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ABSTRACT: Bayes factors (BFs) are becoming increasingly important tools in genetic association studies, partly because they
provide a natural framework for including prior information. The Wakefield BF (WBF) approximation is easy to calculate
and assumes a normal prior on the log odds ratio (logOR) with a mean of zero. However, the prior variance (W) must be
specified. Because of the potentially high sensitivity of the WBF to the choice of W , we propose several new BF approximations
with logOR ∼ N(0,W), but allow W to take a probability distribution rather than a fixed value. We provide several prior
distributions for W which lead to BFs that can be calculated easily in freely available software packages. These priors allow a
wide range of densities for W and provide considerable flexibility. We examine some properties of the priors and BFs and show
how to determine the most appropriate prior based on elicited quantiles of the prior odds ratio (OR). We show by simulation
that our novel BFs have superior true-positive rates at low false-positive rates compared to those from both P-value and WBF
analyses across a range of sample sizes and ORs. We give an example of utilizing our BFs to fine-map the CASP8 region
using genotype data on approximately 46,000 breast cancer case and 43,000 healthy control samples from the Collaborative
Oncological Gene-environment Study (COGS) Consortium, and compare the single-nucleotide polymorphism ranks to those
obtained using WBFs and P-values from univariate logistic regression.
Genet Epidemiol 39:239–248, 2015. Published 2015 Wiley Periodicals, Inc.∗
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Introduction

Recently, several methods have been published for analyzing
genotype data at the fine-mapping level [Maller et al., 2012;
Udler et al., 2009; Vignal et al., 2011]. These data consist of
hundreds or thousands of single-nucleotide polymorphisms
(SNPs) in a small region of the genome, where associations
with a disease have previously been found, commonly in a
genome-wide association study (GWAS). Bayesian methods
[Stephens and Balding, 2009] have the advantage of naturally
allowing for the inclusion of prior functional genetic infor-
mation which could inform the probability of an SNP being
causal. This could help to overcome the problems faced in
fine-mapping, where it is expected that the causal SNPs not
yet identified are likely to have small effect sizes (odds ratios
[ORs] of the order of 1.1 or less) and the results are likely to
be confounded by high levels of short-range linkage disequi-
librium (LD). Furthermore, some causal SNPs may have low
minor allele frequencies (MAFs). These factors make it diffi-
cult to identify causal SNPs, even using the tens of thousands
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of subjects that are currently being analyzed by international
consortia.

We previously carried out a thorough investigation of
several different frequentist fine-mapping filtering methods
[Spencer et al., 2014]. Filtering is a general framework in
which the SNPs are ranked according to a given statistic,
a threshold value of that statistic is chosen and SNPs with
a value below this threshold are removed from the set of
candidate causal SNPs. This results in a more manageable
number of SNPs which can be investigated for causality in
further biological tests, such as the analysis of gene expres-
sion in cell lines. The Bayes factor (BF) is a Bayesian statistic
which can be used for filtering [Kass and Raftery, 1995], and
it has already been used as a tool for use in genetic associa-
tion analyses [Stephens and Balding, 2009; Wakefield, 2008,
2009]. The calculation of BFs is now implemented in genetic
analysis software such as SNPTEST2 [Marchini et al., 2007] and
their use is becoming increasingly popular as a filter in fine-
mapping studies [Maller et al., 2012]. The BF is a ratio, which
compares the probabilities of the data under two models or
hypotheses. In this setting, they compare two models, one in
which an SNP is not causally associated with a disease and
the other in which it is. They can be used alone or used to
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update prior odds of the SNP being causal. BFs often have to
be approximated due to intractable integrals and, although
current methods of approximation are good, they restrict the
form of the prior on the effect size.

We consider the use of Wakefield’s approximate BF [Wake-
field, 2008, 2009], which requires that each SNP has a prior
on its log odds ratio (logOR) of the form N(0, W) for some
fixed W. When eliciting a value of W from experts it may be
the case that there is some uncertainty in W, perhaps because
several quantiles have been elicited giving inconsistent values
of W. Because of this we examine several families of prior
distributions on W, which result in novel tractable BFs. Such
priors on W can be thought of as providing a weighted average
of the BF over each value in the support of W. We examine
the properties of these priors on W and give the novel BF
approximations in forms that are easily calculable in com-
monly used software. Although this removes the problem of
specifying a fixed W value, most of the novel BFs require
hyperparameters to be specified. We demonstrate how ap-
propriate values may be obtained via expert elicitation.

The BFs we describe could be used in any genetic asso-
ciation study, but we give an example with simulated fine-
mapped data to show how effective the use of these BFs can
be in filtering. We compare the results to those using the
Wakefield BF (WBF) and examine the effect of the choice of
hyperparameters. We give an example of eliciting the prior
hyperparameters and using the BFs as a fine-mapping tool
using breast cancer case-control data from an international
consortium. We are able to show that our methods may be
used to describe a variety of uncertainties and appropriately
incorporate these into a BF analysis. Not only this, but they
can potentially produce better results than if the uncertainty
was not taken into account.

Materials and Methods

Bayes Factors and the Wakefield Approximation

BFs compare the probability of the observed data under
two models or hypotheses. For our purposes, the BF can be
defined as

BF =
P (data|H1)

P (data|H0)
. (1)

BFs are also used to update prior odds (δ/(1 – δ)) to posterior
odds (�/(1 – �)) via �/(1 – �) = δ/(1 – δ) × BF, where in
our case � and δ are the posterior and prior probabilities
of “true” association, respectively. By “true association,” we
mean causally linked to disease risk rather than being asso-
ciated through LD or sampling variation. Here, a BF greater
than one indicates that the data are more likely under the
alternative than the null hypothesis. BFs require the specifi-
cation of a likelihood and prior on all model parameters. Both
BFs and posterior probabilities can be used to fine-map ge-
nomic regions in case-control studies by using the likelihood
from a logistic regression model. For SNP i in single-SNP

logistic regression models, the probability (yij ) of subject j ,
with xij copies of the minor allele, being a case is

yij =
eβ0i +β1i xij

1 + eβ0i +β1i xij
. (2)

With this definition,β1i can be interpreted as the SNP-specific
per-allele natural logarithm of the OR comparing the minor
to the major allele. For SNP i, BFi is calculated comparing
the hypotheses H0 : β1i = 0 and H1 : β1i �= 0 [Stephens and
Balding, 2009].

The BF, as given in Equation (1), is the ratio of marginal
likelihoods which can lead to intractable integrals for many
prior densities. For nontractable BFs, it is common to use a
Laplace approximation [Kass and Raftery, 1995]. The Laplace
approximation is implemented in software packages, includ-
ing SNPTEST2 [Marchini et al., 2007]. Wakefield [2008, 2009]
derived a tractable approximation to the BF (which we ab-
breviate as WBF). We found excellent agreement between the
WBF and Laplace approximations from SNPTEST2 for sam-
ple sizes ≥ 10,000 for a variety of ORs and MAFs (data not
shown). Both methods are based on asymptotic approxima-
tions and, given the large sample sizes in the types of dataset
we consider, should provide accurate approximations to the
true BF.

Using the definition of the BF in Equation (1), the Wake-
field approximate BF is

WBF =

√
V

V + W
exp

(
β̂1

2
W

2V(V + W)

)
. (3)

In Equation (3), β1, the logOR of causal SNPs in the ge-
nomic region under consideration, is assumed to follow a
normal distribution given by β1 ∼ N(0, W). β̂1 is the maxi-
mum likelihood estimator (MLE) of β1. Rather than consider
the logistic likelihood, Wakefield used the asymptotic distri-
bution of the MLE: β̂1 ∼ N(β1, V) which leads to the WBF
given in Equation (3). Note that the WBF we specify in Equa-
tion (3), and use in the rest of this paper, is the reciprocal of
the WBF given by Wakefield [2009].

Motivation for the Study

To use the WBF, one needs to specify W (e.g., through
elicitation) and be prepared to accept that the prior distri-
bution of the logOR is Gaussian. For a percentile β1,p , such
that p (β1 < β1,p |β1 ∼ N(0, W)) = p , W is calculated using

W =
{
β1,p /�–1(p )

}2
, where � is the distribution function of

the standard normal distribution (Wakefield, 2009). When
performing elicitation about W with an expert, they may ex-
press some uncertainty about the value of W. For example,
the expert may believe that the 80th percentile of the prior
distribution for the OR is between 1.05 and 1.3 which implies
that 0.003 ≤ W ≤ 0.1. As a result, we investigated how sensi-
tive the WBFs are to the choice of W. We found the results to
be highly dependent on the choice of W. We therefore wanted
to allow for uncertainty about W in the BF calculations. We
retained the normal density for the prior for β1 and consid-
ered three different parametric families of priors for W that
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Table 1. Prior densities for W

Name of prior f (W) ∝ Restrictions on hyperparameters

Power (V + W)k k < –
1

2

Exponential exp (–cW/2) c > 0

Hybrid (V + W)k exp

(
–

d

2(V + W)

)
d > –β̂1, k < –1

Reciprocal
1

(V + W)
exp

(
–

(V + W)

2

)
Proportional density functions for each of the four prior forms (applies for
0 < a ≤ W ≤ b).

yield BFs that should be flexible enough to capture expert
uncertainty in W. We also considered an additional prior
that may be useful in some scenarios. We wanted priors that
led to BFs that could be easily calculated and this informed
our choice of priors. We go on to show that these priors have
desirable properties in the context of fine-mapping and carry
out sensitivity analysis to demonstrate the effect of the prior
parameters. We give suggestions for how prior hyperparam-
eters might be elicited and in the supplementary material we
provide R code to calculate the new BFs.

Novel BFs Allowing for Uncertainty in W

We have derived four forms for priors on W which are given
(up to proportionality) in Table 1. Three of these forms,
the power, hybrid, and reciprocal priors, use the genotype
data through V. The dependence of the prior for W on V is
purely for mathematical convenience to yield tractable inte-
grals. Therefore, they are not true priors but we show that
in practice the values of V likely to be encountered in large
association studies have very little impact on the prior density
of W. We also provide one prior on W, the exponential prior,
which does not depend on the genotype data.

Each of the power, exponential, and hybrid priors are really
families of priors because they depend on hyperparameters,
whereas the reciprocal prior takes a single density. These hy-
perparameters are represented by k, c , and d, and all priors
have a support 0 < a ≤ W ≤ b. We suggest choosing the val-
ues of a, b, c, d, and k via expert elicitation. Figure 1 shows the
densities of some possible priors and hence the range of prior
beliefs they can accommodate. We derive the approximate
BFs relating to these priors in the supplementary material.
All four new BFs can be easily calculated in R [R Core Team,
2012] (code is provided in the supplementary material). It
should be noted that what we term the hydrid prior is iden-
tical to a shifted inverse gamma distribution on a restricted
support.

Eliciting Hyperparameters of the Priors for W

Our new BFs avoid the problem of specifying a fixed value
for W, but instead require other hyperparameter specifica-
tion for most of the BFs suggested. The hyperparameters
would usually be determined through elicitation based on the
distribution function of W. The distribution function for

W when using the power prior Bayes factor (PPBF) is
given by

F (W) =
(V + W)k+1 – (V + a)k+1

(V + b)k+1 – (V + a)k+1
a ≤ W ≤ b. (4)

So if a single percentile (p 1) of the distribution of W is elicited
(w1) then we find k by equating Equation (4) to p 1 with W
replaced by w1. For the PPBF and exponential prior Bayes fac-
tor (EPBF) this can easily be solved algebraically. The hybrid
prior Bayes factor (HPBF) requires some other numerical
search method. The distribution functions for all four priors
are given in Table 2. A more reliable strategy is to determine
suitable hyperparameters by optimizing the fit of multiple
percentiles elicited from an expert. For example, if we elicit h
percentiles (p 1, p 2, . . . , p h) of W (w1, w2, . . . , wh), then we
find k̂ such that

k̂ = argmink

h∑
i=1

(
(V + wi)k+1 – (V + a)k+1

(V + b)k+1 – (V + a)k+1
– p i

)2

. (5)

Rather than directly eliciting W values, it is likely that an
expert will find it easier to envisage particular central prob-
ability intervals (PIs) for the ORs. For the ith percentile to
be elicited (p i), let PIu,i represent the upper limit of the
zith central PI for the OR. Then wi can be found using
wi = (ln(PIu,i)/�

–1(p i))2, where p i = 1 – (1 – 0.01zi)/2. It is
also likely to help if they are encouraged to choose the par-
ticular PIs z = (z1, z2, . . . , zh) themselves.

To calculate k̂, we also need to specify a, b, and V. Suppose
the expert provides the minimum and maximum values of
the upper limits of say the 80th percentile (denoted PIu,min

and PIu,max) that they consider plausible. We can use PIu,min

to determine a using a = (ln(PIu,min)/�–1(p ))2 where in this
case z = 60, p = 0.8 and similarly for b replacing PIu,min with
PIu,max . The value of V will be different for every SNP, so we
suggest taking the median of the range of V. The values of V
can be found by fitting univariate logistic regression models
to the data where V is the square of the standard error of the
parameter estimate for the SNP. This can be done in many
standard statistical software packages.

The values of the hyperparameters in Figure 1 give a good
indication of the space over which to search. We have written
R code to carry out this search over the hyperparameters. The
output includes the minimum sum of squares from Equation
(5), so that the form of the prior which results in the smallest
value can be determined. This code is available upon request.
There are other methods available to determine the hyperpa-
rameters, for example, empirical Bayes methods. In empirical
Bayes, the hyperparameters (�) are found as the solution to
argmax�(p (data|�)). In our case, this corresponds to max-
imizing the BF over �, which cannot be done analytically.

Testing the Properties and Efficacy of the New BFs
on Simulated Data

Three of out four forms of BF use the genotype data to
inform the prior through V, the asymptotic variance of the
estimate of the logOR. V will be different for each SNP since
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Figure 1. Densities of three families of tractable priors and one specific prior for f (W) (0 < W ≤ 0.1). β1 is logOR with β1 ∼ N (0, W) and a
value of V = 0.003 is used in all plots.

Table 2. Prior distribution functions for W

Type of prior F (W) Limitations

Power
(V + W)k+1 – (V + a)k+1

(V + b)k+1 – (V + a)k+1
k < –

1

2
, k �= –1

ln

(
V + W

V + a

)
/ ln

(
V + b

V + a

)
k = –1

Exponential

exp

(
–

cW

2

)
– exp

(
–

ca

2

)
exp

(
–

cb

2

)
– exp

(
–

ca

2

) c > 0

Hybrid

�

(
–k – 1,

d

2(V + W)

)
– �

(
–k – 1,

d

2(V + a)

)
�

(
–k – 1,

d

2(V + b)

)
– �

(
–k – 1,

d

2(V + a)

) d > –β̂1, k < –1

Reciprocal

ln

(
W + V

a + V

)
+

∑∞
n=1

(–1)n

nn!

((
W + V

2

)n

–

(
a + V

2

)n)
ln

(
b + V

a + V

)
+

∑∞
n=1

(–1)n

nn!

((
b + V

2

)n

–

(
a + V

2

)n)
Distribution functions for each of the four prior forms.

it depends on, among other quantities, the MAF. We used
simulated data to generate realistic values of V and examined
their effect on the prior density of W for values of V corre-
sponding to SNPs that have an MAF not less than 0.005, as
these are the SNPs that we might have sufficient power to

detect with current sample sizes. These datasets were simu-
lated using HAPGEN2 [Spencer et al., 2009] and the European
haplotypes of the August 2010 release of the 1,000 genomes
data with large sample sizes reflecting those now being gen-
erated by disease-specific consortia.

There has been some suggestion that the effect size of causal
SNPs may increase with decreasing MAF [Wang et al., 2005].
We investigate whether the three empirical forms of prior
implicitly have this property. To assess this we examine how
E(W) changes with V, over a support relevant to studies with
sample sizes of 2,000 or more. Since SNPs with lower MAFs
have larger V [Slager and Schaid, 2001], an appropriate prior
would possess the property that E(W) is a nondecreasing
function of V. Then as the MAF decreases, V increases and
rarer SNPs have a priori larger effects on average.

We also tested the use of the novels BFs as a method for
filtering (narrowing down the set of candidate causal vari-
ables) in a fine-mapping study by carrying out such an anal-
ysis on simulated datasets with known causal SNPs. We give
results for scenarios in which the causal SNP has an MAF
of 0.08, for ORs of 1.10, 1.14, and 1.18 and for total sam-
ple sizes of 2,000, 4,000, and 20,000 (with an equal number
of cases and controls). We simulated 1,000 datasets for this
scenario, and illustrate the results using receiver operating
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characteristic (ROC) curves. Fawcett [2006] outlines several
ways to determine ROC curves when they are used to repre-
sent a summary of multiple analyses (in this case those on
each of the datasets). Our ROC curves present the true and
mean false-positive rates (FPRs) over the multiple analyses,
but give no indication as to the variation in FPRs between
datasets. Fawcett calls the method that we use threshold av-
eraging.

Comparing Fine-Mapping Methods for the CASP8 Region
Using iCOGS Data

The Collaborative Oncological Gene-environment Study
(COGS) Consortium have recently carried out a number of
studies using a specially developed Illumina array, known as
the iCOGS array [Michailidou et al., 2013]. This was designed
to fine-map regions that had been previously identified by
GWAS, by concentrating a large number of SNPs in regions
of interest where there is already thought to be a causal associ-
ation with breast, ovarian, or prostate cancer. One such region
comprises base positions 201500074–202569992 of chromo-
some two, including the CASP8 gene. In this region, 585 SNPs
were originally genotyped on breast cancer case and con-
trol samples from the Breast Cancer Association Consortium
and 501 passed quality control checks. A further 1,232 were
successfully imputed using IMPUTE2 (Marchini and Howie,
2010), resulting in genotypes for 1,733 SNPs in 46,450 cases
and 42,600 controls (total sample size: 89,050). We used both
the full dataset and a subset of 5,238 individuals (2,721 cases
and 2,517 controls) to assess the impact of our priors on both
smaller and larger studies.

Prior to receiving the data, we carried out elicitation with
a breast cancer genetics expert who had previously been in-
volved in studies into the CASP8 region. We then determined
the prior distribution that best matched their beliefs and used
it to calculate BFs and carry out filtering on the genotype data
from iCOGS.

Results

The Dependence of the Prior Densities of W upon
Hyperparameters and the Genotype Data

Figure 1 shows some possible prior densities for W, with
V = 0.003 for those densities which depend on V. We see
that most of the priors put the majority of the weight of W
close to the lower limit of its support (in this case close to
zero). Other than being independent of the genotype data,
one of the main advantages of the exponential prior over
the other forms for f (W) is its ability to provide an almost
uniform prior distribution for W over the range of values
likely to be considered appropriate. The HPBF allows for
more flexibility in the shape of the prior distribution. In par-
ticular, it is the only prior that allows more mass at higher
values of W than at lower values of W and the only prior to
have a stationary point. While the other priors are mono-
tonically decreasing with W, the mode of hybrid prior is at
W = –(V + d/2k).

To assess the impact of V on our priors in an intermediate
sized fine-mapping study, we simulated a dataset of size
20,000 (using exactly the same scenario as for the simulated
dataset of 4,000) and determined the distribution of values
of V for those SNPs with MAF ≥ 0.005 and then determined
the minimum, median, and maximum of these values to be
0.00040, 0.00176, and 0.02211, respectively. Figure 2 panels
(a), (c), and (e) show the prior densities for W for the power,
hybrid, and reciprocal priors for these three values of V,
using fixed values of the hyperparameters. While there is
some variation in the prior for W as V takes its maximum
and minimum values, for most of the SNPs with MAF
≥ 0.005 the prior will be relatively similar. There is little
reason to suspect these observations will not generalize to
other genomic regions.

We next consider SNPs with extreme values of V as these
may lead to extreme priors and potentially large BFs. Because
V is bounded below by 0, we only need to consider extreme
large values of V. If the number of cases and controls is equal
and denoted by n, Slager and Schaid [2001] showed that V ∝
1/n approximately. Studies with total sample sizes of 2,000
will yield most values of V in the region 0.005 ≤ V ≤ 0.2 for
SNPs with MAF greater than 0.005. As sample size decreases
occasional large values of V may be seen resulting from rare
alleles (with MAFs less than 0.005) having very low counts in
the case and/or control groups. These SNPs will have broad
likelihoods and so are unlikely to have high BFs regardless
of the prior. So although very rare alleles may have priors
that are different from most of the SNPs, these rare SNPs are
unlikely to be retained after filtering.

Are These Priors Consistent with Rare Alleles Having
Larger Effects?

There is some suggestion in the literature that rare SNPs
might be expected to have larger effect sizes [Wang et al.,
2005]. We wanted to assess whether this was the case for
our suggested priors. To do this we examined how the ex-
pected value of W varied with V. If the hypothesis is true
then rarer alleles should have larger effect sizes, hence larger
values of W. Rarer alleles also have larger values of V. So
if our priors possess this property, we should observe that
E(W) increases with V. For the power, hybrid, and reciprocal
priors, the expected value of W can either be found directly
using integration by parts or by finding E(V + W) by integra-
tion and then using the relationship E(W) = E(V + W) – V.
Those expectations that depend on V are plotted in Figure 2
panels (b), (d), and (f) for values of V likely to occur. E(W)
is independent of V for the exponential prior. For the three
expectations which depend on V, we were unable to verify al-
gebraically that dE(W)/dV > 0 ∀ V > 0, b > a > 0 and d, k
within the specified limits (where relevant), but Figure 2 plots
E(W) against V for a range of values of the hyperparame-
ters. Panels (b) and (f) show this appears to be the case for
the power and reciprocal prior. However, we can see from
panel (d) of Figure 2 that E(W) could decrease with V for
the hybrid prior. Researchers who believe that rare SNPs will
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Figure 2. Prior densities of W (plots (a), (c), and (e)) and E(W) as a function of V (plots (b), (d), and (f)) for empirical forms of the prior
(0 < W ≤ 0.1). Prior densities are given for minimum, median, and maximum values of V for SNPs with MAF> 0.005 in a sample size of 20,000. E(W)
is given over a range of V likely to been seen in sample sizes of 2,000 or greater with different values of the hyperparameters, where relevant.

a priori have larger effects should constrain d to be close
to zero. Alternatively a generalization of the Savage-Dickey
density ratio (Verdinelli and Wasserman, 1995) could be used
with a prior of the form Wk exp (–d/2W), so removing the
dependence on V. The generalization of the Savage-Dickey
density ratio approximates the BF without the need for inte-
gration, hence allowing for a wider range of priors. It bases
calculation of the BF on a large number of samples from the
posterior distributions of the model parameters.

Fine-Mapping Using BFs on Simulated Data

We carried out filtering using WBFs and our new BFs on
1,000 simulated datasets with a single causal SNP with an
MAF of 0.08. We chose ORs of 1.10, 1.14, and 1.18 and sample
sizes of 2,000, 4,000, and 20,000. We also included the results
of filtering using P -values from univariate logistic regression.
Table 3 shows the true-positive rates (TPRs) (×1,000) from
the simulated data analysis by sample size, OR, and FPR.
We have limited the results to FPRs ≤ 20% as this more
than covers the desired range of FPRs in any fine-mapping
procedure. The support for the new priors is 0.003 ≤ W ≤

0.1 and so we let W = 0.003 and W = 0.1 in the WBF in Table
3. In Table 3, we chose hyperparameters for our new priors
that place more of the mass at smaller values of W. The priors
for PPBF and HPBF with the specified hyperparameters have
similar shaped densities and so, not surprisingly, produce
broadly similar rankings.

Table 3 shows that using WBF with W = 0.003 yields higher
TPRs than using WBF with W = 0.1 in many of the scenarios
considered. This is perhaps not surprising because the logORs
for the causal SNP used in the simulations are all small (0.095–
0.166) and so lower values of W, which put more weight at
small ORs, are expected to perform better. The exception to
this is at the lowest FPR where W = 0.1 generally yields higher
TPRs. It is at the very low (and arguably most relevant) FPRs
that the PPBF and HPBF methods generally outperform all
the other methods considered. If we focus on the smallest
FPR considered at each level of sample size and OR, we see
that either the HPBF or the PPBF have the highest TPR of any
of the methods considered in eight out of the nine scenarios.
It is only when the sample size is 20,000 and the OR is 1.1 that
one of the other methods (WBF with W = 0.003) is superior
at the lowest FPR.
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Table 3. TPRs (×1,000) from the simulated data analysis by sam-
ple size, OR, and FPR

Sample size (SS)

SS = 2,000 SS = 4,000 SS = 20,000
FPR (%) FPR (%) FPR (%)

Method
(parameter values) 5% 10% 15% 20% 5% 10% 15% 20% 1% 5% 10% 15%

OR = 1.10
P -value 72 118 163 259 151 249 320 384 202 497 677 786
WBF (W = 0.003) 48 131 216 291 136 285 385 442 231 579 762 836
WBF (W = 0.1) 89 126 166 173 152 221 242 259 173 433 530 582
PPBF (k = –1.5) 88 140 202 245 170 264 318 346 224 524 676 758
HPBF (d = 0.01, 89 140 204 248 170 263 308 334 225 517 655 707

k = –1.1)
OR = 1.14

P -value 146 247 331 395 232 357 457 531 508 831 924 962
WBF (W = 0.003) 106 255 376 457 222 408 528 574 502 850 960 979
WBF (W = 0.1) 159 248 290 307 239 335 373 387 503 789 875 899
PPBF (k = –1.5) 159 272 331 372 257 386 457 486 536 846 926 956
HPBF (d = 0.01, 161 276 332 363 256 387 450 470 539 843 919 943

k = –1.1)
OR = 1.18

P -value 178 286 382 454 323 475 551 619 753 950 984 994
WBF (W = 0.003) 134 302 430 496 290 500 614 663 730 950 989 997
WBF (W = 0.1) 200 298 340 353 328 452 478 495 751 947 980 988
PPBF (k = –1.5) 196 322 397 439 351 496 560 602 767 954 987 994
HPBF (d = 0.01, 207 325 396 434 355 493 551 582 770 955 987 994

k = –1.1)

True-positive rates (TPRs) multiplied by a thousand at the most relevant false-positive
rates (FPRs) for different filtering methods (PPBF, HPBF, Wakefield Bayes factors, and
P-values) applied to 1,000 simulated datasets with 2,871 SNPs. For PPBF and HPBF,
the support is 0.003 ≤ W ≤ 0.1. The data were simulated using the LD structure of
the CASP8 region for a scenario with a single causal SNP with an MAF of 0.08 for
various sample sizes, odds ratios, and FPRs . Figures in bold are those that exceed the
TPR obtained using P-values.

What is somewhat surprising is that even when the sample
size is as high as 20,000, there are substantial differences in
the performances of the P -value method and the methods
using BFs, For example, with a sample size of 20,000, an OR
of 1.10 and an FPR of 5%, the TPRs for the P -value and WBF
with W = 0.003 are 0.497 and 0.579, respectively. The TPR
for the WBF method is nearly 17% bigger than the TPR for
the P -value method. Making the same comparison when the
FPR is 1% the WBF method is over 14% bigger than the TPR
for the P -value (0.231 compared to 0.202).

Figure 3 shows several ROC curves derived from filtering
with a causal SNP with an OR of 1.14, an MAF of 0.08
and a sample size of 4,000. Figure 3a shows the whole ROC
space while Figure 3b shows the ROC curve for FPRs below
20%. Figure 3 includes the results of filtering using the WBF
approximation with W = 0.003 and W = 0.1 and also the
results of filtering using a power prior and a hybrid prior with
support 0.003 ≤ W ≤ 0.1. The two new priors were chosen
so that the power prior put a lot of mass at W = 0.003 and
hybrid prior out a lot of mass around W = 0.1. Consequently,
using the power prior produces an ROC curve similar to
that using WBFs with W = 0.01 and using the hybrid prior
produces an ROC curve similar to WBF with W = 0.01. There
is clearly a lot of variation in the effectiveness of the WBF filter
as W changes. Putting too much prior weight on large effect
sizes clearly leads to poor performance of the WBF when the
actual causal effect size is small. The new BFs can be thought
of as a weighted average of the BFs over the support of W
and so do not suffer to the same degree as using WBF with a
value of W that puts a lot of mass at values of β that have a
low likelihood.
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Figure 3. ROC curves showing the results of WBF, PPBF, HPBF, and P-value filtering. (A) Shows the whole ROC space while (B) shows the ROC
curve for false-positive rates below 20%. We use W = 0.003 and W = 0.1 for the WBF analysis. The prior for the PPBF analysis has k = −5 and
puts most of the mass close to W = 0.003. The prior for the HPBF analysis has d = 1 and k = −1.1 and puts most of the weight close to W = 0.1. All
filtering was carried out on 1,000 datasets simulated using the LD structure of the CASP8 region for a scenario with a single causal SNP that has
an OR of 1.14, an MAF of 0.08, and a total sample size of 4,000.
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Table 4. Results of analysis of iCOGS data

Ranking

WBF with
W =

SNP
number OR (95% CI) MAF PPBF P -value 0.003 0.1 PPBF

980b 1.048 (1.027, 1.071) 0.294 1,387 1 1 1 1
1,027 1.046 (1.024, 1.068) 0.285 664 2 2 2 2
992b 1.045 (1.022, 1.067) 0.287 334 3 3 3 3
909 1.043 (1.021, 1.065) 0.287 234 9 4 6 4
878a 1.081 (1.039, 1.125) 0.061 228 12 13 4 5
1,272a 1.075 (1.036, 1.116) 0.071 217 14 11 5 6
950b 1.043 (1.021, 1.065) 0.286 217 10 5 7 7
838 1.041 (1.020, 1.062) 0.338 213 5 6 10 8
960b 1.043 (1.021, 1.065) 0.285 213 7 =7 =8 =9
961b 1.043 (1.021, 1.065) 0.285 213 8 =7 =8 =9
985b 1.043 (1.021, 1.066) 0.286 206 4 9 11 11
837 1.042 (1.021, 1.064) 0.299 200 6 10 13 12
907 1.042 (1.020, 1.064) 0.287 167 11 12 16 13
896 1.042 (1.020, 1.064) 0.287 166 13 =14 =17 =14
912 1.042 (1.020, 1.064) 0.287 166 15 =14 =17 =14
956a,b 1.052 (1.025, 1.080) 0.170 159 16 16 15 16
681a 1.074 (1.035, 1.116) 0.069 149 17 19 14 17
1,004a,b 1.051 (1.024, 1.078) 0.173 124 18 18 20 18
885 1.041 (1.019 1.063) 0.287 119 19 17 23 19
955a,b 1.050 (1.023, 1.078) 0.173 112 21 21 21 20

a For these SNPs, the major allele is associated with a higher disease risk.
b These SNPs were not genotyped but imputed. Top-ranked SNPs in CASP8 region

based on power prior Bayes factor (PPBF) approximation with hyperparameter
k = –1.66 and a = 0.003 ≤ W ≤ b = 0.1. Rankings using P -value and Wakefield
Bayes factor (WBF) are also included, as is the logistic regression estimate and 95%
confidence interval (CI) of the odds ratio (OR) for each SNP. The genotype data
for CASP8 region come from the iCOGS study and has a total sample size of
89,050 and 1,733 SNPs.

Fine-Mapping Using BFs on the iCOGS Data

Before analyzing the iCOGS data [Michailidou et al.,
2013], we carried out elicitation with a breast cancer ge-
netics expert. They believed that there was a causal SNP
with a small effect size in the CASP8 region on chromo-
some two. We initially asked our expert to give an interval
of possible ORs at a single percentile. They thought that the
80th percentile of the OR was between 1.05 and 1.3, yield-
ing a = 0.003 and b = 0.1. We then asked them to choose
three further PIs that they were comfortable thinking in
terms of. They provided the 0.95, 0.75, and 0.50 PIs giving
(z1, z2, z3) = (95, 75, 50). For these probabilities, we asked
for their best estimate of the upper limit of the OR and the
expert provided PIu = (1.43, 1.21, 1.14). From these we get
(w1, w2, w3) = (0.0333, 0.0275, 0.0377). The median value
of V for the SNPs in the iCOGS data was 0.00017. We used all
these values to carry out a search over –10 ≤ k < –0.5 at inter-
vals of 0.01 for the PPBF. Evaluating Equation (5) for each of
these values of k, we found that for the PPBF, the minimum
of the sum of squared differences occurs at k = –1.66. If we
use the same method to find other prior forms which fit the
elicited values we get an exponential prior with c = 145 and
a hybrid prior with d = 0.001 and k = –1.69. Of these three
priors, the power prior has the closest fit to the elicited values
and is a better fit than the reciprocal prior, so we used this to
calculate the BF for the iCOGS data.

Table 4 contains information about the top 20 ranked SNPs
based on the PPBF values calculated from the full iCOGS data.

Table 5. Results of subset analysis of iCOGS data

Ranking

WBF with
W =

SNP
number OR (95% CI) MAF

PPBF
value P -value 0.003 0.1 PPBF

822a 1.514 (1.215, 1.886) 0.037 45.1 1 28 1 1
807a 1.520 (1.216, 1.900) 0.036 42.2 2 35 2 2
820a 1.515 (1.213, 1.893) 0.036 40.0 3 37 3 3
824a 1.514 (1.212, 1.891) 0.036 39.7 4 39 4 4
868a 1.508 (1.209, 1.881) 0.038 38.5 5 38 5 5
378a 1.431 (1.174, 1.745) 0.046 33.3 7 16 6 6
858a 1.495 (1.198, 1.866) 0.036 30.6 6 47 7 7
379a 1.409 (1.162, 1.709) 0.047 29.2 8 15 8 8
854 1.470 (1.181, 1.829) 0.036 24.0 9 56 9 9
346 1.262 (1.099, 1.449) 0.093 23.7 22 2 27 10
845a 1.469 (1.180, 1.829) 0.037 23.6 11 57 10 11
879a 1.480 (1.184, 1.851) 0.037 23.2 10 64 11 12
823a 1.480 (1.183, 1.851) 0.036 22.9 12 65 12 13
339a 1.266 (1.099, 1.459) 0.091 21.7 28 3 37 14
705a 1.439 (1.161, 1.761) 0.043 20.5 15 53 15 15
752a 1.449 (1.168, 1.798) 0.039 20.2 14 61 14 16
900a 1.475 (1.177, 1.849) 0.036 19.7 13 89 13 17
698a 1.454 (1.167, 1.812) 0.036 18.3 16 79 16 18
699a 1.454 (1.167, 1.812) 0.036 18.3 17 80 17 19
700a 1.432 (1.159, 1.771) 0.038 18.2 20 63 19 20

a These SNPs were imputed.
Ranks of the top-ranked SNPs in CASP8 region based on the power prior Bayes
factor (PPBF) approximation with hyperparameter k = –1.96 and
a = 0.003 ≤ W ≤ b = 0.1. Rankings using P -value and Wakefield Bayes factor
(WBF) are also included, as is the logistic regression estimate and 95% confidence
interval (CI) of the odds ratio (OR) for each SNP. Values of the Bayes factors for
the PPBF are also provided. The genotype data for CASP8 region come from a
subset of the iCOGS study and has a total sample size of 5,238 and 1,733 SNPs.

It should be noted that none of these will necessarily be the
causal SNP, although previous simulations show us that, with
such a large sample size, there is a high probability that the
causal SNP will be highly ranked (Spencer et al., 2014). We
observe that nine of the top 20 ranked SNPs were among the
501 SNPs genotyped (rather than imputed) in the iCOGS
data. Included in the table is the ranking for these SNPs by
P -value from univariate logistic regression and by WBF with
the two values of W that are the extremities of the support
used for W with the PPBF. We can see that while all these
methods rank SNPs similarly, with the same SNPs always
ranked in the top three, the rankings do differ somewhat.

With such a large sample size, the majority of the informa-
tion comes from the likelihood, rather than the prior, which
is why the rankings using the different methods are so simi-
lar when considering the full iCOGS data. Many association
studies will have smaller sample sizes than those used here
and in these studies the prior will have more influence on
the BFs obtained and so we would expect much more vari-
ation in the ranks across the different BFs. We investigated
this using a stratified random subset of the iCOGS subjects,
with 2,721 cases and 2,517 controls (5,238 total). The same
analyses were carried out on this subset of the data and the
results are given in Table 5. As expected, the prior has much
larger influence in this smaller fine-mapping study. Of the
top 20 SNPs selected by PPBF, only four of these are in the
top 20 for WBF with W = 0.003 (where the prior has most
mass around small effect sizes). Of the top 20 SNPs selected
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by WBF with W = 0.003, 10 SNPs are not in the top 50 for
PPBF and three are not in the top 75 for PPBF. There is more
agreement between WBF with W = 0.1 and PPBF but WBF
still selects two SNPs in its top 20 that are not in the top 20
for PPBF.

Discussion

Novel BFs and Their Properties

We have developed several new forms of approximate BF.
These include three parametric families and one fixed form,
each relating to a different prior distribution on W, where
we assume that the prior distribution on the logOR of an
SNP is N(0, W). This allows for the calculation of BFs where
a normal distribution is believed to be an appropriate form
for the prior, but where there is uncertainty in W. Most of
the priors we suggest for W put most of the weight of W at
the lower end of the support but the exponential prior allows
for an almost uniform prior which is useful when an expert
believes a range of values of W are equally likely a priori. The
hybrid prior can be specified so that the mode is anywhere
in the given range. This might be useful when an expert has
a strong prior belief in a particular value of W but wants to
allow for some uncertainty in it.

Three of these prior forms also depend upon the geno-
type data. The expectation of W appears universally to be an
increasing function of V only for the power and reciprocal
priors. This means that these priors are consistent with the
hypothesis that rarer alleles have have larger effects. Depend-
ing on the values of the hyperparameters, E(W) may be a
decreasing function of W when the hybrid prior is employed.
Such a prior would be inappropriate to use if it was believed
that rare causal SNPs do indeed have larger effect sizes. In
this case, we suggest a Savage-Dickey density ratio approach
[Verdinelli and Wasserman, 1995].

All the novel BFs described here are univariate. The solu-
tion we have employed in the univariate case relies on recog-
nizing the BF integrands as standard probability densities. We
did consider extending these BFs to the multivariate case and
while specifying the prior in the multivariate case is straight-
forward, the resulting integrals appear to be intractable and
would probably need to be solved analytically so that easily
calculated closed form expressions for the BFs may not be
easily available.

Using Novel BFs in Practice

All novel BF approximations can be calculated in R (we give
code in supplementary data), although the EPBF is computa-
tionally intensive and cannot produce results for SNPs which
have very small MLEs of the logOR. The computation for all
of the other forms is simple and efficient and we therefore
recommend using the PPBF or HPBF instead of the EPBF
where possible. In most cases, hyperparameters can be found
which result in power or hybrid priors very similar to the de-
sired exponential prior. In these situations, we recommend

that the EPBF only be used if the investigator does not want
to include any information from the data in the prior.

We described how elicitation may be employed with an
expert to determine the most appropriate values for the hy-
perparameters, although such experts may find this task dif-
ficult. The importance of feedback in the elicitation process
is worth emphasizing. Once a distribution for W has been
determined based on the quantiles elicited from the expert,
it is important to relay back to them what this means about
other quantiles not elicited to check that these are accept-
able. A web-based tool, MATCH, which may help with this
purpose is now available [Morris et al., 2014].

BF Analysis in Future Genetics

Filtering using BFs has already been used in fine-mapping
[Maller et al., 2012] and our more flexible approach is likely
to appeal to investigators who struggle to specify a suitable
variance for a fixed normal prior. The methods we use as-
sume that all SNPs have equal prior odds of being causal, but
BFs can also be used to update the odds and then filtering
can be carried out using the posterior odds of causality. The
effectiveness of BF filtering may be further improved by ap-
propriate incorporation of functional information through
SNP-specific prior odds. Such functional data can be found
on the ENCODE database [Encode Project Consortium, 2011],
the RegulomeDB database [Boyle et al., 2012] and the F-SNP
database [Lee and Shatkay, 2009]. All functional SNP-level
data sources are currently limited as information is not com-
plete for all the SNPs across the genome. The FS score found
on the F-SNP database has the advantage that it integrates
a large amount of data from multiple publicly available data
sources. It formally combines scores from a number of bioin-
formatics tools using weighting based on the “reliability” of
these tools to give a score between 0 and 1. BFs are likely to
become increasingly popular as investigators seek to make use
of the vast prior functional information available. The new
BFs presented in this paper allow researchers more flexibility
in the specification of the prior OR, allowing the distribution
used to better match expert prior beliefs.
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