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Thyroid over-activity or hyperthyroidism constitutes a significant morbidity

afflicting the world. The current medical practice of dose titration of anti-

thyroid drug (ATD) treatment for hyperthyroidism is relatively archaic, being

based on arbitrary and time-consuming trending of thyroid function that

requires multiple clinic monitoring visits before an optimal dose is found.

This prompts a re-examination into more deterministic and efficient treatment

approaches in the present personalized medicine era. Our research project

seeks to develop a personalized medicine model that facilitates optimal

drug dosing via the titration regimen. We analysed 49 patients’ data consisting

of drug dosage, time period and serum free thyroxine (FT4). Ordinary differ-

ential equation modelling was applied to describe the dynamic behaviour of

FT4 concentration. With each patient’s data, an optimization model was devel-

oped to determine parameters of synthesis rate, decay rate and IC50. We

derived the closed-form time- and dose-dependent solution which allowed

explicit estimates of personalized predicted FT4. Our equation system invol-

ving time, drug dosage and FT4 can be solved for any variable provided the

values of the other two are known. Compared against actual FT4 data

within a tolerance, we demonstrated the feasibility of predicting the FT4 sub-

sequent to any prescribed dose of ATD with favourable accuracy using the

initial three to five patient-visits’ data respectively. This proposed mathemat-

ical model may assist clinicians in rapid determination of optimal ATD

doses within allowable prescription limits to achieve any desired FT4 within

a specified treatment period to accelerate the attainment of euthyroid targets.
1. Introduction
Graves’ disease is the most common cause of hyperthyroidism, a ubiquitous

disorder that afflicts a large segment of people worldwide. Although its life-

threatening complications such as thyroid crisis, thyrocardiac failure and

thyrotoxic periodic paralysis are less common manifestations, Graves’ disease

can be disabling and result in significant healthcare costs and economic loss

as many affected are in their prime of life and productivity. Every year,

0.02–0.05% of the population will be newly diagnosed with Graves’ disease

[1]. It is an autoimmune disorder specifically characterized by thyroid stimulat-

ing hormone (TSH) receptor autoantibodies which bind to thyroid gland TSH

receptors resulting in unrestrained production of thyroid hormones [2].

Currently, there are three established treatment methods for Graves’ dis-

ease, i.e. anti-thyroid drugs (ATD) to block the production of thyroid
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hormones or ablative strategies such as radioactive iodine

ablation and total thyroidectomy followed by lifelong thyroid

hormone replacement.

Multiple factors including patient preference and risk of

relapse are involved in determining the choice of treatment

modality for each patient [3,4]. ATDs are frequently prescribed

at the outset to achieve rapid control of hyperthyroidism. The

most widely used ATD belongs to the thionamide class, of

which methimazole and carbimazole are more commonly

used [5]. Carbimazole is metabolized to methimazole in the

body. Another thionamide is propylthiouracil, which is gener-

ally less preferred except for certain clinical circumstances

because of the higher risks of side effects [6].

Currently, there are two regimens that clinicians can

adopt in administering ATD to patients: the titration regimen

and the block-and-replace regimen [5]. The titration regimen

involves adjusting the ATD dosage based on thyroid function

tests (TFT) such that the patient ultimately achieves euthyr-

oidism at the lowest dose of ATD. On the other hand, in

block-and-replace regimen, the patient will be given high

doses of ATD to suppress production of thyroid hormones

and co-prescribed with levothyroxine replacement to avoid

hypothyroidism. Both regimens have comparable effective-

ness, but the titration regimen has less adverse effects to the

patients [7,8]. However, the titration regimen has the draw-

back of more frequent clinician visits for monitoring and

dose titration [8]. Besides inhibiting the production of thyroid

hormones, ATDs also have immunosuppressive effects that

lead to a reduction of autoantibodies [9–11]. Even though

ATD has direct effects on the immune system, this is not

dose-dependent and it could be that direct immunosuppres-

sive effects are already maximized at a low dose of ATD [12].

It is also likely that the immunosuppressive effects are actu-

ally a result of the normalization of the thyroid hormones

to the euthyroid state [11,12]. Therefore, it is important that

patients achieve euthyroidism as soon as possible with the

lowest ATD dose so as to minimize side effects and maximize

the thyroid-specific immunosuppressive effects. However, in

current clinical practice, titration of ATD has been an arbi-

trary exercise based on clinical judgement and preceding

TFT results. It takes much time and frequent monitoring for

clinicians to find the optimal drug dosage using such a

trial-and-error strategy which increases the costs for patients.

Thus far, there has been little research on optimizing the dose

titration of ATDs, a situation that has persisted for decades.

Motivated by the above, we attempt to develop a mathemat-

ical model that could guide clinicians in predicting the optimal

drug dosage for patients with Graves’ disease to attain euthyr-

oidism. Specifically, we apply ordinary differential equation

(ODE) to describe the dynamic behaviour of free plasma

thyroxine (FT4) concentration and introduce a mathematical

optimization model to estimate parameters involved (i.e. syn-

thesis rate, decay rate and IC50—concentration of ATD which

reduces FT4 synthesis by half) in the differential equation

with sets of TFT data for each patient. We derive an individua-

lized closed-form approximation of FT4 concentration in terms

of ATD dosage and time.

We conducted numerical experiments with the TFT data

of 49 patients. The data were acquired in a retrospective

study entitled, ‘Elucidating the dose response relationship of

thyroid hormone to anti-thyroid drugs in Graves’ disease’,

and ethically approved by the Domain Specific Review Board

(DSRB reference code—C/2011/02012) of National Healthcare
Group, Singapore. This study was determined by the DSRB to

be an exempt category with no requirement for consent from

patients in view of the retrospective nature and de-identified

data. Favourable results were obtained in predicting the FT4

value in response to any ATD dose. In particular, compared

against actual FT4 data within a tolerance, favourable accuracy

rate (77.1%, 75.0% and 83.9%) of predicted FT4 using data from

the first three, four and five visits, respectively, was achievable.

The proposed model has a potential benefit for clinicians to

determine optimal drug dosage for patients with Graves’ dis-

ease to achieve a desired FT4 value within a pre-determined

time period.
2. Methods
In this paper, ODE was employed to describe a mathematical

relationship between the rate of change of FT4 and its output (i.e.

synthesis and secretory rate) and decay rates. The thyroid hormone

output rate is dependent on ATD dosage. This will result in a math-

ematical relationship between rate of change of FT4 concentration

and ATD dosage. Integration of the ODE will then yield the explicit

relationship between FT4 concentration and ATD dosage. Par-

ameters in the equation can be obtained after fitting in a few sets

of TFT individualized by patients. These parameters will thus be

unique to each patient. With the equation and the unique parameters

for each patient, we would be able to predict the optimal ATD

dosage that is needed for each patient to reach the desired target

FT4 concentrations for euthyroidism within a specified time interval.

We can also apply the model to predict the FT4 level for any pre-

scribed dose of ATD if administered over a pre-determined

duration. We then derive a mathematical model to predict the opti-

mal ATD dose using carbimazole for Graves’ disease patients to

reach euthyroid FT4 levels. The model under consideration is

applied to determine the optimal FT4 concentration for each patient

based on to a few sets of TFT data. The FT4 concentration is a

decreasing function over time and will converge to a certain value

when time tends to infinity for any given ATD dose under any given

thyroid activity. We hereby list some notations such as parameters

and variables which will be used in model development.

Variables
— y: free thyroxine concentration (pmol l21)

— d: anti-thyroid drug dosage (mg)

— t: time (day)

Parameters

— A: synthesis rate of y
— C: constant decay rate

— IC50: dosage of ATD that reduces y by half

By definition, y . 0, d � 0, t � 0, and parameters A, C, IC50

are all positive. The effect of the ATD dosage at d mg was derived

by taking reference from the Hill equation [13], which is a sig-

moidal curve that is commonly used to relate the drug

concentration to its effect. Denote the effect of ATD at dosage

d mg to be d=ðIC50 þ dÞ, where IC50 is defined here as the

drug dosage that will result in half the maximum inhibitory

effect on the FT4 synthesis rate. Note that this expression fulfils

the following properties that describe how the effect of the

drug would have varied with drug dosage d mg:

— when d ¼ IC50,
d

IC50 þ d
¼ 1

2
,

— when d ¼ 0,
d

IC50 þ d
¼ 0,

— when d! 1,
d

IC50 þ d
! 1:
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2.1. Differential equations for FT4 concentration
In this study, we use ODE modelling to describe the dynamic be-

haviour of serum FT4 concentration with the dosage of ATD over

time. For the differential equation under consideration, the first-

order derivative of y with respect to t is a polynomial of degree 2

with a non-zero coefficient of y and zero constant term. Namely,

dy
dt
¼ A 1� d

IC50 þ d

� �
y� Cy2: ð2:1Þ

This ODE essentially expresses that the rate of change of FT4

is dependent on the net difference between its rate of synthesis

and its rate of decay. In this model, thyroid hormone synthesis

and secretion rate is modelled as a function of FT4 concentration,

since the thyroid hormone synthesis/secretion rate is dependent

on TSH (or TSH receptor autoantibody level) which is itself

dependent on FT4 level at any given time [14]. As to the

second term in equation (2.1), we assume that the decay of thyr-

oxine follows second-order kinetics instead of first-order kinetics.

This is because thyroid hormone induces its own catabolism. As

such, in a euthyroid state, the half-life of thyroxine is about 7

days, but its half-life shortens to about 3–4 days in the hyper-

thyroid state. Conversely, the half-life lengthens to 8–10 days

in a hypothyroid state. Thus this assumption and equation (2.1)

are biologically plausible and reasonable to describe the FT4

behaviour with time [14].

For simplicity in description, let BðdÞ ¼ 1� d=ðIC50 þ dÞ:
It is clear that 0 , B(d) , 1: Rewrite equation (2.1) as

dy=dt� ABðdÞy ¼ �Cy2, which is actually in form of

dy
dt
þ P(t)y ¼ Q(t)yn,

where P(t) ¼ �AB(d), Q(t) ¼ �C, n ¼ 2:

It is known that the above ODE is a Bernoulli equation with

the order of n ¼ 2 and the general solution being in form of

y1�n ¼ y�1 ¼ e�
Ð

(�P(t))dt
ð

Q(t) �e
Ð

(�P(t))dt
� �

dtþ C1

� �
,

where C1 is an arbitrary constant. Solving the above equation, it

gives that

y�1 ¼ e�AB(d)t C
ð

eAB(d)tdtþ C1

� �
¼ e�AB(d)t CeAB(d)t

AB(d)
þ C1

� �
:

Simplifying the above equation, we derive the following

general solution of (2.1):

y(t) ¼ AB(d)eAB(d)t

CeAB(d)t þ AB(d)C1
:

Hence, we obtain the closed-form general solution of the

ODE (2.1) as below.

yðtÞ ¼ Að1� d=ðIC50 þ dÞÞeA(1�d=ðIC50þdÞ)t

CeA(1�d=ðIC50þdÞ)t þ Að1� d=ðIC50 þ dÞÞ C1
: ð2:2Þ

There are four unknown parameters in the solution function

(2.2), that is, A, C, IC50 and C1. Evidently, A, C, IC50 are positive

by nature. The solution function y(t) is always positive and

would be decreasing over time with the ATD drug treatment.

To ensure that y(t) is positive according to (2.2), we must have

CeA(1�d=ðIC50þdÞ)t þ A 1� d
IC50 þ d

� �
C1 . 0:

After applying some mathematical manipulations, the first-

order derivative of y with respect to t is equal to

y0(t) ¼ dy(t)
dt
¼ C1A3B(d)3eAB(d)t

(AB(d)C1 þ CeAB(d)t)
2
:

It is known that y(t) is decreasing over time t if and only if

y0(t) , 0, which is equivalent to C1 , 0. Thus, to ensure the under-

lying solution function y(t) to be well defined, the parameters

under consideration must satisfy the following conditions:

CeA(1�d=ðIC50þdÞ)t þ A 1� d
IC50 þ d

� �
C1 . 0, C1 , 0: ð2:3Þ

The above ODE model describes the possible behaviours of FT4

concentration in vivo. Note that lim
t!1

yðtÞ ¼ A� IC50=C(IC50 þ d):

This means that the solution function y(t) is monotonously decreas-

ing and tends to an asymptotic constant of A� IC50=C(IC50 þ d) as

time t tends to infinity.

2.2. Mathematical optimization model
The FT4 solution function y(t) under consideration can be treated

as a parametric function in A, C, IC50, C1: The values of these

parameters could be estimated based on the individualized

TFT data. In this study, we apply a mathematical optimization

approach to determine the values of the parameters of interest

with individualized patient data. Consequently, we then derive

the personalized FT4 function y in an explicit form in terms of

the dosage d and time t, which may assist clinicians in medical

decision-making, such as the dosage choice of ATD drug and

the time interval to achieve a desired FT4 target.

In our analysis, the TFT data for each patient were paired with

clinically relevant data that comprise review time interval (equiv-

alent to each treatment duration per dose adjustment) t, the ATD

dose d and FT4 value y. At the initial (first) review, the dose d ¼
0. Based on the tested FT4 value, the medical doctor would initiate

ATD of a certain dosage and review the patient’s FT4 again after a

certain time period. At the next review, depending on the latest

FT4 value, the doctor will adjust the drug dosage accordingly to

target FT4 into the normal range. For convenience in description,

the underlying data are arranged as a collection of three-

dimensional vectors (di�1, ti, yi), i ¼ 1, 2, . . . , m, where i denotes

the ith review and m denotes the total number of patient visits.

For i ¼ 1, d0 ¼ 0, t1 ¼ 0, y1 denotes the initial FT4 value. For

i ¼ 2, . . . , m, di�1 denotes the ATD dosage prescribed at the pre-

ceding review (i.e. (i� 1)-th review), ti denotes the length of time

period from the initial review to the ith review, yi denotes the

tested FT4 value at the ith review. Then, the time interval between

two consecutive reviews is equal to ti � ti�1 for i ¼ 2, . . . , m:
Optimization as a powerful decision-making modelling

strategy has been well developed and widely applied in

decision-making in management science, industrial engineering

and medical decision-making [15–17]. A typical optimization

model comprises three components, i.e. decision variables,

objective function and constraints. Employing an optimization

approach, one can find the optimal solution of decision variables

from a set of alternatives (defined by the constraints) under cer-

tain decision criterion (i.e. objective function). For

i ¼ 1, 2, . . . , m, define function fi by

fi(A, IC50, C, C1, d, t) :¼ f(A, IC50, C, C1, di�1, ti), ð2:4Þ

where f is in the form of the solution function (2.2) of the ODE

model. That is,

f (A, IC50, C, C1, d, t) ¼ A(1� d=ðIC50 þ dÞ)eA(1�d=ðIC50þdÞ)t

CeA(1�d=ðIC50þdÞ)t þ A(1� d=ðIC50 þ dÞ) C1
:

In this study, the values of A, C, IC50, C1 are determined such

that each predicted FT4 value fi at (di�1,ti) could approximate the

actual yi as close as possible, i ¼ 1, 2, . . . ,m: Along this direction,

we turn to find the values of these parameters to minimize

the average deviations between the predicted value of fi and the

actual value of yi. In mathematics, this decision criterion can be

re-formulated as the average of squared differences of fi and yi



Table 1. Descriptive statistics of thyroid function test data of 49 patients,
including mean, standard deviation, median, minimum and maximum of
patient review visits, serum free thyroxine and review interval.

item

review
visit
(time)

FT4 value
( pmol l21)

review
interval
(day)

mean 6.9 20.7 73.5

standard deviation 4.7 16.0 33.9

median 5 15 70

minimum 2 1 5

maximum 24 91 210
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over the underlying visits. In addition to the conditions mentioned

above, these four parameters are required to satisfy the initial con-

dition of the ODE, f1(A, IC50, C, C1, 0, 0) ¼ y1. We also impose an

upper bound of 150 mg on IC50 according to the prescription limits

of accepted clinical practice and guidelines.

The optimization model corresponding to differential

equation (2.1) is as follows:

min
A, C, IC50,C1

1

m� 1

Xm

i¼2

A� IC50=ðIC50þ~diÞeðA�IC50�ti=IC50þ~diÞ

C� eA�IC50�ti=ðIC50þ~diÞ þ A� IC50�C1=ðIC50þ~diÞ
�yi

 !2

subject to A� y1(CþA�C1)¼ 0, (initial condition)

CeðA�IC50�ti=IC50þ~diÞ þA� IC50�C1

IC50þ~di
. 0, i¼ 1, . . . ,m,

A . 0, C . 0, C1 , 0, 0 , IC50 � 150,

ð2:5Þ

where ~di ¼ di�1, i ¼ 1, . . . , m: To aid computational implemen-

tation, we rewrite the inequality constraints of model (2.5) as

below. For i ¼ 1, . . . ,m,

(IC50 þ ~di) ln (A� IC50 � (�C1))� ti � A� IC50

� (IC50 þ ~di) ln (C(IC50 þ ~di))

, 0:

Model (2.5) is a nonlinear optimization problem with a non-

linear objective function constrained by one nonlinear equality

and m nonlinear inequalities together with some boundedness

requirements. This optimization problem can be solved effi-

ciently by using well-developed software, such as Gurobi

Optimizer (www.gurobi.com) and MATLAB built-in solver fmincon
(https://au.mathworks.com/help/optim/ug/fmincon.html).

2.3. What-if analysis on anti-thyroid drug dosage
The estimated parameters A, C, IC50, C1 are considered to be

acceptable if the average predicted FT4 value could meet a pre-

designated tolerance, say within a tolerance of 4.5 pmol l21.

Under this circumstance, the resultant FT4 concentration formula

will be employed to describe the patient FT4 concentration be-

haviour in subsequent analysis on optimal drug dosage,

suitable review interval and so on. On the other hand, for the

cases who could not meet the given estimation tolerance, the pro-

posed framework would be inappropriate to explore issues of

interest like optimal drug dosage. We would suggest further

monitoring and investigation on these patients instead. As we

shall see in numerical in silico experiments, a large portion

(near 80%) of patients under investigation would meet the

tolerance requirement.

Denoted by ~y(t, d), the FT4 concentration formula was

derived above. Consider the following equation:

F(t, d, y) :¼ y� ~y(t, d)

¼ y� A(1� d=ðIC50 þ dÞ)eA(1�d=ðIC50þdÞ)t

CeA(1�d=ðIC50þdÞ)t þ A(1� d=ðIC50 þ dÞ) C1
¼ 0:

ð2:6Þ

Here, t denotes the length of time period since the initial

review, d denotes the ATD drug dosage and y denotes the FT4

value. As to equation (2.6), mathematically we can find the

value of the third variable, given values of any two variables

of t, d, y. A variety of efficient algorithms such as the bisection

method can be used to solve equation (2.6). In this study, we

are interested in addressing some basic and important questions

from the clinical perspective using what-if analysis. Specifically,

(i) for a given drug dosage d, what is the predicted value y of
FT4 in a specified time period? (ii) For a target value y of FT4,

what is the drug dosage d so as to reach this desired value in cer-

tain time? (iii) For a desired target value y and a given drug

dosage d, how long will the time t take so as to reach the value

y? We elaborate these issues by presenting illustrative numerical

examples in the next section.
3. Results
We analysed 49 patients having different sets of TFT data

consisting of drug dosage, time period between two consecu-

tive visits and serum FT4. Patients had various review

episodes ranging from two to 24 times. Basic descriptive

statistics are shown in table 1.

3.1. Parameter estimates
The personalized medicine model under consideration is

different from classical prediction models based on regression

analysis using a large set of observation data. In this study,

we aim to derive an individualized FT4 approximation func-

tion predicted by a few early patient visit data. The data

points associated with each patient are sequential in terms

of visit times and review intervals, which were of high varia-

bility either for each individual patient or for all patients. Due

to this unique feature, we used different patient datasets in

analysis and derived the corresponding FT4 approximation

functions, then compared estimation accuracy rates using

the actual FT4 values of the data. Specifically, for an individ-

ual patient, we estimated values of parameters A, C, IC50, C1

by solving optimization model (2.5) using the patient data

from the first three visits, four visits and five visits of ATD

drug dosage, the time period from the initial visit and the

tested FT4 value at each visit, respectively. We adopted an

estimation tolerance of 4.5 pmol l21 to determine acceptable

estimated parameters in comparison with actual FT4 values

in the data. The desired estimated parameters were then

used to establish the corresponding individualized FT4 con-

centration formula based on the derived closed-form

solution functions of the ODE previously. When solving the

underlying optimization model, we recorded only the sol-

utions satisfying the convergence criteria set by the

optimization solver. In this study, patients experienced differ-

ent review visit episodes ranging from two to 24 review visits

with mean of seven visits and median of five visits. Then, we

chose different datasets for estimating the parameters, i.e.

patients with the first x-visits and with at most the first

http://www.gurobi.com
https://au.mathworks.com/help/optim/ug/fmincon.html
https://au.mathworks.com/help/optim/ug/fmincon.html


Table 2. Comparison of estimation accuracy rates with different datasets.

dataset

number
of
patients

number of
patients
meeting the
tolerance

estimation
accuracy rate

first 3 visits 48 37 77.1%

at most

first 3 visits

49 38 77.6%

first 4 visits 36 27 75.0%

at most

first 4 visits

49 36 73.5%

first 5 visits 31 26 83.9%

at most

first 5 visits

49 35 71.4%
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x-visits if any, x ¼ 3, 4, 5. Table 2 showed the performances of

the proposed model concerning these different visit data

together with the estimation accuracy rates.

As shown in table 2, the estimation prediction accuracy

rate is the highest (83.9%) based on the first five visits data

while it is the lowest (75.0%) with the first four visits data

and the rate of 77.1% was achieved with the first three

visits data. For patients with at most three visits (four visits

or five visits) data, prediction accuracy rates are at least

71.4%. In addition, as we can see from table 2, the sample

sizes with different datasets varied largely. For example,

the patient sample size with five visits data (i.e. 31) is over

35% less than those with three visits data (i.e. 48). The corre-

sponding prediction accuracy rates, i.e. 83.9% and 77.1%,

were both favourable. Their difference (i.e. 6.8%) was accep-

table somehow as the latter case handled much more

patients than the former in prediction. Interestingly, table 2

showed that the obtained estimation accuracy rate using the

first three visits data was slightly higher than that derived

using the first four visits data. This might be due to the

specific structure of the underlying personalized model—

a constrained model where the number of constraints of

interest varies with the number of data points used, resulting

in a possible dynamic feasible set of the parameters, which

may subsequently lead to uncertain performance in predic-

tion to some extent. Another possible reason might be the

high variability of patient visit times and review intervals,

and the arbitrary ATD dosages in the treatment due to the

heterogeneity of patients.
3.2. Optimal drug dosage
As an illustrative example, table 3 reported parameter esti-

mations of several patients (i.e. patients with series numbers

(S/N) 2, 16, 23) using the model (2.5) with at most first five

visits patient data. We then derived the individualized FT4 con-

centration formulae by equation (2.2), which was shown in the

last column of the table. These closed-form FT4 approximations

provide a quick and easy way to predict FT4 and estimate

optimal drug dosage of an individual patient of interest as well.

We compared actual FT4 values and predicted values using

the estimated FT4 formulae. The results were demonstrated in
table 4. We can see that the overall predicted FT4 values were

close to the actual values from patient TFT data. We also

noted that there was a relatively big FT4 difference at the

third review visit for patient 2, compared to the actual one.

Using what-if analysis and the derived FT4 formula ~y, we

estimated FT4 values under various scenarios of time t and

drug dosage d. For any given target FT4 value and certain

time period, the optimal drug dosage can be derived to achieve

the desired FT4 value by solving the associated equation (2.6).

To illustrate the above issues, we can use patient 2 as an

example. The initial serum FT4 was 75 pmol l21 and the

estimated FT4 formula ~y(t, d) is shown in table 3.

We report serum FT4 predictions and optimal drug dosages

under different scenarios, respectively, in tables 5 and 6. As

shown in table 5, the lower the dose, the higher the FT4, while

the higher the dose, the lower the FT4. Also, for any given

dose, the longer the treatment interval period, the lower the

FT4 level. In practice, it is tedious to calculate the exponential

terms involved in equation (2.6). We may simplify these terms

using Taylor expansion and establish a simpler approximation

involving polynomial terms, which would be easier for clini-

cians to estimate FT4 values. Using terms up to the second

order in the Taylor expansion, we can derive the FT4 estimation,

denoted by ~y, in the following way:

~y ¼ 1

z
, where z

¼ C1 þ
CðIC50 þ dÞ

A� IC50
� AC1 1� d

IC50 þ d

� �
t

þ 1

2
C1A2 1� d

IC50 þ d

� �2

t2:

Via a computerized algorithm or software app, medical

doctors can readily estimate FT4 values using the above for-

mula by entering the quantities of review time t and drug

dosage d of interest. According to table 6, patients may

need to take higher drug doses to achieve a lower desired

FT4 within the same time period. Using the model, it is

also possible to determine a reasonable time frame to achieve

a feasible FT4 target if the maximum carbimazole dose con-

straint of 60 mg is applied. For instance, if the targeted FT4

is 10 pmol l21, by solving equation (2.6), we derive that the

patient would need at least 42 days (i.e. six weeks) to achieve

the target with the daily dosage of 60 mg.

Figure 1 demonstrated predicted FT4 normalization in 50

days with different doses. The higher the dose, the steeper

the FT4 curve in the decline phase. Patients with the lower

drug dose would take a longer time to achieve the same FT4

target. These results are in alignment with clinical treatment

in practice as expected. We also investigated the predicted

FT4 curves based on different visit data. As shown in

figure 2, patients may take lower drug doses to achieve the

same desired FT4 target when the FT4 approximation was

based on first fewer visit data.

Figure 3 demonstrates the graph of the FT4 curve in terms

of time and ATD drug dosage of patient 2. The graph shows

that the FT4 value declines with the increases of time and

drug dose. We can also see that when the dosage equals

zero, the FT4 value exponentially increases with time, a situ-

ation that would be expected for patients who refuse or

default ATD treatment. On the other hand, at time t ¼ 0,

the FT4 value decreases when ATD dose d increases.



Table 3. Parameters of patients 2, 16 and 23 derived by the optimization model (2.5) with at most data from the first five visits and closed-form FT4
estimations based on formula (2.2).

patient S/N visit times A IC50 C C1 FT4 formula

2 9 0.052 58.151 0.003 20.051 ~yðt, dÞ ¼ 3:024=ð58:151þ dÞe3:024t=ð58:151þdÞ

0:003e3:024t=ð58:151þdÞ � 0:154=ð58:151þ dÞ

16 3 5.194 72.901 0.371 20.001 ~yðt, dÞ ¼ 378:648=ð72:901þ dÞe378:648t=ð72:901þdÞ

0:371e378:648t=ð72:901þdÞ � 0:379=ð72:901þ dÞ

23 4 4.237 35.062 0.246 20.033 ~yðt, dÞ ¼ 148:558=ð35:062þ dÞe148:558t=ð35:062þdÞ

0:246e148:558t=ð35:062þdÞ � 4:902=ð35:062þ dÞ

Table 4. Comparisons of actual and predicted FT4 values of patients 2, 16, 23 using FT4 formulae shown in table 3 derived with at most data from the first five visits.

patient S/N visits ATD dosage (mg) review interval (day) actual FT4 ( pmol l21) predicted FT4 ( pmol l21)

2 1st 0 0 75 —

2 2nd 30 77 13 11.9

2 3rd 15 28 7 13.9

2 4th 10 168 16 14.8

2 5th 5 168 15 16.0

2 6th 5 91 15 16.0

2 7th 0 98 25 17.3

2 8th 5 84 13 16.0

2 9th 5 203 13 16.0

16 1st 0 0 14 —

16 2nd 15 90 13 11.6

16 3rd 17.5 78 10 11.3

23 1st 0 0 40 —

23 2nd 15 35 16 12.1

23 3rd 15 84 10 12.1

23 4th 7.5 84 13 14.2
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4. Discussion
In the quest to pioneer, a personalized medicine strategy to

manage hyperthyroid Graves’ disease patients using ATDs,

mathematical modelling based on ODE was employed to

derive the solution for which we then applied our optimiz-

ation strategy to the solution. We tested the ability of the

model to predict FT4 values given specific prescribed doses

administered over specified durations. The results are very

promising as we showed that the predicted FT4 levels for

any given ATD dose and time were quite close to the actual

FT4 values.

This study introduced an optimization approach to esti-

mate the underlying parameters. The optimization model is

different from the least square method which has been

widely used to estimate the parameters in regression

models. Specifically, the proposed optimization method is a

constrained model which takes into account some consider-

ations from a practical perspective, such as the initial

condition, the range of IC50, and the trend of FT4 as a
function of time. The underlying method is a personalized

model in that we estimate the individualized numerical

values of the parameters using each patient’s data. This con-

trasts with statistical modelling via the method of least

squares in regression analysis which is an unconstrained

model that relies on a large set of pairs of observations

from patients such that the dataset for parameter fitting

is separate from the validation dataset to avoid yielding

overoptimistic results [18,19].

Very often, physicians would start with a dose that was

heuristically estimated to be sufficiently high to suppress

thyroid hormone synthesis and secretion upon diagnosis of

hyperthyroidism due Graves’ disease. Depending on the

appropriateness of the chosen dose and duration of treat-

ment, the patient will be targeted for clinical review with

the expectation that the subsequent FT4 level would fall

within the normal range. But this may not always be achieved

optimally and the patient may thus take quite a protracted

period prior to the plasma or serum FT4 result achieving

levels within the normal population limits.
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Figure 1. Predicted FT4 curves of patient 2 based on the estimations derived
by the model using data from the first five visits for different drug dosages
with an initial FT4 value of 75 pmol l21. (Online version in colour.)
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Figure 2. Predicted FT4 curves of patient 2 in 42 days derived by the model
with three datasets with an initial FT4 value of 75 pmol l21. (Online version
in colour.)
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Figure 3. FT4 curve of patient 2 in terms of drug dose and time period ren-
dered as a three-dimensional surface plot based on the formula derived by
the model with data from the first five visits with an initial FT4 value of
75 pmol l21. (Online version in colour.)

Table 5. FT4 estimates of patient 2 by the model with data from the first
five visits for any given dosages and review periods with an initial FT4
value of 75 pmol l21.

dose (mg) time period (day) predicted FT4 ( pmol l21)

3 35 19.4

56 17.4

63 17.1

5 35 18.8

56 16.9

63 16.6

8 35 18.1

56 16.2

63 15.9

10 35 17.6

56 15.8

63 15.5

13 35 16.9

56 15.2

63 14.9

Table 6. Optimal dose estimates of patient 2 by the model with data from
the first five visits for targeted FT4 values and review time periods with an
initial FT4 value of 75 pmol l21.

target FT4
value ( pmol l21) time period (day) dose (mg)

12 35 44.1

42 39.9

49 36.6

56 34.0

63 32.1

15 35 22.3

42 18.3

49 15.4

56 13.4

63 12.0

17 35 12.7

42 8.9

49 6.3

56 4.6

63 3.5
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Here, we investigated the feasibility of a novel treatment

paradigm according to an individualized mathematical

model that allows the clinician to select the appropriate dose

of ATD (e.g. carbimazole) that will predictably alter circulating
FT4 to a desired level over a pre-determined duration. For

instance, a common clinical scenario would be solving for a

safe dose of carbimazole to be prescribed with the aim of low-

ering an initial serum FT4 of 50 pmol l21 upon diagnosis of

thyrotoxicosis from Graves’ disease to a pre-specified target

FT4 level of 20 pmol l21 to be attained over eight weeks

using our mathematical modelling approach. Also, we wish
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to elucidate the feasibility of discovering the optimal dose that

would achieve a desired target FT4 level within a duration

specified by the doctor to suit a certain time frame correspond-

ing to the follow-up interval. We developed a mathematical

model to achieve the above objectives and illustrated how

the solutions are unique to each patient so that ATD dosing

is individualized to euthyroid targets.

4.1. Limitations
This entire dissertation is focused on FT4 targets with no

attempt made to find the time to achieve normalization of

TSH. In hyperthyroidism, TSH is often suppressed and remains

undetectable due to the phenomenon of hysteresis [20,21].

However, the present endeavour is concerned only with nor-

malization of FT4 because the threat to life is directly

dependent on the degree of elevation of FT4 beyond the

normal ‘euthyroid’ range. TSH, being a reflection of the

response of the hypothalamus–pituitary–thyroid axis to FT4,

is comparatively less critical for normalization from the per-

spective of risk reduction of mortality or other serious

sequelae from hyperthyroidism. Obviously, the normalization

of FT4 itself is not to be misconstrued as having achieved an

‘euthyroid’ state per se as various tissues of the body recover

from hyperthyroid state at different rates [22,23]. For the

latter, it is important to understand that each individual has a

unique euthyroid set point which may be determined after

the TSH hysteretic suppression has resolved [14,20,21,24–26].

Nevertheless, the achievement of normal circulating FT4

levels is a target of clinical priority taking precedence over the

normalization of TSH especially when hyperthyroid patients

need to be stabilized quickly in order to optimize the patient’s

health status for various reasons (e.g. surgery, thyrocardiac dis-

ease, myocardial ischemia, rapid atrial fibrillation). Yet another

limitation is that any unique solution curve of an individual

might not necessarily imply that the same solution holds true

for the exact same patient who relapses with plasma FT4 of

different level compared with the initial FT4 at first diagnosis

of hyperthyroidism, since the effect of ageing on the responsive-

ness of the hypothalamic–pituitary–thyroid axis is not taken

into account in this modelling exercise. A clinical study might

be undertaken in future to see if it is possible to accurately pre-

dict FT4 given any ATD dose chosen to treat a relapse based on
a known curve of the same patient using parameters derived

from a previous solution curve for that patient.
5. Conclusion
The current practice of titration of ATD for treating Graves’ dis-

ease based on TFT trend is empirical and time-consuming

before an optimal dose is found. In this age of artificial intelli-

gence and precision medicine, antiquated medical practices as

such should be superseded by modern approaches that pro-

mulgates efficiency, accuracy and cost-effectiveness while

eradicating guesswork from the clinicians’ modus operandi

as much as possible. Our personalized medicine model permits

optimal drug dosing of ATD based on parameters such as syn-

thesis rate, decay rate and IC50. We developed an equation

system involving three variables, i.e. time, drug dosage and

FT4, for solving the value of any variable provided the

values of the other two are known. Compared against actual

FT4 data within a tolerance of 4.5 pmol l21, favourable accu-

racy was attainable. The proposed mathematical model when

integrated into computerized algorithms and even mobile

phone apps in the near future may assist clinicians in rapidly

determining optimal ATD dosages to achieve any desired

serum FT4 value within any specified treatment period to

accelerate achievement of euthyroid targets.
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