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The evolution of the field of behavioral neuroscience is significantly dependent on
innovative disruption triggered by our ability to model and phenotype animal models
of neuropsychiatric disorders. The ability to adequately elicit and measure behavioral
parameters are the fundaments on which the behavioral neuroscience community
establishes the pathophysiological mechanisms of neuropsychiatric disorders as well
as contributes to the development of treatment strategies for those conditions. Herein,
we review how mood disorders, in particular depression, are currently modeled in
rodents, focusing on the limitations of these models and particularly on the analyses
of the data obtained with different behavioral tests. Finally, we propose the use
of new paradigms to study behavior using multidimensional strategies that better
encompasses the complexity of psychiatric conditions, namely depression; these
paradigms provide holistic phenotyping that is applicable to other conditions, thus
promoting the emergence of novel findings that will leverage this field.
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INTRODUCTION

Mental health and mental health disorders are receiving progressively greater attention from
the public. This important recognition is related to the effort of (neuro) scientists and mental
health providers to demonstrate its relevance, based on epidemiological data. Amongst psychiatric
disorders, depression is a leading cause of disability, affecting about 310 million people worldwide
(GHDx, 2021), and is predicted to soon become the second leading cause of the global
burden of disease. The underlying causes of depression, and of other complex psychiatric
disorders, are not fully understood but the consensual opinion points to an association between
genetic/epigenetic and environmental factors (Charney and Manji, 2004; Nemeroff and Vale, 2005;
Klengel and Binder, 2013).

Given its multidimensional and heterogeneous characteristics, diagnosing depression poses
significant challenges. There is no specific biomarker of depression and diagnosis is based on
the guidelines defined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) or
the International Classification of Diseases and Related Health Problems (ICD-11); importantly,
some of the core symptoms of depression (e.g., anhedonia) are also present in other psychiatric
conditions (e.g., Schaub et al., 2021). The list of symptoms also include depressed or irritable mood,
cognitive symptoms such as guilt, ruminations and suicidal ideation, emotional symptoms such as
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anhedonia, neurovegetative symptoms such as abnormalities in
sleep, appetite, weight and energy, and psychomotor agitation
or retardation (Kennedy, 2008). The simultaneous occurrence of
several symptoms over a given period of time increases diagnostic
confidence, despite the heterogeneity in clinical presentation,
pathophysiology and even treatment response. That reflects
a complex clinical pathophysiology that is not mirrored in
preclinical models, particularly in the assessment of depressive-
like behaviors which is frequently unidimensional. While the
importance of these animal models is generally accepted by
the research community, their poor predictive power for drug
efficacy in humans (among other problems) cannot be ignored
(Howe et al., 2018). In this review we discuss the possibilities
opened by new caging paradigms allowing 24/7 data acquisition
on multiple behavioral dimensions to tackle manifestation of
depressive behavior.

MODELING AND TESTING DEPRESSION
IN RODENTS

Modeling human psychiatric disorders like depression in rodents,
in which subjective feelings of worthlessness, excessive or
inappropriate guilt, recurrent thoughts of death or suicide,
manifest, is challenging if not unrealistic. While such limits
translational efforts, relevant information was obtained from
preclinical models of depression, especially regarding the
molecular and cellular mechanisms underlying the pathology
(see for review Krishnan and Nestler, 2008, 2011; Fox and
Lobo, 2019; Czeh and Simon, 2021). Indeed, there are many
fundamental physiological and behavioral responses that have
been evolutionarily conserved between species, and so it is not
only legitimate, but also ethically and scientifically responsible,
to explore these networks and systems in rodent models of
psychiatric disorders (Cryan and Holmes, 2005). This has
propelled the development of depression models as well as several
behavioral paradigms to screen depressive-like behaviors (see for
review Holmes, 2003; Cryan and Holmes, 2005; Sousa et al., 2006;
Kalueff et al., 2007; Nestler and Hyman, 2010; Pollak et al., 2010;
Wang et al., 2017; Planchez et al., 2019).

There are several strategies to model depression, but so far
none is completely satisfactory. When designing a model of
a disorder/condition, the most relevant causal events and/or
manifestations are normally applied. In depression, stress has
long been considered a causal factor, but increasingly, genes that
may serve as risk factors are being studied. In fact, and beyond
the first attempts to mimic depression with brain lesions (e.g.,
olfactory bulbectomy; Wang et al., 2007), the most established
animal models of depression recapitulate (either in isolation or
in a combined mode) such processes through selective breeding
(e.g., the Flinder’s sensitive line of rats; Overstreet, 1993) or
genetic engineering (see for review Cryan and Mombereau, 2004;
Lucki, 2011; Planchez et al., 2019; Scherma et al., 2019), as
well as through environmental manipulations—e.g., applying
chronic social (Rygula et al., 2005), isolated or combined stressors
(Willner, 2005). In the process of internal validation, researchers
developing these models have collected data demonstrating

that these animals display behavioral endpoints matching the
characteristics reported either in the DSM or ICD diagnostic
tools as well as neurochemical and molecular features compatible
we those observed in clinical settings (Cryan and Holmes,
2005; Kalueff et al., 2007; Markou et al., 2009; Nestler and
Hyman, 2010; Pollak et al., 2010). Several studies confirmed the
face validity (reproducing symptoms of depression observed in
humans), construct validity (the symptoms in the animal should
be mediated by equivalent neurobiological mechanisms as in
humans) and predictive validity (currently used pharmacological
and non-pharmacological treatments for depression should
modulate the behavioral changes observed in the animal model)
of these models (Willner, 1984; Chadman et al., 2009). In
addition to these validation criteria, it is also important to
consider reproducibility, reliability and feasibility/usability in
across laboratories (Willner, 1997; Pollak et al., 2010); some of
these last criteria, have however been quite challenging to be
consistently established.

Given the importance of the environment in triggering the
most common “exogenous” forms of depression, and in the
absence of simple genetic culprits of this disorder, the use of
“contextual” models, namely exposure to chronic stress protocols
to model depression in rodents, has gained attractiveness in
the field. Several experimental exposure protocols have been
developed to model depression, including early life stress models
(e.g., by maternal separation of young pups for 3 h/day for
a period of approximately 2 weeks; Sanchez et al., 2001),
social defeat models (Rygula et al., 2005; Krishnan et al.,
2007) and chronic mild stress models (Willner et al., 1987,
1992; Willner, 1997, 2005). These models have different, but
acceptable, degrees of face, construct, and predictive validity
and have been instrumental to improve our mechanistic
insights on the neurobiology and treatment of depression
(Bessa et al., 2009; Duman, 2010; Nestler and Hyman, 2010;
Mateus-Pinheiro et al., 2014).

The description of each of these models has been the subject
of several studies, including numerous reviews which will not be
repeated here. In contrast, the rationale behind these models will
be further analyzed, as it is of interest to examine their ability
to measure particular dimensions of depressive-like behavior.
The repetition of bouts of social subordination that characterizes
chronic social defeat, leads to some core symptoms of depression
such as anhedonia and social withdrawal, as well as “metabolic
syndrome” characterized by weight gain and insulin and leptin
resistance (Rygula et al., 2005; Krishnan et al., 2007; Chuang et al.,
2010). Alternatively, protocols of daily exposure to unpredictable
mild stressors (tilted cages, prolonged light periods, food and
water deprivation, wet bedding, cage mate alteration, etc.),
randomly presented along a period of at least 6 weeks have
also been shown to effective (Willner et al., 1987, 1992; Willner,
1997, 2005). These protocols of unpredictable chronic mild stress
(uCMS) combine a less intense social stress component with
qualitatively different stimuli that mimic a broader spectrum of
environmental challenges to the animal. Obviously, the range of
stimuli presented renders the protocol longer, more complex and
introduces more confounding factors than those using repeated
exposure to a single stressor but importantly, the fact that the
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exposure to different stressors is unpredictable has a significant
benefit to reduce the adaptative response of rodents and, in
this way, increase the likelihood of expression of susceptibility
to the experimental protocol and the display of depressive-like
symptoms. Exposure to uCMS was shown to induce a decrease
in responsiveness to rewards in a variety of different behavioral
paradigms as well as behavioral despair and learned helplessness,
but it also induces several other symptoms including decreased
sexual, investigative and self-care behaviors, and decreased
locomotor activity during the active period of the light/dark
cycle, disturbed sleep patterns—revised in Willner (1997, 2005).
Predictive validity of the uCMS depression model was shown by a
reversal of depressive-like behaviors by chronic treatment with a
wide variety of clinically effective antidepressants (Moreau et al.,
1992; Monleon et al., 1995; Forbes et al., 1996; Willner, 1997,
2005; Bessa et al., 2009).

As expected, the effectiveness of the models is assessed by
applying testing paradigms to measure outcomes that are of
relevance to depression. In fact, similar to the human condition
in which questioning the patient about his mood and other
symptoms is the keystone of diagnosis, herein the measurements
of depressive-like behaviors/phenotypes are critical and should
be aligned in the main dimensions reported in the DSM or
ICD diagnostic tools (Cryan et al., 2002; Holmes, 2003; Cryan
and Holmes, 2005; Matthews et al., 2005; Kalueff et al., 2007;
Nestler and Hyman, 2010; Pollak et al., 2010). The most popular
behavioral tests of depression in rodents are those measuring
unidimensional domains. Those include the forced swimming
test (FST) (Porsolt et al., 1977) and the tail suspension test
(TST) (Steru et al., 1985), that capture behavioral despair
in rodents through immobility time after exposure to these
inescapable stressors. Other learned helplessness test, in which
animals exposed to unpredictable and uncontrollable stress (e.g.,
electric foot shock) subsequently develop coping deficits for
aversive but escapable situations, is another commonly used test
paradigm (Maier and Watkins, 2005). The popularity of these
tests relies on the fact that they are inexpensive, easy to use and
provide simple and high throughput measures; as an additional
virtue, it is possible to establish extensive comparisons with
results obtained in other labs and after different manipulations
(including therapeutic interventions) (Cryan et al., 2002; Pollak
et al., 2010; Castagne et al., 2011). A major drawback, is that these
tests provide a reductionist perspective of a complex disorder.
Also, there is evidence that floating behavior in the FST could be
an adaptive response to a stressor (Mul et al., 2016)—see also for
a commentary (Molendijk and De Kloet, 2015)—not necessarily
reflecting depression.

As recognized by many clinicians, anhedonia is a core
symptom of depression and, therefore, a relevant measure in
animal models of depression (Gorwood, 2008). Of course, loss
of interest and the inability to feel pleasure and joy cannot be
captured in a interrogative way in animals. However, indirect
proxies can be obtained in rodents. By far, the most popular
is the sucrose preference test (SPT); as with the behavioral
despair and helplessness tests, the SPT is relatively easy to
perform, and evaluates the preference for, and consumption of,
a sweet/rewarding (sucrose or saccharin) solution in comparison

to water/neutral solution (Willner et al., 1987). Several studies
reveal that animals submitted to the models described above
display a reduction in sucrose preference, that can be reverted
by antidepressant drugs, such as imipramine, fluoxetine or
citalopram (Papp et al., 1996; Rygula et al., 2006; Bessa et al.,
2009). Variations of this test have been developed, such as
the Sweet Drive Test (SDT), which integrates food preference
measurements with ultrasonic vocalizations (Mateus-Pinheiro
et al., 2014). As before, these tests are not immune to criticism,
such as the fact that, in most cases, these tests require food-
deprivation which might interfere with the physiology and
motivation of the animals.

LIMITATIONS IN MODELING AND
MEASURING DEPRESSIVE-LIKE
BEHAVIORS

As discussed above there is a relatively limited set of parameters
that can be considered akin to depressive symptoms and that
can be objectively measured in rodents, including homeostatic
symptoms (e.g., abnormalities in sleep, appetite, weight and
energy balance), anhedonia and locomotor behavior (Krishnan
and Nestler, 2008; Nestler and Hyman, 2010). Core internalized
feelings (e.g., depressed mood, feelings of worthlessness, or
excessive guilt) are obviously impossible to infer in rodents.
Such misalignment might explain for instance why prototypic
antidepressants have been shown to be effective in behavioral
despair/learned helplessness tasks upon a single acute challenge—
see for a meta-analysis (Kara et al., 2018)—while in clinical
settings 2–3 weeks are normally required.

An additional limitation is the periodic, short measurements
of specific behavioral dimensions typically used in the field.
To circumvent this limitation, several studies make use
behavioral tests batteries in sequential days, aiming to target
specific behavioral dimensions, as well as their respective
neurophysiological biochemical, anatomical or endocrine
underpins (e.g., Bessa et al., 2009). However, such strategy
carries potential confounders including the sequence of the
tests and potential “carry-over” effects. In both cases, the
sensitivity of the models to intrinsic and extrinsic factors
adds to the normal intra- and inter-laboratory variability.
Factors such as sex, age, strain, endocrine, nutritive and social
status, and genetics, as well as housing and testing conditions
(e.g., time of the day, experimenter, cohort-removal etc.), can
impact significantly on depression-related behavioral outcomes
(Balcombe et al., 2004; Anisman and Matheson, 2005; Van
Driel and Talling, 2005; Castelhano-Carlos and Baumans, 2009;
Sorge et al., 2014; Takao et al., 2016) which in turn impact
on data reproducibility and on its potential translation. The
establishment of consensual standards and the introduction of
automated data collection (reducing the human intervention),
in adequate, more naturalistic conditions, is essential (see for
example Takao et al., 2007). Indeed common housing conditions
do not provide satisfactory levels of stimulation diminishing
the ethological values of the readout while providing poor
animal welfare (Wurbel, 2001; Latham and Mason, 2004;

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 January 2022 | Volume 15 | Article 811987

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-811987 December 31, 2021 Time: 10:23 # 4

Leite-Almeida et al. New Horizons in Rodents Phenotyping

Zhu et al., 2006; Balcombe, 2010); furthermore it can limit
the ability to discriminate of depressive-like behaviors (see
also below; Castelhano-Carlos et al., 2014). These limitations
are of relevance when modeling this condition because the
lack of social interactions is not only a trigger of, but also a
measure of, depressive behaviors. Moreover, the absence of a
complex and “enriched environment also limits the possibility
of measuring parameters that may inform on the phenotype
of individual animals within a group. Therefore, for both
scientific and ethical reasons, animal welfare should be taken into
consideration when developing models of psychiatric disorders
(Van Der Staay et al., 2009).

To sum up, the testing paradigms referred above have been
designed to obtain fast readouts of depressive-like behaviors,
normally in contexts of low ethological significance (Cryan and
Holmes, 2005; Frazer and Morilak, 2005). These lack relevant
temporal information and are prone to technical interferences
which can impact on data quality. An urgent reappraisal of
the methods and strategies used in the context of preclinical
depression research is essential.

MULTIMODAL PARADIGMS TO SCREEN
DEPRESSIVE-LIKE BEHAVIORS

As discussed above, multimodality is a requirement for any
new experimental setting destined to address depressive-like
behavioral manifestations (possibly extensible to any another
modeled neuropsychiatric condition). Such requirement stems
not only from the diverse behavioral dimensions that are affect
on each model (activity, mood and cognition) but also from
the inherent variability observed even in inbred colonies—see
example below (Torquet et al., 2018). Such variability can simply
be the result of differences in the phenotypical manifestation of
depression—i.e., subjects are equally affected by the depression-
inducing manipulation (e.g., stress) but manifest it in various
manners—but can also result from different susceptibilities to
the modeling condition between subjects—e.g., stress; see for
instance (Magalhaes et al., 2017, 2018, 2019). A second aspect
that needs to be considered is the setting itself is how it can
impact in the quality of the obtained data. For instance, in
an unenriched vs. enriched housing comparison it was found
that the former presented enhanced sensitivity to reward loss
in the absence of any additional manipulation (Burman et al.,
2008; see also for review Rogers et al., 2019; Smail et al., 2020).
Also, evidence gathered in studies using enriched environments
where rodents’ face more challenges than standard rodent
housing, in a naturalistic context has the potential to produce
more consistent and valid results. Our series of studies on the
PhenoWorld (PhW) provide some evidence in this direction
(Castelhano-Carlos et al., 2014, 2017). In a comparison between
a PhW colony of rats and rats housed in standard cages (6
rats in both cases) a number of aspects emerged: PhW animals
had (i) better circadian sleep/wake rhythms in comparison
to standard housed animals; (ii) reduced/increased levels of
corticosterone at light/dark phases; and (iii) better performance
in helplessness, anhedonia and anxiety paradigms. Importantly,

the PhW was able to detect behavioral alterations (reduction
in food consumption and running wheels) induced by chronic
mild stress as well as recovery upon antidepressant treatment. As
potential factors contributing to these results are the large areas
[animals can perform more species-specific natural behaviors)
and the availability of enrichment elements (running wheels),
a certain controllability over the housing environment (access
to the different areas is RFDI (radio frequency identification)
controlled] and reduced contact with the experimenter—see for
an example of experimenter influence (Sorge et al., 2014). Thus,
the PhW naturalist environment aligns the concept that “better
animal models ensure more generalizable results” (Poole, 1997).
A third aspect pretrains with the ability to collect longitudinal
strings of data and to maintain a continuous control over the
setup. This is of particular interest in the context of depression,
as the dysregulation of activity cycles can provide a good readout
of maladaptive behavior (e.g., Shimizu and Hara, 2020; Yuan
et al., 2020; Li et al., 2021; see also for review Mendoza and
Vanotti, 2019). Moreover, it has been demonstrated that the
temporization of specific behaviors to specific time periods
(e.g., food availability/activity period) can be beneficial regarding
the manifestation of depressive- and anxiety-like behaviors
(Guerrero-Vargas et al., 2021); such can be easily achieved in the
PhW which again can contribute to unmask depression triggering
factors by lowering baseline depressive-like behaviors.

Setups like the PhW also permit use of standard behavioral
tests in an automated way, by monitoring access to the
test arenas (spontaneous exploration). Thus, impressive data
sets can be collected for individual animals and opens the
way to predict individual trajectories that are of relevance to
better phenotyping. Besides facilitating correlations/associations,
including with genotyping, these combinatorial measures are
likely to lead to the discovery of novel mechanisms that underly
depressive-like behaviors and, likewise, of better interventions
that may eventually be tailored to individual profiles of the
disorder. Although costs involved are relevant, the possibility
of gaining a holistic view of behavioral changes, represents a
unique opportunity to leverage the quality of the behavioral
data produced; ultimately, one might envisage that a single
longitudinal observation of a group of animals might produce
behavioral data relevant from multiple behavioral dimensions
which is of relevance for complex neuropsychiatric disorders.

Moreover, and given that several other layers of complexity in
the assessment of different behavioral domains can be added in
the PhW and that the analysis of longitudinal variations of these
measurements is yet to be performed, it is reasonable to assume
that these paradigms have the potential to add valuable insights to
phenotypic characterization of mood disorders in animal models.
For instance, the PhW paradigm permits the simultaneous
characterization of the cognitive domain of the animals which
is another behavioral domain affected in depression and shown
to present with mood and anxiety behavioral alterations in a
comorbid manner (Bessa et al., 2009). Or, by analysis of operant
behavior available in the PhW, assessment of value reward and
decision-making may be incorporated to phenotyping analyses
of depressive-like behavior (Der-Avakian et al., 2013; Morgado
et al., 2015). The observation of increased social interaction
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of rats living in the PhW in comparison to standard housed
animals allied to the performance of natural species-specific
behaviors such as gnawing, climbing, running and hopping,
grooming, constitute evidence that, even though in the laboratory
context, the PhW creates a more naturalistic environment for
the animals. Combining this fact with the automated testing
of animals avoids important interferences from external factors
that imply intra- and inter-laboratory variability and promote
a more realistic analysis of trait factors (Balcombe et al., 2004;
Anisman and Matheson, 2005; Van Driel and Talling, 2005;
Willner, 2005; Castelhano-Carlos and Baumans, 2009; Sorge
et al., 2014). Variability of experimental results performed in
such conditions will reflect individualities of each animal, which
are valuable for the translation of results obtained with animal
models into the human situation, contributing to progress in the
knowledge of the complex brain-behavior processes in health and
in disease. In this way, the PhW constitutes a good setting to
analyze inter-individual relations in a group.

Other commercially available experimental settings like the
LABORAS, PhenoCube or the IntelliCage also offer interesting
solutions. The latter is probably one of the most used alternative
in mice—see for a recent review (Kiryk et al., 2020)—including
for the assessment of depressive-like behaviors (e.g., Branchi
et al., 2010; Cathomas et al., 2015; Milior et al., 2016; Alboni
et al., 2017; Oizumi et al., 2020; Sun et al., 2021)—particularly
anhedonia. These solutions are also highly versatile, i.e., they
accommodate many experimental designs, and contrary to the
PhW are relatively small. However, a great advantage of settings
like the PhW is its modular nature as different paradigms can be
easily incorporated in the central structure. For instance, Torquet
et al. (2018) redesigned it and associated a T-maze to test for
decision-making—“Souris City”—to demonstrate in a relatively
homogenous inbred mice population individual social and
cognitive differences as well as the underlying neurobiological

substrates. Finally, another front advancing fast in behavioral
analysis comes from the application of machine learning
approaches to the analysis of 2D videos but also 3D tacking
advantages of multiple sources and triangulation techniques—see
a recent comment here (Vogt, 2021) and references within. These
offer excellent perspectives for the analysis of social behaviors and
other behavioral dimensions also affected in mood disorders.

CONCLUSION

Herein we have reviewed the most relevant aspects of modeling
and phenotyping depressive-like behavior in rodents. A brief
overview of the available, and more popular models and tests
was given highlighting their strengths and limitations. Using the
PhW as an example, we reviewed the benefits of using novel
paradigms that leverage the possibilities of phenotyping across
multiple dimensional domains either at individual or group
levels with unprecedent precision and quality that may carry
this area of research (and certainly others) to higher standards
and novel horizons.
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