro-

teins encoded by hundreds of genes have known small molecule ligands, 
without accounting for isoforms, protein complexes, mutation states, 
and conformations. Despite an estimated 1060 small organic molecules 
in the chemical space, only approximately 108 have known bioactivities. 
Single-cell profiling techniques have generated omics data for numerous 
cell types, but only around 100 of them have controlled perturbations 
and functional genomics readouts. The combined space of chemicals, 
biomolecules, and endo- and organismal phenotypes is staggeringly vast 
[97].

Another significant issue arises due to a notable distribution shift 
from in vitro to in vivo settings. This shift often results in disease models 
failing to accurately reflect the efficacy and toxicity of drugs in humans. 
There is a critical need for a computational approach that can effec-

tively disentangle confounding factors while preserving unique features. 
Existing methods that fail to adequately address confounding factors of-

ten overlook their connection to clinical outcomes. A more systematic 
approach is required to address this challenge.

To address the OOD problem, it becomes imperative to quantify the 
prediction uncertainty of new cases [98,99]. Uncertainty quantification 
is particularly critical in high-stakes applications like drug discovery 
and precision medicine. Given the resource-intensive nature of drug dis-

covery, uncertainty quantification aids in decision-making by offering 
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insights into the confidence levels associated with predictions. In preci-

sion medicine, where erroneous predictions about drug efficacy or safety 
can have severe consequences, uncertainty quantification is essential for 
assessing the risks associated with model predictions.

4.4. Incomplete and noisy graphs

In the realm of predictive modeling for genotype-environment-

phenotype relationships, two key issues within graph learning remain 
inadequately addressed: the incorporation of novel nodes lacking pre-

viously recognized connections in an established graph model and the 
identification of dubious or conflicting relationships.

The construction of a high-quality graph model for a biological 
system is a labor-intensive, domain-specific task that often demands 
manual data curation. Furthermore, the graph model may fall short in 
capturing implicit knowledge and intricate patterns not explicitly repre-

sented in the data, restricting its ability to unveil novel discoveries. This 
limitation is particularly critical in biology, where a vast number of bio-

logical and chemical entities remain uncharted, lacking any annotations. 
These unannotated nodes become isolated in the graph model, impeding 
inference for them. For instance, a drug-like chemical compound lack-

ing significant structural similarity to existing drugs and without known 
protein targets becomes an isolated node in a drug-gene-disease graph. 
It becomes impractical and unreliable to infer its associations with dis-

eases.

Various machine learning-based automatic processes have been de-

veloped to enhance graph models, such as predicting gene-disease as-

sociations through Natural Language Processing [14,43,45,100], and 
drug-target interaction predictions [101–103]. However, these pre-

dicted relationships may be inaccurate, resulting the introduction of 
false positives and conflicting relationships. Few attention has been paid 
to addressing the issue of dubious relationships in knowledge graphs, 
especially when it is generated from biomedical publications, many of 
which cannot be reproduced [104–106].

5. AI-powered knowledge-enriched multi-scale 
genotype-environment-phenotype predictive modeling

Recent advances in deep learning, coupled with the growing acces-

sibility of multi-omics data, have opened avenues for predicting emer-

gent phenotypes through novel perturbations under diverse genotypes. 
Leveraging these developments, we propose two complementary ap-

proaches and their combinations: (1) biology-inspired end-to-end multi-

modal multi-task deep learning, (2)physics-informed context-specific 
multi-scale knowledge graphs.

5.1. Biology-inspired end-to-end multi-modal multi-task deep learning

Compared to classical machine learning, one of the unique fea-

tures of deep neural networks is their capacity for end-to-end learning. 
End-to-end learning tackles a complex task from inception to comple-

tion, as opposed to dividing the task into smaller sub-tasks and ad-

dressing them independently. In the context of predictive modeling for 
genotype-environment-phenotype relationships, the conventional strat-

egy requires paired data for all the modalities. In contrast, we propose 
an end-to-end deep neural network that explicitly models asymmetric 
information flows from DNAs to RNAs to proteins to metabolites and 
ultimately to the organismal phenotype, following the central dogma of 
molecular biology, as illustrated in Fig. 2. A foundation model for each 
data modality can be pre-trained and fine-tuned using modality-specific 
unlabeled and labeled data. When paired data across two biological 
levels is available, the models from different levels can be connected 
through contrastive learning [91], transfer learning [107], or other tech-

niques [108]. With labeled organismal phenotype data, all modalities 
are interconnected and fine-tuned from genotypes to phenotypes. Envi-

ronmental factors can be applied to any level, contingent on the nature 

of influences and perturbations — examples include CRISPR-Cas9 on 
DNA, RNAi on RNA, and small molecule inhibitors on proteins. Utiliz-

ing a fully-trained end-to-end model, it becomes feasible to incorporate 
endophenotype information, even if it cannot be directly obtained (such 
as brain tissue proteomics for a living AD patient), thereby improving 
predictions of organismal phenotypes from a genotype.

The biology-inspired end-to-end model can address the OOD and 
label scarcity problem from various perspectives. The pre-trained foun-

dation model has exhibited notable generalization capabilities. For in-

stance, the protein language model has proven successful in tasks such as 
protein structure predictions [109], protein design [110], and predicting 
protein-chemical interactions [101]. Contrastive learning has proven 
successful in integrating multi-omics data, as demonstrated in the pre-

vious section. Notably, several proof-of-concept studies have shown the 
promise of end-to-end models that adhere to the multi-level organization 
of a biological system. For example, the Cross-Level Information Trans-

mission (CLEIT) network employs transcriptomics endophenotypes as an 
intermediate layer to connect genomic mutations with cellular pheno-

types through contrastive learning [91]. This approach enhances phe-

notype predictions from genotypic data. Leveraging transfer learning, 
TransPro predicts proteomics profiles induced by unobserved chemicals 
based on transcriptomics data [107]. It is observed that predicting or-

ganismal phenotypes via predicted and imputed proteomics signatures 
by TransPro is more accurate than relying on experimentally deter-

mined transcriptomics or proteomics data, which often suffer from noise 
and sparsity. Combining contrastive learning with multi-task learning 
guided by clinical features, Guided-Stab achieved survival prediction by 
cancer transcriptomics [108]. An end-to-end model, which links geno-

types to phenotypes by integrating multiple endophenotypes based on 
their biological relationships, is anticipated to offer a robust tool for es-

tablishing genotype-environment-phenotype relationships.

5.2. Personalized physics-informed multi-scale knowledge graph

Considering the elevated incidence of false negatives and false posi-

tives in relationships, as well as the presence of coarse-grained and am-

biguous phenotypes in current biological network models, we propose 
three solutions to harness the potential of graph learning for predictive 
modeling of genotype-environment-phenotype relationships. These so-

lutions comprise (1) the explicit representation of physical interactions 
within molecular networks, (2) the construction of context-dependent 
networks with fine-grained phenotypes, and (3) the development of 
multi-scale network models.

Genotype-phenotype relationships in many existing network models, 
such as gene-disease networks, primarily rely on statistical correlations 
derived from Genome-Wide Association Studies (GWAS). Without in-

sight into the underlying molecular interactions, determining the molec-

ular drivers responsible for a phenotype and predicting phenotypic re-

sponses to novel perturbations becomes challenging. By incorporating 
quantitative details of molecular interactions into the network, it be-

comes possible to rationalize how molecular changes may impact phe-

notypes. For example, mutations in DNA sequence can alter regulatory 
DNA-protein, regulatory RNA-protein, or protein-protein interactions, 
subsequently influencing the binding affinity or kinetics of these inter-

actions, leading to changes in gene expression, signaling transduction, 
or metabolism. Illustrated in Fig. 3, representing experimentally deter-

mined DNA/RNA-protein, protein-protein, chemical-protein, and other 
interactions in a network model with weighted and signed edges encod-

ing the degree (or certainty) and direction of interaction changes allows 
for more confident inference of genotype-phenotype relationships. High-

throughput techniques have emerged to explore novel molecular inter-

actions [111,112]. New machine learning methods, e.g., model-agnostic 
semi-supervised meta-learning, can efficiently explore understudied in-

teractions [113]. Transfer learning enables predicting functional activi-

ties of ligand binding, i.e., antagonist vs agonist [114]. 
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Fig. 2. Illustration of multi-modal supervised learning. (a) A conventional strategy that requires paired data for all the modalities simultaneously. (b) An end-to-end 
deep neural network explicitly models asymmetric information flows from DNAs to RNAs to proteins to metabolites and ultimately to the organismal phenotype, 
where intermediate endophenotype data may be missing. Molecule foundation models generate embeddings for perturbations such as CRISPR, RNAi, chemicals, 
and microbiome data, while cell foundation models extract key information from each omics layer (genomics, transcriptomics, proteomics, and metabolomics) 
using unlabeled data. These models are fine-tuned with domain-specific tasks, such as predicting methylation from genomics data, differential gene expression from 
transcriptomics data, and post-translational modifications from proteomics data. The model is further optimized using paired flows between modalities (e.g., DNA-

RNA, RNA-protein) to capture complex relationships. Once fully trained, it can predict phenotypes from any given modality, even in the absence of intermediate 
data, by leveraging learned endophenotypes.

Many existing network models are canonical aggregations across dif-

ferent conditions. For instance, in a gene-disease network, “Alzheimer’s 
disease” (AD) is often depicted by a single node, and the gene-gene in-

teraction network remains constant across all diseases. However, AD 
has several subtypes resulting from different etiologies (e.g., APOE4 
vs. TREM2). Similarly, the gene-gene interaction network undergoes 
rewiring dependent on biological contexts (such as cell types, disease 
stages, and species). This coarse-grained representation falls short of 
capturing the complexities of biology. We propose to decompose the 
aggregated network model into an interconnected multiplex network 
model. Each plex in the network represents a subtype or an individ-

ual. In the case of a gene-disease network, using disentangled embed-

dings of disease biomarkers (e.g., brain imaging for AD), a subtype of 
AD or an individual patient (i.e., phenotype) can be represented by a 
class-specific embedding and a subtype/individual-specific embedding, 
which can be derived from patient-level data like medical imaging and 
electronic health records. Subtype/individual-specific gene-gene inter-

action networks can be derived from gene embeddings learned from a 
large language model [43,81]. It is anticipated that such a fine-grained 
network model will be more potent in predictive modeling of genotype-

environment-phenotype relationships compared to a coarse-grained ag-

gregated model.

The inherent complexity and hierarchical organization of a biologi-

cal system naturally lend themselves to representation on a multi-scale. 
For instance, a tissue can be portrayed through a cell-cell interacting 

network, and each cell can be captured by a cell type-specific gene-gene 
interacting network. Algorithmically, a multi-scale cell-cell interacting 
network can be conceptualized as a network of networks. While the 
network of networks concept has found widespread application in mod-

eling areas such as the internet, smart cities, social networks, supply 
chains, telecommunications, cloud computing, and financial systems 
[115], its utilization in systems biology remains relatively limited [116]. 
Given the abundance of single-cell and spatial omics data, there is a 
compelling opportunity to explore the application of the network of 
networks paradigm for omics data integration and analysis in systems 
biology.

5.3. Integration of machine learning models, knowledge graphs, and 
generative AI

The proposed machine learning and knowledge graph approaches 
mentioned above are complementary. Integrating these two approaches 
will further enhance the predictive power of genotype-environment-

phenotype relationships. Although the machine learning model excels at 
discerning subtle patterns from raw data and augmenting missing links 
within a knowledge graph, it may lack a comprehensive understand-

ing of the global contexts of these patterns. Conversely, a knowledge 
graph can consolidate patterns into a cohesive network within a broader 
context. Inference of missing links from a knowledge graph can both val-

idate and refute predictions made by a machine learning model.
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Fig. 3. Illustration of personalized physics-informed multi-scale knowledge graph. It represents a multi-scale network model capturing experimentally determined 
DNA/RNA-protein, protein-protein, chemical-protein, and other biological interactions. A drug or chemical can activate or inhibit a protein, which is represented by 
positive or negative edges, thereby influencing protein-protein interactions. Each protein encodes specific genes within different cell types through gene regulatory 
networks, propagating effects across cellular, organ, and population levels. Weighted and signed edges in the network encode the degree (or certainty) and direction 
of interaction changes, allowing more confident inference of genotype-phenotype relationships.

Fig. 4. Integration of machine learning models, mechanistic models, knowledge 
graphs, and generative AI.

Both machine learning models and knowledge graphs, which focus 
on predictive analytics, can benefit from integration with generative AI 
models. On one hand, a generative model can enhance predictive models 
in several ways. Generative models have the capability to generate syn-

thetic data samples that closely resemble real data. These synthetic sam-

ples can effectively augment the training dataset of predictive models, 
particularly in scenarios where real data is limited. Furthermore, gen-

erative models can learn the underlying distribution of observed data, 
enabling them to identify outliers or OOD cases effectively. Additionally, 
they can be utilized to impute missing values by generating plausible 
values conditioned on the observed data. On the other hand, machine 
learning models can enhance personalization and mitigate hallucination 
in generative models through techniques such as reinforcement learn-

ing, attention mechanisms, conditional generation, active learning, and 
others Fig. 4.

6. Conclusion

The fusion of multi-omics data and AI techniques marks a significant 
advancement in comprehending complex biological systems and pre-

dicting outcomes across diverse environments and perturbations. In this 
paper, we have explored the interleaved interactions between genotype, 
environment, and phenotype, highlighting the pivotal role of endophe-

notypes as intermediate markers linking genetic makeup to observable 
traits. Central to our discussion is the integration of multi-omics data, 
spanning various biological levels from single cells to whole organ-

isms, and encompassing different data modalities and species. We have 
addressed the shortcomings of current machine learning methods, par-

ticularly in accurately predicting relationships between genotype, envi-

ronment, and phenotype. Our proposed framework, inspired by biology 
and driven by AI, aims to untangle the complexities of living organisms 
and lay the groundwork for personalized medicine.

It is important to underscore that AI alone cannot accomplish our 
objectives. A comprehensive representation of human biology and phys-

iology needs a digital twin that captures micro and macro dynamics of 
the human body and its interactions with the environment [117–119]. 
This necessitates the integration of AI with mechanism-based modeling, 
a promising technique for addressing challenges in machine learning. 
For example, constraint-based metabolic network modeling can pre-

dict organismal phenotypes directly, such as growth rates under diverse 
conditions. Unlike “black box” machine learning models, mechanism-

based models explicitly represent system processes and interactions, 
offering insights into underlying principles. Leveraging existing knowl-

edge, they can make predictions even with limited data, exhibiting 
greater generalizability across scenarios. Their transparency facilitates 
interpretation and understanding of influencing factors, crucial for ap-

plications like biomedicine. Additionally, the seamless integration of 
prior knowledge enhances prediction accuracy and relevance. In con-

clusion, a biology-inspired AI model, coupled with mechanism-based 
modeling, holds considerable promise for advancing our understanding 
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of genotype-environmental-phenotype relationships and informing crit-

ical decision-making.
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