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Abstract
Primary immunodeficiencies are rare, inborn errors that result in impaired,
disordered or uncontrolled immune responses. Whilst symptomatic and
prophylactic treatment is available, hematopoietic stem cell transplantation is
an option for many diseases, leading to cure of the immunodeficiency and
establishing normal physical and psychological health. Newborn screening for
some diseases, whilst improving outcomes, is focusing research on safer and
less toxic treatment strategies, which result in durable and sustainable immune
function without adverse effects. New conditioning regimens have reduced the
risk of hematopoietic stem cell transplantation, and new methods of
manipulating stem cell sources should guarantee a donor for almost all
patients. Whilst incremental enhancements in transplantation technique have
gradually improved survival outcomes over time, some of these new
applications are likely to radically alter our approach to treating primary
immunodeficiencies.
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Introduction
Genetically inherited inborn errors of immunity impair immune 
function, which leaves affected individuals exposed to increased 
risks of infection, inflammation and autoimmunity. To date, over 300 
diseases with X-linked, autosomal recessive and autosomal domi-
nant inheritance have been identified1. The majority of described 
diseases result from complete or partial loss of function of the 
gene product, but more recently, increasing numbers of diseases 
in which the gene mutation leads to a gain-of-function effect have 
been described. For an increasing number of diseases, replacement 
of the defective recipient immune system with a functioning system 
from a healthy donor, by hematopoietic stem cell transplantation 
(HSCT), can lead to a permanent cure.

The first HSCTs for primary immunodeficiencies (PIDs) were per-
formed in 19682,3, and so nearly 50 years of experience has led to 
many significant improvements in technique and outcome. Severe 
combined immunodeficiencies (SCIDs) are the most profound 
defects, and HSCT, until recently, has been the only approach 
to treatment (with the exception of adenosine deaminase [ADA] 
deficiency, for which enzyme replacement is possible). Other 
PIDs have had conservative or HSCT approaches to management, 
although HSCT is now becoming a more widely accepted modality 
of treatment, as long-term outcomes of conservative management 
are investigated, and outcomes improve through earlier diagnosis 
and safer approaches to transplantation.

Treatment of PIDs has resulted in the recognition of better out-
comes with early or pre-emptive treatment, development of 
newborn screening programs for PID, development of gene therapy, 
and is now driving the development of gene editing as well as the 
search for minimally toxic conditioning regimens. This article will 
outline recent developments in the field.

Severe combined immunodeficiencies
SCIDs are heterogeneous PIDs that are characterized by the absence 
of thymopoiesis, T-lymphocyte maturation and function, and which 
affect cellular and humoral acquired immunity; without definitive 
treatment within the first 12 to 18 months of life, the condition is 
invariably fatal. Classic presentation is with persistent viral respira-
tory or gastrointestinal infection in infancy and with failure to clear 
virus and persistent and deteriorating symptoms4. Multiple patho-
gens may co-exist, and opportunistic infection—for example, with 
Pneumocystis jiroveci—is common. Immunization with live Bacillus 
Calmette-Guerin or rotavirus vaccine can cause persistent and dis-
seminated infection5–7. The genetic bases of 75% to 80% of SCID 
types are now understood. Definitive treatment is predominantly by 
allogeneic HSCT, although gene therapy and enzyme replacement 
therapy are available for some specific genetic sub-types. Depend-
ing on the genetic defect, recipient B-lymphocyte or natural killer 
(NK) cells or both may be present. In contradistinction to the treat-
ment of hematological malignancies, in which eradication of malig-
nancy is required, the objective of HSCT in patients with SCID 
is to provide normal HSCs, facilitating correction of the immune 
defect. Therefore, it is critical to minimize potential sequelae of 
treatment but to establish effective long-term immune function. The 
outcome of HSCT for SCID is related to a number of different fac-
tors, including genotype, pre-existing morbidities at time of HSCT, 

and in particular pre-existing viral infection, as well as the type (and 
degree of human leukocyte antigen [HLA] match) of the donor 8–10. 
Current issues of interest to address include early detection of 
infants with SCID, so that referral for treatment may be initiated 
before the onset of infection, and approach to conditioning.

Newborn screening for severe combined 
immunodeficiency
During T-lymphocyte receptor development, redundant DNA is 
excised but remains within the cell and can be used as a marker of 
thymopoiesis. Patients with SCID (and some other PIDs) lack thy-
mopoiesis and subsequently the redundant DNA (known as a T-cell 
receptor excision circle, or TREC) is not present. With the blood 
taken during routine neonatal screening, it is possible to detect 
TRECs by polymerase chain reaction and thus identify infants with 
SCID before symptoms develop11,12. Alternately, for two related 
PIDs in which a DNA salvage enzyme is deficient, leading to absent 
lymphocyte development (ADA and purine nucleoside phosphory-
lase deficiency), metabolic by-products can be detected by mass 
spectrometry on blood eluted from the neonatal blood spot13,14. It 
has previously been demonstrated that the outcome of HSCT for 
newborn patients with SCID is significantly superior to that of 
patients presenting with infection8–10. The introduction of newborn 
screening enables the detection of infants with SCID before they 
become symptomatic, allowing definitive treatment before they 
acquire infection. Many states in the USA have now implemented 
newborn screening for SCID15, enabling early detection and treat-
ment. Other countries are considering implementation of newborn 
screening programs for SCID and other PIDs16,17.

Chemotherapy conditioning
Following appropriate diagnosis, there remains debate about the 
best approach to treatment. Infusion of unfractionated donor HSC 
inoculum without preparative chemotherapy leads to T-lymphocyte 
immune reconstitution18. However, without HSC engraftment, the 
establishment of thymopoiesis and the durability of T-lymphocyte 
function are variable and depend on the phenotype and hence geno-
type. Infants with NK cell-negative SCID are more likely to survive 
than those who have recipient NK cells, and also develop high-level 
donor T-lymphocyte chimerism with superior long-term persistence 
of CD4+ T-lymphocyte immunity without preconditioning chemo-
therapy. The presence of recipient NK cells is a strong indicator that 
preparative chemotherapy conditioning will be required for engraft-
ment of T-lymphocyte precursors capable of supporting robust and 
durable T-lymphocyte reconstitution19. However, the type of donor 
used is also important, as use of an unrelated HLA-matched donor, 
rather than an HLA-matched sibling donor, significantly increases 
the risk of graft-versus-host disease (GvHD)20.

There are a number of issues regarding the use of chemotherapy 
preconditioning. Acute toxicities are frequently observed, and in 
the presence of active infection, mortality is increased unless a 
matched sibling donor is available10. Whilst durability and sustain-
ability of thymopoiesis and consistency of B-lymphocyte function 
are more likely in most forms of SCID following chemotherapy 
and, in particular, those genotypes with recipient NK cells19,21,22, 
there are concerns about the effects, albeit short courses, of chemo-
therapy on young infants. There are currently no good multicenter 
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studies looking at the long-term (>20 year) immunological, general 
health or quality-of-life outcomes of HSCT in SCID, either using 
chemotherapy preconditioning or just infusing the donor inoculum. 
A joint European Inborn Errors Working Party/North American 
Primary Immune Deficiency Treatment Consortium study looking 
at these outcomes is in progress. However, for a subset of patients 
with radiosensitive SCID, alkylating agents are associated with 
more significant long-term co-morbidities, even when compared 
with other NK cell-positive SCID phenotypes23. New conditioning 
regimens with analogues of busulfan appear safer and have fewer 
short-term toxicities, but long-term outcomes are uncertain24,25. 
The problems of administering chemotherapy will become more 
focused only as the majority of infants begin to be diagnosed in 
the newborn period through newborn screening programs. Whilst 
the mortality risk associated with chemotherapy, particularly in 
well patients with no co-morbidities, is low, it is not absent, and 
the concerns over administering such toxic drugs to newborns are 
driving the search for alternative strategies. Minimally intensive 
regimens using monoclonal antibodies have been successfully 
employed in treating SCID, even with significant co-morbidities, 
but these still employ low-dose chemotherapeutic agents26. Unfor-
tunately, to date, neither treatment with alemtuzumab monotherapy 
nor plerixafor in conjunction with granulocyte-colony-stimulating 
factor appears to facilitate donor stem engraftment in patients27,28. 
In utero animal models have demonstrated some beneficial effect 
of administering an anti-c-Kit receptor antibody, which interrupts 
an important signaling pathway in homing, adhesion, maintenance, 
and survival of HSCs in the hematopoietic niche, and transplanting 
pre-treated animals on the first day of life; some gain in donor stem 
cell engraftment was observed29. Whilst these results are encourag-
ing, further work is required before patient benefit can be demon-
strated. However, clinical trials using therapeutic-grade antibodies 
are being planned.

Gene therapy
Gene therapy for SCID has been successful at curing patients. 
Random integration of a viral vector containing the corrected gene 
into the genome of harvested autologous HSCs and re-infusion of 
the transduced product have demonstrated clinical benefit and cure 
of patients with X-linked and ADA-deficient SCID30,31. Early tri-
als were complicated by graft failure and in some cases insertional 
mutagenesis, leading to lymphoproliferation and leukemia, at least 
in X-linked SCID32,33. Modifications of the retroviral vector with 
the addition of self-inactivating gamma-retroviral vectors, with 
enhancer-deleted U3 regions34,35, and adoption of lenti-viral vectors 
should reduce or eliminate the risk of insertional mutagenesis36,37. 
New methodologies of gene editing use highly specific, targeted 
double-stranded DNA cleavage nucleases to remove the defective 
gene and replace it with a corrected copy at the appropriate genomic 
locus through the use of homologous recombination of corrected 
gene sequences by cellular DNA repair pathways38–40. These tech-
niques are a more physiologically sound method of genetic cor-
rection as the appropriate regulatory control of gene expression is 
maintained.

Pre-clinical studies have demonstrated efficacy of this technique in 
cell lines, although correction in primary HSCs has been limited. 
Current gene therapy protocols do not consistently result in full 

correction of the defect, and in some trials, low-dose chemotherapy 
has been employed to improve autologous stem cell engraftment 
and give a competitive advantage over non-transduced cells. Thus, 
in an approaching era of hopefully universal screening for SCID, 
a chemotherapy-free approach for either conventional HSCT or 
gene-targeted therapy may be possible, eliminating concerns about 
long-term toxicity and ensuring durable and sustainable immune 
reconstitution.

Alternative treatments for severe combined 
immunodeficiencies
For a few SCID genotypes, alternative therapies are available 
and, though not curative, may improve the physical condition of 
the patient pending curative treatment. For patients with ADA-
deficient SCID, polyethylene-glycosylated adenosine deaminase 
(PEG-ADA) can be given as an infusion, thus partially reversing 
the enzyme deficiency. This can rapidly reverse some of the toxic-
ity associated with ADA deficiency (for example, ADA deficiency-
related pulmonary alveolar proteinosis41) and improve the clinical 
condition of the patient to facilitate successful HSCT42. Long-term 
treatment with PEG-ADA leads to poorer immunoreconstitution 
than following HSCT43 and gene therapy and may induce PEG-
ADA-specific antibody formation, compromising further immu-
noreconstitution44.

Defects in the folate and cobalamin pathway can impact immune 
development45–47. Recently, a patient with SCID immunophenotype 
has been described48,49, in whom a mutation in MTHFD1, which 
encodes a protein essential for folate metabolism, was found. Treat-
ment with folate and hydroxocobalamin improved but did not fully 
correct lymphocyte counts and proliferation responses, although no 
benefit to the neurological impairment was observed48–50.

Phosphoglucomutase 3 (PGM3) is a hexose phosphate mutase, a 
key enzyme in many glycosylation pathways. Mutations in PGM3 
are associated with neutropenia, B and T lymphocytopenia and 
bone marrow failure51,52, although extra-immune manifestations, 
including facial dysmorphism, skeletal anomalies and intellectual 
impairment, are also apparent. Conventional HSCT cures the immu-
nological features but not the other features. N-acetyl-galactosamine 
supplementation may have a role in bypassing the metabolic defect 
and stabilising these patients prior to definitive treatment. Thymic 
stromal defects—for example, complete DiGeorge or CHARGE 
(coloboma, heart defect, atresia choanae, retarded growth and 
development, genital hypoplasia, ear anomalies/deafness) syn-
drome or FOXN1 deficiency—can be successfully treated by thymic 
transplant and with better outcomes than HSCT53–55.

Other primary immunodeficiencies
An increasing number of non-SCID PIDs are successfully treated 
by HSCT. A patient with Wiskott-Aldrich syndrome was among the 
first to undergo HSCT2. Subsequently, HSCT has been performed 
for many different PID diseases. HSCT initially was restricted to 
patients with combined immunodeficiencies or severe T-lymphocyte 
defects, but now there is an expanding list of appropriate indications. 
Specifically, cytotoxicity defects (e.g., familial hemophagocytic 
syndromes), defects of phagocytes (e.g., chronic granulomatous 
disease, leukocyte adhesion deficiency, and GATA2 deficiency), 
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and defects in cytokine signaling pathways are now indications 
for HSCT. As the definition of immunodeficiency broadens, so do 
the indications for HSCT56. Patients with autoimmune disease or 
autoimmune enteropathy, including those with immunodysregula-
tion, polyendocrinopathy, enteropathy, X-linked syndrome, defects 
in interleukin-10 (IL-10) signaling pathways, gain-of-function 
STAT-3 disease, and CTLA-4 deficiency, have received curative 
transplants. Often patients may achieve a molecular diagnosis fol-
lowing successful transplantation, so proof of concept of treatment 
may precede genetic diagnosis.

Patients with non-SCID PID have residual T lymphocyte-mediated 
immunity which is able to mediate rejection of allogeneic grafts, 
necessitating pre-transplant chemotherapy conditioning to facili-
tate donor stem cell engraftment and immune reconstitution. The 
decision to refer for HSCT can be difficult, as many diseases have 
alternative medical therapies, which if taken regularly may prevent 
many complications from developing. However, careful cohort 
studies indicate that, even with regular medication, life-threatening 
complications occur, and quality of life may be significantly and 
adversely affected. With modern HSCT techniques, the survival 
outcome following HSCT may be equivalent to “conventional” 
treatment57. In addition, successful HSCT for non-SCID PID may 
lead to an improved, and even normal, quality of life, as well as 
abolition of the risk of disease-associated sequelae, and removal 
of necessity to take life-long medication58. Unfortunately, as for 
patients with SCID, outcomes are best for those with no pre- 
existing co-morbidities59,60. Parents may be left with the choice of 
transplanting a young healthy child, and accepting the small but 
finite risk of failure and likely death, or waiting until the child is 
more sick with established co-morbidities but with a diminished 
chance of successful transplantation. For some patients with non-
SCID PID, immunodeficiency is part of a wider syndrome. Suc-
cessful HSCT can correct the hemato-immunological defect, but 
extra-immune manifestations are generally not modified61 and may 
present many years after successful HSCT62.

Safer chemotherapy conditioning regimens
Several recent advances are changing the landscape for these 
patients. Firstly, the development of low-toxicity conditioning 

regimens targeting sub-myeloablative busulfan levels has enabled 
successful transplantation, even in older patients with significant 
pre-existing co-morbidities63, giving survival of more than 95%. 
Furthermore, some of the concerns about long-term sequelae of 
chemotherapy may be partially resolved, particularly with regard to 
fertility64,65. Long-term sequelae of treosulfan-containing regimens 
are less certain, but short-term results in survival and establish-
ment of immune function are encouraging24,25. For many patients 
with PID, partial donor chimerism is sufficient to induce cure if the 
affected recipient cell lineage is replaced completely or partially 
by donor cells, although complete donor chimerism is best in some 
diseases (Table 1).

Transplantation of patients with no matched donor
In contrast to patients with SCID, there is usually sufficient time 
to seek alternative non-family adult matched donors or cord blood 
stem cell units from national and international registries. Owing to 
the following, T lymphocyte-depleted haplo-identical donors have 
not been widely used in non-SCID PID conditions:

• The increased risk of non-engraftment or rejection.

• Patients often harbor pre-existing viral infection. 
T-lymphocyte depletion of the allograft to prevent GvHD 
prolongs the time to immune reconstitution, thus increas-
ing the risk of death from disseminated viral infection.

• Most non-SCID disorders can be managed in the medium 
term with supportive care, including prophylactic anti-
microbials, immunoglobulin replacement, immunosup-
pressive agents, and careful nutritional and respiratory 
support.

New methods of depleting allografts of T lymphocytes that cause 
GvHD, but retaining those with an anti-viral effect, are demon-
strating efficacy for patients with non-SCID PID. The most widely 
used technique involves depletion of CD3+ T lymphocytes bearing 
the αβ T-lymphocyte receptor, as well as CD19+ lymphocytes, by 
using magnetic bead technology. Two groups have published results 
with excellent outcomes of 97% survival in 37 patients with dif-
ferent PIDs65, and 91% in 23 patients with non-malignant disease, 

Table 1. Examples of primary immunodeficiencies for which complete or partial donor 
chimerism will achieve disease cure.

Disease Partial or complete chimerism Donor cell lineage required

X-linked SCID Partial T lymphocytes

IL7Ra SCID Partial T lymphocytes

RAG SCID Complete All

Artemis SCID Complete All

Chronic granulomatous disease Partial ≥10% of myeloid

CD40 ligand deficiency Partial ≥10% of T lymphocytes

Wiskott-Aldrich syndrome Complete All

IL7Ra, interleukin 7 receptor alpha; RAG, recombination-activating gene; SCID, severe combined 
immunodeficiency.
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of which 13 had PID66, results which compare favorably with his-
toric data56. Although some patients developed mild GvHD, the few 
deaths were from viral infection. Fewer data are available for the 
other methods of T-lymphocyte depletion. Naïve (CD45+), rather 
than memory, T lymphocytes are predominantly associated with 
allo-reactivity and mediate GvHD67. A pilot study of depletion of 
CD45RA+ T lymphocytes, using magnetic bead technology, in five 
patients with combined immunodeficiencies showed promising 
results, with four patients engrafting and clearing viral infection 
within 2 months of transplantation, and no development of GvHD68. 
Cyclophosphamide is non-toxic to pluripotent HSC but selectively 
toxic to recently activated lymphocytes and so administration a 
few days after HSCT would target newly activated previous naïve 
cells stimulated by recipient allo-antigens, but preserving anti-viral 
competence. To date, there are no published data on the infusion 
of replete HLA haplo-identical grafts followed by administration 
of cyclophosphamide after stem cell infusion for patients with 
PID. However, the technique has been shown to be successful for 
malignant conditions69 and there are early reports of its use in non-
malignant conditions70,71.

In conjunction with the less toxic conditioning regimens, the trans-
plant outlook for PID patients without a good HLA-matched donor 
is now significantly improved. For patients with Wiskott-Aldrich 
syndrome, an alternative approach is the use of gene-transduced 
autologous cells. Initial clinical trials using retro-viral vectors 
resulted in insertional mutagenesis, giving rise to lymphoprolifera-
tion and leukemia72. The use of lenti-viral vectors does not seem to 
induce in vivo clonal selection with vector integrations near onco-
genes, and partially reverses the Wiskott-Aldrich phenotype with 
significant clinical effect73.

Management of post-transplant sequelae
Three major complications of HSCT are GvHD, overwhelming viral 
infection and sinusoidal obstruction syndrome (SOS). New devel-
opments in tackling these sequelae are beginning to reduce signifi-
cant complications associated with them. T-lymphocyte depletion 
of donor stem cell sources and less toxic chemotherapy regimens 
will reduce the risk of GvHD. First-line treatment of acute GvHD 
is systemic corticosteroids, but for steroid-recalcitrant or steroid-
resistant GvHD, treatment options that do not cause further pro-
found immunosuppression and are not associated with significant 
adverse events are limited. Extracorporeal photopheresis has long 
been recognized as a treatment for chronic GvHD, but use in acute 
GvHD is now being explored74. Published data have demonstrated 
efficacy, and with experienced operators, treatment of low-body 
weight (<40 kg) patients is possible. Clinical trials investigating 
rapid and early intervention with extracorporeal photochemother-
apy (ECP) in patients with acute GvHD are in progress.

Systemic viral infections, particularly with cytomegalovirus, 
Epstein-Barr virus and adenovirus, remain a major cause of mor-
bidity and mortality in all HSCT patients. Available anti-viral 
pharmacotherapy has limited efficacy and major associated tox-
icities, particularly myelosuppression and nephrotoxicity. Effective 
anti-viral immunity is established only when viral-specific T lym-
phocytes develop. Particularly in the context of T lymphocyte-
depleted stem cell sources, this may take several months. Infusion of 

ex vivo expanded donor- or third party-derived T lymphocytes 
with activity against one or more viruses whilst excluding allo- 
reactive GvHD-causing T lymphocytes has been used success-
fully in preventing and treating viral infections following HSCT. 
A recent retrospective study of 36 patients with PID treated with 
viral-specific T lymphocytes before or after HSCT showed an 
overall survival of 80% with mild, self-limiting GvHD in some 
patients only (Michael Keller, personal communication). Previous 
studies have focused on the use of virus-exposed donors as a source 
of viral-specific T lymphocytes, but trials are now focusing on cells 
that have been generated from healthy donors and banked for use 
as “off the shelf” therapy for viral infections, which eliminates the 
time and expense required for custom-produced products75.

SOS is a severe and potentially life-threatening complication 
occurring after HSCT and secondary to sinusoidal endothelial cell 
damage. Endothelial cell damage in other organs can lead to asso-
ciated syndromes, including capillary leak syndrome, engraftment 
syndrome, transplant-associated microangiopathy or diffuse alveo-
lar hemorrhage. Risk factors for the development of SOS include 
allogeneic HSCT, use of unrelated or HLA-mismatched donor, 
young age (<2 years), myeloablative conditioning, particularly when 
busulphan or irradiation is used, and previous or current hepatic 
damage. Disease-specific risk factors include hemophagocytic 
lymphohistiocytosis and osteopetrosis. Mortality for severe SOS 
with multi-organ failure is high (>80%). Numerous treatments have 
been used to treat SOS, including ursodiol, glutamine, vitamin E, 
low-molecular-weight heparin, recombinant tissue plasminogen 
activator, and prostaglandin E

1
. Most show dubious efficacy and are 

associated with significant toxicities and, in particular, hemorrhage. 
Supportive therapy includes early and meticulous fluid and elec-
trolyte balance and judicious use of diuretics. Respiratory support, 
peritoneo-centesis and hemodialysis or hemofiltration to support 
renal impairment and fluid balance may be required in severe SOS. 
Recently, the European Medicines Agency approved defibrotide in 
European countries as the only curative treatment of severe SOS 
after HSCT. Defibrotide, a polydisperse oligonucleotide, exhibits 
local anti-thrombotic, anti-ischemic and anti-inflammatory prop-
erties and seems to protect endothelial cells and restore the dis-
rupted thrombotic-fibrinolytic homeostasis. Remission from SOS 
and survival seem better in children than adults when receiving 
defibrotide76. Defibrotide has also demonstrated benefit when used 
as prophylaxis to prevent SOS in pediatric patients, and interest-
ingly patients receiving defibrotide also developed significantly less 
GvHD77.

In conclusion, steady improvements in the outcome of HSCT for 
SCID and other PIDs mean that, for the majority of patients born 
with these conditions today, curative treatment is to be expected. 
Advances in tackling the recognized complications of HSCT have 
enabled survival today to approach 90%, even for patients with sig-
nificant disease-related sequelae. As new diseases are described, the 
challenge is to determine the best therapeutic option, but HSCT is 
a realistic treatment for many patients, including adults with late-
diagnosed or late-onset disease. Important questions remain, how-
ever; the three most pressing are how to achieve earlier diagnosis, 
how to develop non-toxic conditioning regimens to achieve dura-
ble and sustained immune reconstitution, and an evaluation of the 
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long-term outcomes of HSCT for these conditions, including 
immune function and general and psychological health. Continued 
collaborations between physicians caring for these patients and sci-
entific societies dedicated to the study of diseases and their treat-
ments are likely to further these aspirations. As we learn more about 
the biology of these conditions and their treatments, the information 
may also benefit patients receiving HSCT for other diseases as well 
as those taking part in gene therapy trials and patients with autoim-
mune diseases or those receiving solid organ transplants.
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