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Since TGF-b was recognized as an essential secreted cytokine in embryogenesis and
adult tissue homeostasis a decade ago, our knowledge of the role of TGF-b in mammalian
development and disease, particularly cancer, has constantly been updated. Mounting
evidence has confirmed that TGF-b is the principal regulator of the immune system, as
deprivation of TGF-b signaling completely abrogates adaptive immunity. However,
enhancing TGF-b signaling constrains the immune response through multiple
mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell
apoptosis in the disease context. The love-hate relationship between TGF-b signaling
and the immune systemmakes it challenging to develop effective monotherapies targeting
TGF-b, especially for cancer treatment. Nonetheless, recent work on combination
therapies of TGF-b inhibition and immunotherapy have provide insights into the
development of TGF-b-targeted therapies, with favorable outcomes in patients with
advanced cancer. Hence, we summarize the entanglement between TGF-b and the
immune system in the developmental and tumor contexts and recent progress on
hijacking crucial TGF-b signaling pathways as an emerging area of cancer therapy.
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INTRODUCTION

The immune system’s integrity and function are critical determinants of normal development and
disease outcomes, particularly cancer. All immune system cells, including lymphocytic T, B, NK,
and myeloid cells, originate from the hematopoietic stem cells and undergo multiple developmental
stages, and TGF-b is imperative in all developmental stages. In the cancer context, the immune
system and tumors evolve with unique features, making it more complicated to elucidate the
multifunctional features of TGF-b during tumorigenesis. The undesirable clinical results of
inhibiting the TGF-b pathway pose significant challenges for targeted therapy in cancer
therapeutics. Therefore, we mainly summarize the crosstalk between TGF-b and the immune
system in the context of homeostasis and disease, particularly cancer.
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In both the embryonic and postnatal development stages,
nearly all cells respond to TGF-b family signals and make fate
decisions under the influence of TGF-b signals (1, 2). As the
main components of adaptive immunity, T cells and B cells
respond to TGF-b signals in different developmental stages, thus
resulting in the progression or blockage of development. When
mature T and B cells migrate into the periphery, they maintain
peripheral immune homeostasis until they are activated by
foreign antigens and differentiate into cell subsets, mostly with
TGF-b involvement.

The tumor and tumor microenvironment (TME) evolve
coordinately with reciprocal signaling from the tumor bulk, which
consists of tumor cells, tumor epithelial cells (TECs), carcinoma-
associated fibroblasts (CAFs), and immune cells. Different cells
within the tumor context respond to TGF-b stimulation in a
context-dependent manner and have considerable signaling
heterogeneity, which is an impediment to therapeutic approaches
for patients with cancer. A comprehensive understanding of the
function of TGF-b in oncogenesis requires sufficient knowledge of
the complicated responses of different cell types in the tumor to
TGF-b. Here, we summarize current knowledge on TGF-b
signaling functions in individual cellular components enclosed by
the TME. Clarifying the immunosuppressive role of the TGF-b
signaling pathway within tumors (3–5) and converting the tumor-
suppressive microenvironment by remodeling TGF-b-initiated
transmembrane signaling have spurred therapeutic progress in
TGF-b-related drugs, including molecular blockers, CAR-T cells,
and bispecific antibodies. We also highlight future challenges and
directions in combining established regimens with anti-TGF-b to
further enhance therapeutic efficacy.
BIOLOGICAL ACTIVITY AND SIGNALING
MODELS OF THE TGF-Β-RELATED
PATHWAY

The biology of TGF-b signaling has been extensively investigated
in several invaluable reviews (3, 6). Figure 1 presents a flow
diagram of TGF-b secretion and the downstream signal pathway
activation process. Overall, the mammalian genome encodes
three functionally overlapping TGF-b isoforms, and each
isoform binds noncovalently to the latency-associated peptide
(LAP) at the N-terminal portion (7, 8). LAPs associate with the
large ECM protein LTBP (latent TGF-b1 binding protein) by
disulfide bonds to compose a tripartite complex termed the large
latent complex (LLC). The primary biological function of LAP in
LLC is to confer latency to TGF-b by preventing the binding of
TGF-b to TGFR1 and TGFR2, whereas LTBP mainly functions
to tether bona fide latent ligand to the ECM and assist with the
proper folding and secretion of TGF-b (9). The release of TGF-b
from the ECM mainly occurs through extracellular proteolytic
cleavage from the LAP domain dependent on proteases (7), as
well as matrix metalloproteinases in the TME (10).

Released TGF-b triggers cellular signaling by engaging with
the tetrameric receptor complex, which is composed of TGF-bRI
and TGF-bRII. Then, TGF-bRII binds to TGF-b and recruits and
Frontiers in Immunology | www.frontiersin.org 2
phosphorylates TGF-bRI in the form of a heterotetrameric
complex. Activation of the TGF-b receptor complex triggers
Smad-dependent or non-Smad-mediated cascade events. In the
canonica l Smad-mediated model , TGF-b binds to
transmembrane receptors and then recruits and phosphorylates
intracellular Smad2 and Smad3 proteins, forming heterotrimeric
complexes with SMAD4, which then translocates into the
nucleus to activate or repress target gene transcription (11).

The SMAD-independent noncanonical TGF-b signaling
pathway includes several context-dependent downstream
pathways, including the ERK/MAPK, PI3K/AKT, and MKK/
p38 pathways (12, 13). For example, during the epithelial-
mesenchymal transition (EMT), TGF-b-modulated fibroblastic
lineage reprogramming and cell emigration are dependent on
p38 mitogen-activated protein kinase (14). The kinetics and
functions of the ERK/MAPK pathway when encountering
TGF-b stimulation in epithelial cells, fibroblasts, and cancer
cells are tissue specific (15).
THE TGF-Β SIGNALING PATHWAY IS
INVOLVED IN THE DEVELOPMENT OF
THE HEMATOPOIETIC AND IMMUNE
SYSTEMS

Hematopoietic stem cells (HSCs) sustain the lifelong provision of
immune cells. The immune system is a complex network of
biological processes that protect individuals from infection and
disease. TGF-b plays essential roles in different stages of immune
system development and maintains immune tolerance and
cellular homeostasis by exerting specific functions on various
immune cell components, as summarized in Figure 2.

Hematopoietic Stem Cells
The earliest evidence supporting the role of TGF-b in mouse
development was obtained by mutation of the TGF-b1 gene in
embryonic stem cells, which led to mice dying by 3-4 weeks of
age (16, 17). HSCs in the bone marrow were shown to preserve
quiescence and infrequent division to maintain the continuous
replenishment of the mature peripheral immune cell pool.
Numerous subsequent studies have confirmed the role of TGF-
b in the hematopoietic system in both humans and mice (18–20).
In bone marrow, the ablation of megakaryocytes (MKs)
significantly increases HSC proliferation through TGF-b-
SMAD signaling (21). Furthermore, several groups provided
evidence for the physiological influence of TGF-b in
maintaining HSC quiescence, including increased HSC cycling
and reduced regenerative capacity upon transplantation in TGF
TGF-b RII-deficient HSCs (22), impaired HSC homing upon
transplantation in TGF-b1-deficient neonates (23), and
improved hematopoietic regeneration after TGF-b blockade
with a neutralized TGF-b antibody (1D11) accompanied by
chemotherapy (24). Interestingly, the self-renewal and
differentiation capacity of HSCs do not differ between steady-
state and stress conditions in mice deficient in TGF-bRI (25, 26).
The higher expression level of TGF-bRII within HSCs and other
May 2022 | Volume 13 | Article 891268
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FIGURE 1 | Canonical and noncanonical TGF-b signaling. Engagement between TGF-b and its receptor initiates canonical and non-canonical signaling pathways.
The mature fragment of TGF-b1 remains associated with latency-associated peptide (LAP) at N-terminal propeptide. LTBPs (latent transforming growth factor b
binding proteins) from the extracellular matrix (ECM) form the large latent complex (LLC) with TGF-b in the endoplasmic reticulum. When TGF-b was released and
recognized by receptors, it subsequently stimulates the canonical and non-canonical pathways in cells through separate mechanisms. In canonical signaling, which
is also called the SMAD-dependent pathway, the receptor activation triggers a cascade of SMAD proteins phosphorylation and translocation into the nucleus, thus
promoting the downstream gene expression. While in non-canonical signaling, the receptor ligation leads to SMAD non-dependent pathway activation, including
MEK/ERK pathway, AKT pathway, MAPK, and p38 pathways.
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TGF-bRI-independent pathways may explain the differences
detected between the two mouse models. Overall, TGF-b
interferes with growth mainly through the upregulation of
p57Kip2 in the most primitive HSC compartment (27–29). In
addition, TGF-b1-deficient mice display enhanced myelopoiesis,
suggesting a negative regulatory role of TGF-b in myelopoiesis
(30). The above observations indicate that TGF-b is a pivotal
regulator of the host hematopoietic system.

CD8+ T Cells
T and B cells derived from HSCs are essential components of the
adaptive immune system. As the thymus is the primary site for
T-cell development, early studies primarily focused on TGF-b
regulation of intrathymic T-cell development. Notably, most
intrathymic ab T lymphocytes undergo a negative selection
process, during which a majority of ab T lymphocytes with
high affinity for autonomous antigens are eradiated to avoid self-
attack. Strikingly, TGF-b signaling-deficient DP thymocytes
bypass negative selection, leading to substantial accumulation
in the periphery and induction of autoimmune lesions in several
organs (31). In addition, when intrathymic immature double-
positive (DP) T cells differentiate into single CD8+ T cells, TGF-b
regulates the cell surface level of IL-7Ra on CD8+ thymocytes
Frontiers in Immunology | www.frontiersin.org 4
and promotes CD8+ T cell lineage commitment by suppressing
Gfi-1, a known IL-7Ra transcriptional repressor (32). A subset of
CD8+Foxp3+ Treg cells that possess repressive function in the
thymus are induced by TGF-b stimulation from CD8+Foxp3− T
cells (33, 34). Likewise, sustained commitment of thymus-
derived CD4+FoxP3+ regulatory T cells (Treg cells) requires
TGF-b signaling (35, 36). In summary, TGF-b instructs the
intrathymic development of conventional CD8+ T cells and
intrathymic differentiation of CD8+ Treg and CD4+ Treg
populations. To interpret the specific role of TGF-b in
peripheral mature T cells, Richard A Flavell’s laboratory
generated a transgenic mouse model in which TGF-b signaling
was exclusively abolished in T cells. The mice showed high
infiltration of inflammatory cells in diverse organs, automatic
activation of T cells, and autoimmune antibody secretion,
confirming the role of TGF-b in modulating immunological
balance (37). Subsequently, other laboratories constructed mice
with TGF-bRII or TGF-bRI deficiency governed by the CD4
promoter, which showed severe developmental defects in T-cell
lineages and autoimmune-associated lesions (35, 38). In
addition, when major histocompatibility complex (MHC) class
II molecules were mutated in TGF-b1-null mice, the mutation
rescued the inflammatory phenotype (30), suggesting that TGF-
FIGURE 2 | Schematic overview of the multiple effects of TGF-b on immune cells. TGF-b signaling broadly regulates the development of immune cells from the
embryo to the adult. TGF-b exerts cell-specific functions in multiple immune cell components during development via different molecular mechanisms.
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b1 deficiency results in an uncontrolled T-cell response.
Collectively, the above studies convincingly identify a
dominant role for TGF-b acting directly during the T-cell
development process by maintaining immunological
homeostasis, affirming the significance of TGF-b in regulating
T-cell activity.

CD4+ T Cells
TGF-b signaling maintains cellular homeostasis in a similar way
in CD4+ T cells by promoting the expression of IL-7Ra.
However, due to the multifaceted nature of differentiation
activity, TGF-b also exerts different functions on individual
CD4+ T subsets, including Th1, Treg, Th17, and Th9 cells.

T Helper 1 (Th1) Cells
Th1-cell differentiation is driven by the master transcription
factor T-bet, which is potently inhibited by TGF-b (39). Ectopic
expression of TGF-b in developing Th1 cells abolish the
inhibitory effect of TGF-b (40), confirming the imperative role
of TGF-b in limiting Th1-cell differentiation. Low Th1-cell
activity and reduced immune cytotoxicity can forecast negative
outcomes in colorectal cancer patients (41). In particular,
microsatellite-instable (MSI) colon cancer patients exhibit an
elevated ratio of Th1-to-naive T cells, which is inversely
correlated with tgfb gene expression (42).

T Helper 2 (Th2) Cells
The role of TGF-b in Th2 cells is controversial. In an early study,
adding TGF-b to naive T cells led to the inhibition of Th2 cell
differentiation by inducing Sox4, a transcription factor that
negatively regulated the Th2 master regulator GATA-3. In
addition, TGF-b was able to directly prevent Th2-associated
cytokine secretion, including IL-5 secretion (43, 44). Intriguingly,
when murine T cells lack both T-bet and TGF-bRII expression,
they also spontaneously exhibit inflammation, which is
associated with reinforced Th2 cell differentiation (45). In
addition, in a TGF-b-rich context, such as the mucosa of T.
muris-infected mice, the protein mina may act as an important
counterbalance to the induction of Relmb by the Th2 cytokines
IL-4 and IL-13 (46). In cancer, a study that TGF-b signaling
hinders Th2 cell responses that reconstruct the tumor
vasculature and restrain tumor advancement (47).

Treg Cells
Several studies have elaborated the major role of TGF-b signaling
in Treg cells (36, 48). In essence, TGF-b signaling supports
thymus-derived Treg cell survival by suppressing T-cell clonal
deletion and promoting induced Treg (iTreg) cell differentiation
in the periphery by inducing Foxp3 expression. Additionally,
TGF-b directs the movement or retention of Treg cells in
inflammatory tissue through several different molecular
mechanisms, such as GPR15-mediated homing into the large
intestine mucosa (49). Mechanistically, the engagement of TGF-
b signaling promotes the binding of Smad3 to the enhancer
region of Foxp3, which is called CNS1 (50, 51), to modulate
Foxp3 expression. In addition, Smad2 cooperatively interacts
with Smad3 in iTreg cell production (52).
Frontiers in Immunology | www.frontiersin.org 5
T Helper 17 (Th17) Cells
The signaling mechanisms underlying the role of TGF-b in the
differentiation of the Th17-cell subset are controversial. Dan R
Littman’s group proposed a dose-dependent theory in which a low
concentration of TGF-b promotes Foxp3 expression, while a high
concentration of TGF-b upregulates IL-23 receptor levels on CD4+

T cells and promotes RORgt+ Th17-cell commitment (53). As a
TGF-b family member, BMP receptor 1a was demonstrated to
suppress Th17-cell differentiation from CD4+ T cells because the
loss of this receptor promotes the differentiation of Th17 cells and
exacerbates colitis in a mouse model. By contrast, another study
found that the ALK5 (TGF-b type I receptor kinase) inhibitor SB-
505124 potently inhibited human Th17 differentiation in vitro by
decreasing the gene expression of il-17 and rorgt genes, along with
the protein level of IL-17 (54). These pieces of evidence suggest that
TGF-b family members may perform individual tasks during Th17-
cell differentiation.

T Helper 9 (Th9) Cells
T helper 9 (Th9) cells are CD4+ effector T cells that exert robust
antitumor activities that are as strong as those of Th1 cells (55).
Several studies have confirmed that TGF-b, in conjunction with
IL-4, controls the differentiation of Th9 cells (56, 57). The
underlying molecular mechanism includes downregulation of
the expression of the DNA-binding inhibitor Id3 by TGF-b1 in
conjunction with IL-4, which accelerates the elevated binding of
E2A and GATA-3 to the promoter region of IL9, thus resulting
in increased Il9 gene transcription and Th9 cell differentiation
(58). Th9 cell differentiation depends upon TGF-b along with IL-
4, which is also explained by the molecular induction of the
transcription factor PU.1 (59, 60). In addition, a recent study by
Yichuan Xiao’s group reported that TGF-b collaborates with
BFAR (a bifunctional apoptosis regulator) to regulate the
antitumor function of Th9 cells, as BFAR-overexpressing Th9
cells display favorable antitumor efficacy. By contrast, BFAR KO
significantly inhibits TGF-bR1 ubiquitination and Th9
differentiation, hence inhibiting the antitumor function of Th9
cells (61). Taken together, the above studies emphasize the
importance of TGF-b in Th9 cell differentiation and function.

B Cells
The involvement of TGF-b in B-cell development has been
demonstrated extensively. In the early developmental stage,
BMP-6 participates in fine-tuning of human bone marrow B
lymphopoiesis by upregulating two important Smad targets, Id1
and Id3 (62). Moreover, TGF-b1 inhibits kappa acquisition in
murine pre-B-cell clones (63), thereby regulating the transition
between the pre-B-cell stage and the mature plasma cell stage
with immunoglobulin-secreting ability. Antiproliferative effects
of TGF-b in both murine and human mature B cells treated with
exogenous TGF-b in vitro were subsequently reported (64, 65).
Simultaneously, TGF-b also exerts a robust pro-apoptotic effect
in human and murine B cells through Smad3-mediated Bim
expression (pro-apoptotic member) (66, 67). B-cell-specific
knockout mice with TGF-bRII deficiency show dramatically
increased proliferation of peripheral B cells in response to a
usually fragile immunogen, resulting in disrupted lifespan and
May 2022 | Volume 13 | Article 891268
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conventional B cell function (68). Interestingly, mice with B-cell-
specific Smad2 deficiency exhibit normal B-cell development but
an impaired switch to IgA and expanded peritoneal B1a cells in
Peyer’s patches (48), indicating a distinct context-dependent role
of TGF-b in B-cell equilibrium. In summary, TGF-b impacts the
establishment of the B-cell-based immune system from the early
developmental stage to the mature functional stage.

iNKT Cells
iNKT cells and conventional T cells arise from the same double-
positive progenitor thymocytes, but unlike conventional T cells,
iNKT cells mainly recognize endogenous and exogenous lipid
antigens, which are presented by atypical MHC class I–like
CD1d molecules. TGF-b signaling fine-tunes iNKT cell
survival and development. A study in conditional knockout
mice showed that TGF-b signaling regulates the precursor cell
differentiation of iNKT cells, therefore impairing the maturation
of iNKT cells in the thymus and in the periphery (69). A
subsequent study identified the role of the TGF-b/SMAD4 axis
in controlling RORgt+ iNKT subset development and operation
during infection conditions (70). The role of the miR-17∼92
family in regulating iNKT cell development and maturation by
regulating TGF-b signaling was revealed by another group (71).
Overall, TGF-b drives the intrathymic growth of iNKT cells and
plays an essential role in maintaining the function of mature
iNKT cells in the periphery.
JANUS-FACED REGULATION OF TGF-Β
SIGNALING IN TUMOR PROGRESSION

The dual role of TGF-b in tumor progression is highly context
dependent, with a tumor-suppressing role in the beginning
stages of carcinogenesis and a tumor-promoting role during
subsequent tumor progression. In the early stage, TGF-b
signals predominantly inhibit cell proliferation, promote
apoptosis (72), and maintain genome stability as a tumor
suppressor (73). TGF-b expression is low in epithelial cells but
increases in hyperplastic and neoplastic tissues. In noncancerous
and premalignant cells, TGF-b promotes robust retardation of
cell cycle progression by inhibiting late G1 phase activation by
increasing the expression of CDK inhibitors, including p15INK4

and p21CIP1 (12, 27, 74, 75). Additionally, TGF-b has been
postulated to stimulate apoptosis through various mechanisms;
for example, in HCC tumor models, the TGF-b/SMAD axis
prompts c-Myc-induced apoptosis, resulting in the abolishment
of tumor initiation (76). Moreover, TGF-b triggers cell apoptosis
by SMAD-modulated production of death-associated protein
kinase (40) and repression of the ID family members ID1, ID2,
and ID3, which determine the efficiency of cell amplification and
differentiation (77, 78). In addition, oncogenic stress from RAS is
involved in TGF-b triggering cell death in premalignant cells. In
a murine model of aging, TbRII deficiency leads to enhanced
keratinocyte motility with a decline in apoptosis (79).

Paradoxically, the TGF-b signaling pathway is highly
expressed in many advanced cancers and is correlated with
Frontiers in Immunology | www.frontiersin.org 6
poor prognosis (80). TGF-b stimulates tumorigenesis via
several mechanisms, including EMT, cell invasion, tumor
metastasis, and immune suppression. EMT is a biological
process in which epithelial progenitor cells undergo
biochemical alteration and gradually lose polarity, resulting in
enhanced migratory capacity, downregulation of cell–cell
adhesion, and increased stem cell-like features (81). To induce
EMT, TGF-b signaling activates the p38 and JNK pathways (5,
14) or the ERK1 and ERK2 pathways (82). Simultaneously, TGF-
b signals foster cancer evolution and metastasis by stimulating
tumor angiogenesis and the antitumor function of cancer-
associated fibroblasts, allowing the tumor to evade antitumor
immune responses in the TME (73). In bone metastases of breast
cancer and prostate cancer, TGF-b elevates the expression of
metastasis-related genes, including cxcr4, mmp1, and jag1
(83, 84). In mouse models of pancreatic and colon cancer,
TGF-b exerts its antitumor functions primarily by delaying the
transition of premalignant cells to malignant cells (12).
Additionally, in a KrasG12D-mutant mouse model, the loss of
SMAD4 accelerates progression to PDA by causing apoptosis in
pancreatic progenitors (85). The overexpression of SMAD4 in
SMAD4-deficient tumor cells inhibits tumorigenesis (13).
Additionally, T-cell SMAD4 deficiency induces the automatic
development of epithelial cancers in the gastrointestinal tract due
to abnormally high levels of proinflammatory cytokines (86).

In summary, TGF-b functions as a tumor suppressor during
the initial stage of tumor formation but gradually shows its evil
side as a tumor promoter with tumor progression and metastasis.
In recent years, growing evidence has reinforced the immune-
suppressive role of TGF-b in the TME via multiple mechanisms,
breaking the deadlock of utilizing TGF-b inhibitors for
therapeutic purposes and providing new insights and strategies
for targeting TGF-b as an immunotherapy. Considering the
complexity of cell components in the TME, we have
summarized the function of TGF-b in individual cell subsets in
the TME (shown in Figure 3).
TGF-Β EFFECTS ON NONIMMUNE CELLS
IN THE TME

In addition to cancer cells, TGF-b is strongly associated with the
regulation of CAF cells, epithelial cells, and immune cells in the
TME (87). The regulation of nonimmune cells is discussed in
the following sections.

CAFs
The TME is often characterized by an abundance of fibroblasts,
termed CAFs, which are also the primary producers of TGF-b in
various tumor types. Researchers have focused on TGF-b
signaling as one of the underlying mechanisms of tissue
fibrosis and tumorigenesis (88). CAFs originate from
fibroblasts, which are responsive to inflammatory and tumor-
derived signals (13, 89, 90). CAFs contribute to the synthesis of
collagen along with the secretion of an array of soluble factors
that promote tumor formation, invasiveness, metastasis (91–93),
May 2022 | Volume 13 | Article 891268
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and even chemoresistance (94, 95). Elevated numbers of CAFs
are regularly found in tumor patients and are negatively
correlated with disease prognosis (96, 97) and immunotherapy
efficacy (98, 99). In colorectal cancer patients, all colorectal
cancer subtypes with poor prognosis coexpress similar gene
patterns induced by TGF-b in CAFs (100, 101). A colorectal
cancer tumor-bearing mouse model confirmed that increased
TGF-b levels produced by CAFs in the TME represent a
fundamental mechanism of immune evasion that blocks the
aggregation of CD4+ T helper and cytotoxic CD8+ T cells (42).
Furthermore, TGF-b blockade perturbs fibroblast activity in the
TME and augments T-cell penetration and activation (102).

Mechanistically, TGF-b signaling promotes fibroblast-
myofibroblast transdifferentiation through either SMAD or non-
SMAD signaling pathways (103, 104). On the one hand, p53 acts as
a coactivator with p-SMAD3 to induce myofibroblast production
and fibrosis under TGF-b1 stimulation (105). On the other hand,
the noncanonical Hippo signaling effectors YAP/TAZ cooperate
with p-SMAD2/3 to drive renal fibrosis (106). In pancreatic
cancers, TGF-b signaling antagonizes IL1-induced JAK/STAT
Frontiers in Immunology | www.frontiersin.org 7
activation by downregulating IL-1 receptor 1 (IL-1R1)
expression and drives the commitment of iCAFs (inflammatory
CAFs) to myoCAFs (myofibroblastic CAFs) (107). The crosstalk
between CAFs and tumor cells through TGF-b may favor tumor
progression. Although the function of TGF-b signaling in affecting
CAFs has been clearly annotated, understanding the heterogeneity
of the response of CAF cells to TGF-b or how to convert myCAFs
into iCAFs may provide more valuable insights for unleashing the
full potential of immunotherapies.

Epithelial Cells
Resting epithelial cells rarely show TGF-b expression; however,
both TGF-b1 and TGF-b receptor levels tend to be enhanced in
hyperplasia and neoplasia (108, 109), indicating a tumor-promoting
role of TGF-b in cancer advancement. Within tumors, elevated
glucose uptake and hyperglycemia induce AKT activation and
promote the externalization of TGF-b receptors, thus enhancing
the cell surface presence of TGF-b receptors and TGF-b
responsiveness (6). Autocrine and paracrine TGF-b represses
epithelial characteristics, instructs the transdifferentiation of
FIGURE 3 | Effects of TGF-b on different cell components in the TME. TGF-b is enriched in the TME and acts on nonimmune and immune cells to fulfill antitumor or
protumor growth functions.
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nontransformed epithelial cells toward a mesenchymal phenotype,
and inhibits normal epithelial cell multiplication by blocking the cell
division checkpoint at G1 phase (110). In response to TGF-b,
epithelial cells acquire CSC-like phenotypes by concurrent
hypomethylation and hypermethylation of EMT-regulating genes
(8). Simultaneously, epithelial cells promote tumor progression by
mitigating their epithelial characteristics and enhancing their
migration and invasiveness. Moreover, TGF-b promotes epithelial
plasticity by reprogramming gene expression patterns, especially
enhancing EMT signature transcription factors such as Snail1,
Snail2 ZEB1, and ZEB2, which cooperatively work with the
SMAD3/4 complex to induce mesenchymal genes and restrain
epithelial genes (111). Hence, most carcinoma cells gain
proliferative properties by inactivating their epithelial
antiproliferative properties and taking advantage of enhanced
TGF-b signaling through effects on gene expression in
epithelial plasticity.
TGF-Β REGULATES THE IMMUNE CELL
RESPONSE IN THE TME

The cellular sources of TGF-b in tumors are mainly carcinoma
cells, stromal cells, and immune cells. Although most cells
located in the tumor context respond to TGF-b in a context-
dependent way, extensive evidence suggests that enriched TGF-b
expression in the TME may compromise antitumor immunity
and limit the efficacy of immunotherapy (80, 112). In the TME,
TGF-b critically employs immunosuppressive functions by
regulating immune populations, including adaptive B and T
cells, innate natural killer cells, dendritic cells, myeloid tumor-
associated macrophages, and myeloid-derived suppressor cells,
as shown in Figure 3.

NK Cells
TGF-b signaling within the complex tumor environment restrains
the antitumor activities of assorted cell subsets, including innate
immune cells and adaptive immune cells. As innate immune cells,
NK cells exhibit tumor-suppressing activity by activating receptors
such as NKG2D and NKp30, which are silenced by TGF-b1
directly and indirectly (113). Additionally, TGF-b silences IFN-g
and T-bet expression in NK cells (114). In TGF-b-rich TME
models, TGF-b promotes the transition of NK cells into ILC1s,
which are devoid of cytotoxic function (115). Moreover, SMAD4
blocks the transition of NK cells into ILC1s through noncanonical
TGF-b signaling, as NK-cell-specific knockout of SMAD4 results
in damaged effector NK cells and loss of metastasis control (116).
Correspondingly, when tumor cells are inoculated into mice with
TGF-b receptor 2 depletion in NK cells, knockout mice display
significantly fewer metastases than control mice (117). In human
metastatic breast cancer, TGF-b drives the metabolic malfunction
of circulatory NK cells in patients (118). Blocking TGF-b and/or
GARP can recover the metabolic condition and activity of NK
cells, suggesting a promising strategy for enhancing NK-cell-based
immunotherapies by targeting the GARP–TGF-b axis. Notably,
TGF-b intensively disturbs the function of NK cells (119).
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The critical metabolic checkpoint kinase mTOR is one of the
targets underlying TGF-b signaling in NK cells (117). In addition,
pharmaceutically targeting the av integrin/TGF-b axis in
combination with allogeneic NK cells in a glioblastoma stem cell
(GSC)-engrafted mouse model promotes the antitumor function
of NK cells and tumor growth (120). Further studies exploring the
molecular mechanisms underlying the effects of TGF-b on NK
cells will provide new ideas for improving NK-cell-based
therapeutics (121)

DCs
DCs are the most powerful antigen-presenting cells and bridge
the innate and adaptive immune responses by processing tumor
antigens and presenting peptides to either CD4+ or CD8+ T cells.
In vitro and in vivo studies have shown that TGF-b and IL-10
together suppress the maturation and activation of DCs (121).
Adding TGF-b1 during the differentiation of DCs significantly
amplifies the expression of DC-associated genes (122, 123) and
promotes DC differentiation from progenitor CDP cells toward
an mDC subset (124). In Smad7-deficient murine DC cells, the
development of splenic CD8+CD103+ DCs is impaired, leading
to an increased Treg cell number and resistance to autoimmune
disease development (125). In mouse models of breast cancer
and melanoma, increased TGF-b signaling suppresses tumor
progression by increasing indoleamine 2,3-dioxygenase (IDO) in
pDCs and increasing secretion of the myeloid cell attractor
CCL22 (126). Moreover, blockade of both TGF-b receptor and
IL-10 expression by DCs markedly enhances T-cell cytolytic
activity toward cancer cells (127).

T Cells
TGF-b impacts multiple phases of the T cell response, including
activation, migration, differentiation and proliferation in both
the TME and tumor-draining lymph nodes. TGF-b directly
reduces CXCR3 expression on CTLs by increasing the binding
of SMAD2 to the CXCR3 promoter; hence, deletion of TGF-b
receptor I in CD8+ T cells upregulates CXCR3 expression and
improves CD8+ T-cell trafficking into tumors (128). In addition,
TGF-b reduces the cytotoxicity of CD8+ T cells by impairing
their secretion of perforin, granzyme, and IFNg (129), which are
imperative for CTL-mediated tumor killing (130). One model
proposed that TGF-b induces the phosphorylation of ITIMs,
which aid the recruitment of the inhibitory protein phosphatases
SHP-1 and/or SHP-2 to attenuate TCR signaling (131). This
model is further supported by the multifocal lymphoproliferative
inflammation phenotype exhibited by mice with TGF-b
depletion in T cells (132). In addition, TGF-b impedes the
secretion of IL-2, which is necessary for the proliferation and
response of CD8+ T cells. Additionally, TGF-b1 upregulates PD-
1 levels on tumor antigen-specific TILs, further providing
conclusive evidence supporting the tumor-promoting role of
TGF-b through the regulation of CD8+ T cells (133).

The role of CD4+ T cells in tumor eradication has drawn
increasing attention in recent years. Depleting TGF-bR2 in CD4+

T cells halts cancer development due to tissue repair and
rebuilding of the tumor vasculature (47). In a recent study,
Ming O Li’s group formulated a bispecific receptor decoy
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named the CD4 TGF-b Trap that was able to specifically
function on CD4+ T cells instead of CD8+ T cells and exert a
pronounced antitumor effect (134). Among all CD4+ Th subsets,
Th1 cells are responsible for tumor killing by cytotoxic activity.
TGF-b signaling suppresses the Th1 effector regulators T-BET
and STAT4 (135, 136). Furthermore, TGF-b significantly
promotes the expression of the transcription factor FoxP3 and
drives regulatory T (Treg) cell development (38, 45), which
suppresses CTL function in the antitumor response. Moreover,
TGF-b from tumor effusions mediates the inhibition of
mitochondrial respiration and the generation of IFN-g in
human CD4+ T subsets (137). In addition, ablating TGF-bRII
in CD4+ T cells dramatically halts cancer progression (47). Most
importantly, TGF-b skews the differentiation direction of TH1
cells into TH2 and TH17 cells (138).

TAMs
Myeloid cells are the main component of tumor-infiltrating
leukocytes involved in tumorigenesis and are termed tumor-
associated macrophages (TAMs). Importantly, TGF-b also
affects the myeloid cell repertoire within tumors, including
macrophages, MDSCs, and neutrophils. Accumulating
evidence strongly indicates that the TME polarizes
macrophages from the M1 to the M2 immunosuppressive
protumoral subset, leading to immunosuppression and
tumorigenesis. Additionally, TAMs can promote tumor cell
migration and metastasis via the TGF-b2/NF-kB/Kindlin-2
pathway (139, 140). Therefore, TAMs are potential targets for
tumor therapy (141). Malignant cells in the tumors generate
TGF-b, thus upregulating CXCR4 on the monocyte cell surface,
whereas perivascular fibroblasts produce the CXCR4 ligand
CXCL12 to target these monocytes to the tumor, followed by
monocytes differentiating into perivascular macrophages (142).
Additionally, TGF-b signaling represses the anti-inflammatory
role of macrophages through degradation of MYD88 to
inactivate NF-kB signaling (143). Moreover, genetic mice with
myeloid cell-specific depletion of Tgfbr2 display less tumor
metastasis (144).

MDSCs
Patients or mice bearing tumors always exhibit an increased
number of circulating neutrophils, which are associated with a
poor prognosis (145). The phenotypes of MDSCs (myeloid-
derived suppressive cells) are similar to those of monocytes
and immature neutrophils in chronic infection, inflammation,
or cancer. The functional difference between MDSCs and
neutrophils is that T-cell proliferation suppression is mediated
by MDSCs and not neutrophils (146). Therefore, it is broadly
accepted that MDSCs significantly repress the cytotoxic function
of effector cells and promote tumor angiogenesis and metastasis
(147). The function of TGF-b on MDSCs in tumor evolution has
been reported by several groups. In one study, TGF-b fine-tuned
MDSC accumulation and activation in tumors by inducing
microRNA-494 expression (147). Additionally, TGF-b directly
affects monocytic-MDSC (Mo-MDSC) expansion and MDSC
functions (148). This latter finding was further supported by
results in melanoma and breast cancer mouse models, which
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showed that TGF-b affects the generation of the CXCR3 ligand
CCL9 in MDSCs, leading to less immune cell accumulation and
cancer cell survival (149). In addition, conditional knockout mice
with Tgfbr2 deletion in myeloid cells are resistant to tumor
metastasis as a result of MDSC dysfunction, implying a critical
role of TGF-b in MDSCs during tumor metastasis (144).
However, restricting TGF-b signaling in the tumor epithelium
induces prominent accumulation of CCR1+ immature myeloid
cells, which increase extension and penetration by cancer cells
(150). Similarly, abrogating Tgfbr2 expression in carcinoma cells
results in direct recruitment of migrating MDSCs into tumors via
the upregulation of the SDF-1/CXCR4 and CXCL5/CXCR2 axes
(151). The context-dependent function of TGF-b signaling in
tumor-infiltrating MDSCs remains controversial, and the
molecular mechanism needs to be explored.

Preclinical Studies Targeting TGF-b as a
Cancer Therapy
The TGF-b/SMAD signaling pathway has been demonstrated
to be an essential immune envision mechanism in both
hematopoietic and solid tumors (152). In childhood B-ALL
patients, TGF-b1 induced NK cell dysfunction to mediate
escape from immune surveillance (153). In addition, TGF-b
signaling blockade inhibited the proliferation of leukemia stem
cells (154). In a mouse model with cancer-related anemia,
pharmaceutically blockade of TGF-b signaling mitigated
disease progression, suggesting a likely therapeutic target for
alleviating hematopoiesis disease. Superfluous TGF-b in the
bone marrow microenvironment impaired the bone marrow
niches, which maintain the stemness and function of
hematopoietic stem cells (155). CAR-T cell therapy has
essentially reformed the therapeutic regimen of hematological
malignancies (156). By constructing novel CD19 CAR-tTRII-
I7R-T cells, which convert the TGF-b signaling into immune-
activating IL-7 signaling, the tumor-killing efficacy of modified
CAR-T cells was significantly better than in the control group
(157). The above studies proposed that TGF-b signaling
prohibition could be a potential therapeutic approach for
relieving defects in hematopoiesis.

Solid tumors show substantial antigen heterogeneity (156).
Moreover, solid tumor cells are organized into multiple
compartments and are often surrounded by other tissues,
where they are less accessible to T cells. Tumor-bearing mouse
models show that combined treatment with TGF-b inhibition
and immune checkpoint antibodies such as anti-PD-L1 were able
to induce better tumor regression and more prolonged survival
(42, 99), leading the way to combining TGF-b inhibitors with
ICB drugs clinically for advanced cancer patients. Besides, as a
newly developed fusion protein targeting both TGF-b and PD-
L1, Bintrafusp alfa (M7824) was demonstrated to effectively
reduce the breast tumor and colon tumor growth in mice
model (158). Hence, the clinical efficacy of M7824 in different
advanced malignancies was evaluated in several ongoing clinical
trials. Moreover, bifunctional antibody–ligand traps (Y-traps),
which target both CTLA-4 and, resulted in significantly superior
antitumor efficacy compared to CTLA-4 antibody monotherapy
(159). When combining specific TGF-b1 inhibitor SRK181-
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mIgG1 with anti–PD-1 antibody in multiple mouse models of
cancer, the combo therapy significantly induced the intratumoral
infiltration of CD8+ T cells with less dose-limiting toxicology
(160). These preclinical results provide a principle for exploring
TGFb inhibition to work synergistically with ICB in
cancer patients.

Current Clinical Trials Targeting TGF-Beta
in the Tumor Microenvironment
With a growing number of preclinical studies demonstrating the
role of TGF-b in suppressing immune response in different tumor
types, more clinical trials have been conducted recently to evaluate
the therapeutic safety and efficacy of targeting TGF-b in advanced
cancer patients (73, 161). Up to now, however, both promising and
undesirable outcomes have been revealed. We have summarized
the finished clinical trials and ongoing trials that target TGF-b
signals in advanced tumor patients in recent ten years (as shown in
Tables 1, 2). Among them, Galunisertib (LY2157299) is a selective
molecule inhibitor of RI kinase, which reduces signaling in the -rich
immunosuppressive tumor microenvironment (162). A Phase I
Study of Galunisertib in advanced tumor patients evaluated the
safety and recommended the dose for the phase II study (163).
Nevertheless, the co-administration of Galunisertib and anti-PD-
L1 antibody in recurrent/refractory metastatic pancreatic cancer
showed no apparent clinical activity (164). Another selective small-
molecule inhibitor Vactosertib (TEW-7197), which serves as a
TGF-b R1 inhibitor, was well-assessed in its pharmacokinetics
(165). In a Phase Ib trial for relapsed multiple myeloma, the combo
therapy with vactosertib and pomalidomide showed better efficacy
assessment than historical control, indicating the further
application of Vactosertib in clinical trial multiple myeloma
(166). In addition, several multi-center phase 2 studies for
subjects with advanced or metastatic tumors are ongoing to
estimate the safety and efficacy of vactosertib in association with
pembrolizumab (NCT04515979) in lung cancer patients or
vactosertib plus imatinib (NCT03802084) in desmoid tumor.
Moreover, a pan-anti- neutralizing antibody, NIS793, has
overcome the resistance of checkpoint blockade immunotherapy
in the treatment of squamous cell carcinomas (167), which paves
the way for the clinical trial of NIS793/a-PD-1 combination
therapy (NCT02947165). Meanwhile, this antibody is presently
being evaluated together with gemcitabine/nab-paclitaxel
chemotherapy and anti-PD-1 antibody for patients with
metastatic pancreatic ductal adenocarcinoma in a phase II
clinical trial (NCT04390763). Another pan- antibody SAR439459
is being estimated for its safety and antitumor activity either as
monotherapy or together with the anti-PD-1antibody in patients
with advanced solid tumors (NCT03192345).

Although significant progress was achieved, suspension or
failure of anti- related clinical studies occurs in certain
conditions. LY3022859 is a human anti-RII IgG1 monoclonal
antibody, which significantly inhibited cancer cell growth and
metastasis in preclinical models (168). However, in a phase I
study of advanced tumor patients, owing to the burst of cytokine
release syndrome, the study was stopped without determining
the maximum tolerated dose (169). Moreover, a first-in-class
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bifunctional fusion protein Bintrafusp alfa (M7824), which
targets both TGF-b and PD-L1, showed disease control
regardless of PD-L1 in recurrent glioblastoma patients (170).
Also, in biliary tract cancer patients, the M7824 monotherapy
showed encouraging efficacy with durable responses (171).
However, in the following phase III lung cancer clinical trials,
treatment with Bintrafusp alfa was unable to show compelling
efficacy, accompanied by the termination of three related trials
till now. Even so, more than ten clinical trials related to
Bintrafusp alfa combination therapy are ongoing in different
cancer patients, indicating cancer context-dependent efficacy
may be observed.

Immune checkpoint blockade therapies have achieved
massive success in treating a variety of cancers. However,
checkpoint inhibitors work to rejuvenate the body’s immune
activity instead of removing the immunosuppressive barriers in
the tumor microenvironment (159). Subsequently, the efficacy of
ICB therapies is limited in a minority of patients. Hence, the
TGF-b pathway inactivation has emerged as a working partner
for cancer patients with ICB resistance (160).
DISCUSSION

The determining function of TGF-b in maintaining immune system
integrity is to preserve immune homeostasis and tolerance by
regulating immune cell development, proliferation, differentiation,
and survival. A competent immune system must maintain an
assorted pool of naïve immune cells with the companion of various
cytokines, including TGF-b. Malfunctions of TGF-b block immune
cell development and function, resulting in cancer progression.

Because of the pleiotropic effects of TGF-b on both normal
physiological function and tumorigenesis, long-term blockade of
TGF-b and the related signaling pathways may have adverse
effects. Furthermore, the biology of solid tumors is complex.
Therefore, the current significant challenge in translating anti-
TGF-b inhibition into clinical treatment is to explore the various
function of the TGF-b signal pathway acting on different cell
components in the tumors, thus searching for a precise targeting
approach with less toxicity and other side effects.

Importantly, TGF-b serves as a primary immune evasion
mechanism in various malignancies by building a tolerogenic
immune environment. One hallmark of TGF-b’s evasion
mechanism is promoting the amplification and aggregation of
Treg cells in the tumors, which inhibit the cytotoxicity of CD8+T
and Th1 cells. Besides, the TGF-b can be secreted and functions on
stromal cells by an autocrine pathway and promote myelofibrosis
and angiogenesis. Lately, the metabolic regulating role of TGF-b in
inducing CAF and endothelial cell generation in cancer was
revealed, indicating a novel role of TGF-b signaling in
reprogramming themetabolic landscape of the tumor environment.

Cancer immunotherapy has indeed benefited patients who
cannot receive surgical therapy or are resistant to chemotherapy.
Repressing TGF-b signaling has shown a synergistic effect with
immune checkpoint inhibitors in preclinical models and certain
patients, providing a new solution for patients who are insensitive to
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ICB treatment. Moreover, modified CAR-T cell therapy by
depleting the TGF-b signal in CAR-T cells also demonstrates
potent efficacy in treating cancers, indicating a promising field by
generating more robust and less toxic CAR-T cells by modifying the
TGF-b signal pathway.
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Given the essential role of the TGF-b signal pathway in
physiological and pathological conditions, it’s expected that the
integral blockade of the TGF-b signal pathway resulted in
adverse effects that restrict the therapeutic progression.
Hence, new therapeutic modalities with more precise
TABLE 1 | Completed clinical trials to evaluate TGF-b pathway antagonists.

Target Agent Tumor type Clinical efficacy Starting
date

Identifier

TGF-b2 AP12009
Temozolomide PCV

Glioblastoma
Anaplastic Astrocytoma

Not reported 2007-02-06 NCT00431561

TGF-b2 Lucanix Non-small cell lung cancer Mos:20 versus 17 m 2008-05-13 NCT00676507
TGF-b2 AP 12009 Pancreatic Neoplasms

Melanoma
Colorectal Neoplasms

Not reported 2009-02-13 NCT00844064

CT
RT
TbRI

LY2157299
Radiation
Temozolomide

Malignant Glioma mOS:18.2 versus 17.9 m 2010-10-13 NCT01220271

TbRI LY2157299
Sorafenib
Ramucirumab

Hepatocellular Carcinoma mPFS 2.7 m part A and 4.2 m part B 2010-11-24 NCT01246986

TbRI Galunisertib
Gemcitabine
Placebo

Advanced or Metastatic Unresectable Pancreatic
Cancer

mOS 8.9 versus 7.1 m 2011-06-14 NCT01373164

TGF-b1
TGF-b2
TGF-b3

Fresolimumab
RT

Refractory breast cancer ORR 0% 2011-07-25 NCT01401062

TbRI LY2157299
monohydrate
Lomustine
Placebo

Glioblastoma 2012-04-20 NCT01582269

TbRII LY3022859 Advance solid tumors Not reported 2012-07-20 NCT01646203
TbRI LY2157299

Gemcitabine
Inoperable or metastatic pancreatic cancer ORR 0% 2014-06-03 NCT02154646

TbRI TEW-7197 Advanced Stage Solid Tumors 2014-06-10 NCT02160106
TbRI LY2157299

Sorafenib
Metastatic hepatocellular carcinoma ORR 9% 2014-09-15 NCT02240433

TGF-b RI LY2157299
Lomustine

Glioma ORR 14% 2012-09-10 NCT01682187

TGF-b RI Galunisertib
Durvalumab

Metastatic Pancreatic Cancer ORR 3% 2016-04-12 NCT02734160

TGF-b RII
PD-L1

M7824 Human Papilloma VirusCervical Cancer
Oropharyngeal CancerAnal Cancer
Vaginal or Penile Cancer

ORR 39% 2018-02-09 NCT03427411

TGF-b RII
PD-L1

M7824 Advanced Adenocarcinoma of the Pancreas Study was closed after one treatment related
death.

2018-03-02 NCT03451773

TGF-b RII
PD-L1

MSB0011359C Metastatic or Locally Advanced Solid Tumors 2015-08-07 NCT02517398

TGF-b RII/PD-
L1

M7824 Pre-treated cervical tumors ORR 28% 2015-08-07 NCT02517398

TGF-b RII/PD-
L1

M7824 Refractory head and neck cancer ORR 22% 2015-08-07 NCT02517398

TGF-b RII/PD-
L1

M7824 Pre-treated NSCLC PD-L1 > 1%, ORR 40%, PD-L1 > 80%,ORR
71%

2015-08-07 NCT02517398

TGF-b RII
PD-L1

M7824 Pre-treated esophageal adenocarcinoma ORR 20% 2015-08-07 NCT02517398

TGF-b RII
PD-L1

M7824 Pre-treated gastric cancer ORR 22% 2015-08-07 NCT02517398

TGF-b RII
PD-L1

M7824 Pre-treated biliary tract cancer ORR 23% 2015-08-07 NCT02517398

TGF-b RII
PD-L1

M7824 Refractory colorectal cancer ORR 3.4% 2015-08-07 NCT02517398

Vaccine
Anti-PD-1

Vigil
Pembrolizumab

Melanoma 2015-10-14 NCT02574533
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targeting or more assorted regimen design still need further
exploration. In the future, specific targeting TGF-b in certain
types of immunosuppressive cell components may reduce the
incidence and hardness of adverse effects and increase
beneficial efficacy.
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TGF-b signal pathway was hyperactivated in colon cancer and
pancreatic cancer. However, different tumors harbor diverse tumor
microenvironments, either with low levels or high levels of TGF-b.
Accordingly, more studies are needed to explore whether the tumor
architecture or landscape influences the efficacy of TGF-b
TABLE 2 | Ongoing clinical trials to evaluate TGF-b pathway antagonists.

Target Agent Tumor type Starting
date

identifier

TbRI
AR

Galunisertib
Enzalutamide

Metastatic Castration-resistant Prostate Cancer 2015-05-22 NCT02452008

a-TGF-b
a- PD - 1

NIS793
PDR001

Breast Cancer
Lung Cancer
Hepatocellular Cancer
Colorectal Cancer
Pancreatic Cancer
Renal Cancer

2016-10-27 NCT02947165

TGF-bR1
ALK5

Vactosertib
Pomalidomide

Multiple Myeloma 2017-05-08 NCT03143985

TGF-b
PD-L1

M7824 Pretreated MSI-H mCRC 2018-02-19 NCT03436563

PD-L1
TGF-b

M7825 Breast Cancer 2018-05-14 NCT03524170

PDL1
TGF-b

M7824
Eribulin Mesylate

TNBC 2018-07-06 NCT03579472

PD-L1
TGF-b

M7824
Topotecan
Temozolomide

SCLC 2018-06-13 NCT03554473

TGF-b Vactosertib
imatinib

Desmoid Tumor 2019-01-14 NCT03802084

TGF-b
PD-L1

Platinum-based regimen +
M7824

Metastatic NSCLC 2019-02-15 NCT03840915

TGF-b
PD-L1

M7824 With cCRT NSCLC 2019-02-15 NCT03840902

TGF-bR1 Pembrolizumab
vactosertib

Colorectal Cancer
Resectable Hepatic Metastases

2019-02-18 NCT03844750

TGF-bR1 Vactosertib Myeloproliferative Neoplasm 2019-09-25 NCT04103645
PD-L1/TGF-b M7824 Local-Regionally Recurrent Head and Neck Squamous Cell Carcinoma 2020-01-07 NCT04220775
PD-L1
TGF-b

M7824 Cervical Cancer 2020-01-29 NCT04246489

TGF-b
PD-1

Gemcitabine
nab-paclitaxel
NIS793
Spartalizumab

First-line Metastatic Pancreatic Ductal Adenocarcinoma 2020-05-18 NCT04390763

PDL1
TGF-b

M7824 Thymoma
Thymic Carcinoma

2020-06-05 NCT04417660

PD-L1
TGF-b

M7824 Thymic Epithelial Tumor 2020-06-05 NCT04417660

PD-L1
TGF-b

M7824 Recurrent Thymoma 2020-06-05 NCT04417660

PD-L1
TGF-b

M7824 Thymic Cancer 2020-06-05 NCT04417660

PD-L1
TGF-b

PRGN-2009
M7824

Cervical cancers
p16+ Oropharyngeal cancers
Anal cancers
Other locally advanced or metastatic solid tumors (e.g. lung, esophagus) that are
known HPV+.

2020-06-16 NCT04432597

TGF-bR1
ALK5

Vactosertib 300 mg BID
pembrolizumab 200 mg IV

Non-Small-Cell Lung 2020-08-17 NCT04515979

PD-L1
TGF-b

M7824
NHS-IL12
Entinostat

Cervical
Oropharyngeal
Anal
Vulvar
Vaginal

2021-01-14 NCT04708470
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inhibition. Besides, whether genetic, epigenetic, and microbiota
differences in different cancer types define the efficacy of TGF-b
signal pathway blockade also needs to be studied. All things
considered, we will be able to reach a more precise and
personalized modality for treating cancers by anti-TGF-b pathway.
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