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Abstract
Australian scorpion venoms have been poorly studied, probably because they do not pose

an evident threat to humans. In addition, the continent has other medically important ven-

omous animals capable of causing serious health problems. Urodacus yaschenkoi belongs
to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all

over the continent, making it a useful model system for studying venom composition and

evolution. This communication reports the whole set of mRNA transcripts produced by the

venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These tran-

scripts certainly code for several components similar to known scorpion venom compo-

nents, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides,

sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal

proteins, proteasome components and proteins related to cellular processes. A comparison

with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these

two scorpions have similar components related to biological processes, although important

differences occur among the venom toxins. In contrast, a comparison with sequences re-

ported for Urodacus manicatus revealed that these two Urodacidae species possess the

same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi
cDNA library previously reported by our group showed that both techniques are reliable for

the description of the venom components, but the whole transcriptome generated with Next

Generation Sequencing platform provides sequences of all transcripts expressed. Several

of which were identified in the proteome, but many more transcripts were identified including

uncommon transcripts. The information reported here constitutes a reference for non-Buthi-

dae scorpion venoms, providing a comprehensive view of genes that are involved in venom

production. Further, this work identifies new putative bioactive compounds that could be

used to seed research into new pharmacological compounds and increase our understand-

ing of the function of different ion channels.
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Introduction
Scorpions are arthropods belonging to the group of arachnids that have been living on this
planet for over 400 million years [1]. Currently, around 1500 living scorpion species have been
described [2]. Millions of years of evolution have resulted in a high degree of specific and effi-
cient scorpion venom components. These venoms are true arsenals, containing important bio-
molecules selected for the immobilization of prey and serving in defense against predators.

Scorpions are classified in 18 families [3], the Buthidae family being the most comprehen-
sively studied thus far. The family contains 30 different genera of scorpions dangerous to hu-
mans. Scorpion venom possesses different classes of toxins that mainly modify the function of
ion channels and receptors in excitable membranes [4–7]. In addition, scorpion venom pos-
sesses a great variety of components: salts, nucleotides, biogenic amines, enzymes such as:
phospholipase, hyaluronidase, L-aminoacid oxidase [8], metalloproteinase [9], serine-protease,
mucoproteins; toxic peptides, proteins and antimicrobial peptides active against bacteria,
fungi, yeast and viruses. Examples of the latter are: mucroporin-M1, which inhibits the amplifi-
cation of the hepatitis-B virus and peptide Kn2-7, which possesses anti-HIV-1 activity [10, 11].

To date, 24 transcriptomes and proteomes have been reported on Buthidae scorpions [12–
37] whereas only 15 studies have been performed with non-Buthidae scorpions, which are not
dangerous to humans [19, 21, 38–49]. Non-Buthidae venoms contain a low percentage of sodi-
um channel specific toxins. Interestingly, and contrary to the Buthidae scorpions, non-Buthidae
venoms have a high number of antimicrobial peptides [50], potassium channel toxins, calcins
and peptides with anti-malarial activity. Recently, a peptide named scorpine, isolated from Pan-
dinus imperatus, was used successfully as an anti-malarial agent in biological models [51, 52].

An estimated total of 300,000 different peptides are present in the venom of extant scorpion
species. Approximately 1% of these scorpion components have been characterized, [53] the
majority of these being toxins. This is understandable because of the medical interest. Impor-
tant efforts have been focused at identifying components responsible for human envenom-
ation, and to a lesser extent for structure-function studies required to recognize toxin targets.
This focus on toxins has left many potentially bioactive venom compounds unexplored.

As early as 1967, Rochat et al reported the isolation and characterization of several toxic
peptides from the venom of a Buthidae scorpion [54–56]. Nowadays, scorpion toxins are still
being characterized biochemically and pharmacologically in order to determine the number of
proteins in the venom and their bioactivity. In the 1980s, electrospray ionization mass spec-
trometry (ESI-MS/MS) increased the speed of the task of venom characterization. High-
throughput protein identification techniques by mass spectrometry allowed the proteomic
analysis of venoms and facilitated the identification of hundreds of unknown different molecu-
lar weights components.

Several studies have reported complete mass fingerprinting of venom using proteomic anal-
ysis of venom components [57]. It is conceivable though, that not all components were identi-
fied using this technique given that some components are present in venom at very low
concentrations [41]. This reveals the power of a venom gland transcriptomic analysis: all pro-
tein content and toxin-like peptides are potentially identified. [58]

Studying venom gland components at the transcriptomic level was made possible by the ad-
vent of the polymerase chain reaction. Studies have been performed using cDNA libraries of
scorpion venom glands, which allowed for the identification of many venom components. How-
ever, the cDNA libraries that have been constructed with milked venom glands [15, 17, 32, 39,
40, 43, 45, 46, 48] and the ones constructed with “replete” venom glands [18, 37, 41] have re-
ported only a few complete sequences (tens of genes). These genes code mainly for toxic peptides,
antimicrobial peptides and in rare cases, for genes involved in cell regulation and metabolism.
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Whole venom gland transcriptomes can now be produced with high-throughput sequencing
technologies such as Next Generation Sequencing (NGS) (also called RNA-seq). Several plat-
forms using NGS (454 pyrosequencing, Illumina (SOLEXA) sequencing, SOLiD sequencing,
ion semiconductor sequencing, DNA nanoball sequencing) have proven to be powerful tools for
research in genome sequencing, miRNA expression profiling and especially de novo transcrip-
tome sequencing of non-model organisms [59–65]. NGS is a low-cost sequencing alternative ca-
pable of producing thousands or millions of sequences at once. The resulting dataset reveals
information about genes that code for toxins, peptides with pharmaceutical interest and other
components among which are enzymes and housekeeping genes present in the venom gland.

In the work presented here, NGS Illumina sequencing was used to perform a de novo assem-
bly of the transcriptome of the venom gland of the scorpion Urodacus yaschenkoi. The aim of
this study was to characterize in depth the complete set of mRNA transcripts present in the
venom gland of a non-Buthidae scorpion. A further aim was to correlate this data with the al-
ready reported venom proteome and compare it with the cDNA library shotgun approach pre-
viously constructed by our group [41].

The coverage of the transcriptome was found to be 8.4 Gb, revealing hundreds of genes in-
volved in the process of venom making. Several subfamilies of scorpion toxins and hundreds of
genes related to biological processes, molecular functions and cellular components were identi-
fied. Further, we report 210 venom transcripts with full-length coding sequences assumed to
code for 111 unique venom compounds, among which there are sequences that code for
venom toxins, peptides and venom-specific proteins.

Finally, a comparison with the transcriptome of Centruroides noxius [16] and with the re-
ported genes of Urodacus manicatus [49] was made. The comparison with C. noxius transcrip-
tome revealed that components involved in biological processes, molecular function and
cellular components are conserved between these species. The toxins however, are very differ-
ent in a Buthidae and in an Urodacidae scorpion (non-Buthidae). Conversely, the toxins re-
ported for U.manicatus are of the same subfamilies of toxins found in U. yaschenkoi scorpion.
This dataset will contribute to the public information platform to accelerate studies in
venomics research.

Material and Methods

Sample collection and RNA extraction
The Urodacus yaschenkoi specimen was obtained from the Australian desert on New South
Wales close to Nanya (GPS coordinates -33.22422, 141.306059) on May 2011. The captured or-
ganism was taxonomically identified according to Koch [66] and maintained in a plastic
box with water ad libitum and was fed fortnightly with crickets.

The total RNA was extracted from a flash frozen (immediately frozen in dry ice) ‘replete’
venom gland with the Animal Tissue RNA Purification Kit from Norgen Biotek Corporation
according to the manufacturer’s instructions. The quality of the RNA was verified using a 2100
Bioanalyzer (Agilent Technologies).

cDNA Library preparation and sequencing
The cDNA library for the high-throughput sequencing was made with Illumina TruSeq RNA
Sample Preparation Kit.

The cDNA library preparation consisted on the following steps: i) mRNA enrichment and
fragmentation, ii) cDNA synthesis, iii) paired- end and adaptors ligation (adenylate 3’Ends),
iv) PCR amplification (DNA enrichment) and v) High-throughput sequencing (RNA-Seq
method, Illumina Next-Gen sequencing technology).
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The total RNA was purified to obtain the poly-A containing mRNA molecules using oligo-
dT-attached magnetic beads applying two rounds of purification. During the second elution of
the poly-A mRNA, the RNA was also fragmented using elevated temperatures (94°C) and
primed for cDNA synthesis. Then, first strand cDNA was synthesized by reverse transcription
(using SuperScript II reverse transcriptase) of the cleaved RNA fragments primed with random
hexamers. Immediately, the RNA template was removed and the double-stranded (ds) cDNA
is synthesized (using DNA polymerase I, dNTPs and RNA displacement with RNAse H).
Ampure XP beads were used to separate the ds cDNA from the second strand reaction mix.
The ds cDNA was subjected to end repair by converting the overhangs resulting from fragmen-
tation into blunt ends, using an End Repair (ERP) mix. A single ‘A’ nucleotide was added to
the 3’ ends of the blunt fragments to prevent them from ligating to one another during the
adapter ligation reaction. A corresponding single ‘T’ nucleotide on the 3’ end of the adapter
provided a complementary overhang for ligating the adapter to the fragment. Finally, DNA en-
richment was done using PCR to selectively enrich those DNA fragments that have adapter
molecules on both ends and to amplify the amount of DNA in the library. The PCR was per-
formed with a PCR primer cocktail that anneals to the ends of the adapters. The purified
cDNA library was used for cluster generation on Illumina’s Cluster Station and then sequenced
using High-throughput RNA-sequencing (Illumina Next-Generation sequencing platform) on
Illumina HiSeq 2000 following vendor’s instruction.

Assembly and analysis of transcriptome
The raw sequencing intensities were transformed by base calling into sequence data using Illlu-
mina’s RTA software, followed by sequence quality filtering using GELRAD (Illumina). Paired-
end reads were 100 nt in length. The extracted sequencing reads were saved as fastq files (SRA
accession number SRP045734). Adaptor fragments were removed from the raw reads to yield
the clean read required for the analysis. De novo transcriptome assembly of these short reads
was performed using Trinity RNA seq software (http://trinityrnaseq.sourceforge.net/).

First, the RNA-seq was assembled into the unique sequences of transcripts, often generating
full-length transcripts for a dominant isoform. Then the assembled sequences were clustered.
Each cluster represents the full transcriptional complexity for a given gene (or sets of genes
that share sequences in common). These were designated as contigs. Then a further assembly
step followed rendering unique gene sequences that were designated as unigenes.

Abundance estimation and quality control
To estimate transcripts abundance, raw reads were mapped back to the assembled contigs
using the Tophat/Cufflinks suite (http://tophat.cbcb.umd.edu/ and http://cufflinks.cbcb.umd.
edu/). TopHat is a fast splice junction mapper for RNA-Seq reads. It uses Bowtie (ultra high-
throughput short read aligner) to align RNA-Seq red to mammalian-sized genomes then ana-
lyzes the mapping results to identify splice junctions between exons. Cufflinks assembles tran-
scripts, estimates their abundances, and tests for differential expression and regulation in
RNA-Seq samples. To generate potential novel transcripts, Cufflinks was run without known
reference transcripts. The relative abundance of the transcripts is based on how many reads
support each one. Expression level was estimated and presented in FPKM (fragments per kilo-
base of transcript per million fragments mapped).

The quality of raw sequence data was assessed with FastQC software (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and with CLC bio software. Eleven parameters
were measured to assure the library construction, sequencing and de novo assembly were well
done. At the same time, basic statistics of reads and detection of sequencing errors were obtained.
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Bioinformatic analysis
The assembled contigs were first blasted against a database containing only toxins from the
scorpions Hadrurus gertschi, Opisthacanthus cayaporum and Tityus discrepans created in situ
and collected from the NCBI non-redundant (nr) database. These annotated proteins were
aligned to the assembled contigs to identify the homologous genes in Urodacus yaschenkoi
using TBLASTN (E-value< 0.1). The main purpose at this stage was to verify if the assembly
was correct. Then, the whole set of unigenes were blasted with tBlastn and later with NCBI-nr
BlastX (E-value<10-5) to search identity or similarity. The sequences presenting hits in these
databases were analyzed with Blast2go software (www.blast2go.com); the Gene Onthology (Go
terms) was obtained as well by this mean. In brief, the bioinformatic analysis used for the as-
sembled transcriptome was as follows: first, the 243,870 assembled sequences (contigs) were
searched against an in situ scorpion toxin database. Once confirmed that the assembly in fact
rendered hits for scorpion toxins, then the whole set of unigenes (62,505) were searched against
tBlastn and then with NCBI-nr BlastX (E-value <10-5). Later, all the unigenes were analyzed
using Blast2go with the default parameters to find the Go terms. Finally, a sub-dataset was cre-
ated with the unigenes that gave hits with sequences reported in GenBank related with venom
and housekeeping genes. The annotation was made using Blast2go software.

In parallel, a second sub-dataset of sequences having hits only with toxins and venom com-
ponents of any species were then used to extract the coding DNA sequence (CDS) and identify
their mature sequence. Sequences of this second sub-dataset were deposited in GenBank (EST
database: dbEST JZ818592—JZ818692) and analyzed as follows: nucleotide sequences were
translated to obtain precursor peptides using ExPasy-Translate tool program (http://web.
expasy.org/translate). The signal peptide was predicted with Signal P 4.0 program (http://www.
cbs.dtu.dk/services/SignalP/) and the propeptide was determined by using Prop 1.0 software
(http://www.cbs.dtu.dk/services/ProP/). The theoretical monoisotopic molecular mass of puta-
tive mature peptide was obtained using ProtParam (http://web.expasy.org/protparam).

Furthermore, the presence of post-translational modifications (amidation and disulfide
bridges) was determined manually by comparison within other scorpion toxins or cytotoxic
(antimicrobial) peptides. Multiple alignments were performed with CLUSTALX v2.0 and the
percentage of identity was determined with DNA Strider 1.3.

Comparison with Centruroides noxius transcriptome and with Urodacus
manicatus sequences
The sequences having hits in the NCBI database were compared with the transcriptome of C.
noxius [16] using Geneious software and the tool ‘map to reference’ with strict parameters
(high sensitivity/medium speed and 5 iterations with 35 bp of overlap). The same criteria was
followed to compared the 19 genes reported for U.manicatus (GenBank accession numbers:
GALI01000001-GALI01000019) [49]. The similar sequences obtained were then manually ana-
lyzed to find the CDS and ORF and were used to build alignments with the already identified
U. yaschenkoi sequences.

Results and Discussion

Urodacus yashenkoi venom gland transcriptome sequencing output
To comprehensively cover the U. yaschenkoi venom gland transcriptome, the total RNA of the
venom gland was extracted, and the mRNA was isolated, enriched, fragmented and reverse-
transcribed into cDNA. The cDNA was sequenced on Illumina HiSeq 2000 and the resulting
sequencing data were subjected to bioinformatics analysis.
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After sequencing, 83,812,864 raw reads were obtained. After removal of adaptors, ambigu-
ous reads and low quality reads the sequenced data resulted in 83,808,178 mappable reads. The
average length read was 101 nt. The transcriptome size was equal to 8,464,625,978 nucleotides
(8.4 Gb).

The clean and high-quality reads were assembled de novo using Trinity software, and re-
sulted in 67,026,681 mapped reads and 243,870 assembled contigs ranging from 109 to 15,222
bp length being the mean assembled length of 260 bp. The number of unigenes found was
62,505 with an N50 of 1,139 bp (i.e. 50% of the assembled bases were incorporated into contigs
of 1,139 bp or longer). A summary of the Illumina sequencing results and assembly output is
outlined in Table 1. The size distribution of the contigs from Urodacus yashenkoi venom gland
is shown in Fig A in S1 file.

The Quality Control report (QC) showed that the length distribution of most sequences
(more than 99%) were 100–101 bp, no ambiguous base-content in 98.93% of the sequences
and the coverage (number of sequences that support the individual base position) was 100%.
Twenty-four 5’-end of the sequence was found multiple times but their particular percentages
were not more than 0.5%; in most cases, no identity was found. In general, these data means
that the assembly was well performed.

Bioinformatic analysis
A total of 3900 sequences (unigenes), that gave hits with sequences reported in GenBank relat-
ed with venom and housekeeping genes, were obtained (see Materials and Methods). These se-
quences subsequently were analyzed manually to select only those sequences that codify toxins,
antimicrobial peptides and venoms specific components. Further analysis encompassed the de-
termination of the CDS and delimitation of sequence precursors, identification of signal pep-
tides, propeptides, mature peptides and posttranslational modifications (Table 2).
Additionally, the theoretical mass was calculated and conserved domains were found. By this
mean, 210 sequences coding for 111 unique amino acid sequences including venom toxins and
proteins involved in venom production were comprehensively identified with all the parame-
ters above mentioned (see Table 2). The sequences identified belong to the following subfami-
lies of known scorpion toxins: α-KTx (alpha-type of K+-channel specific peptides), β-KTx
(beta-type of K+-channel specific peptides), calcium-channel toxins (calcins), ascaris-type pro-
tease inhibitor peptides, venom proteins, several enzymes, antimicrobial peptides, sodium-
channel toxins, toxin-like peptides, venom allergens and La1-like peptides. This shows that the
identified sequences comprise a wide array of diversity in venom components.

Expression level of transcripts was assessed using Tophat/Cufflinks suite. The most abun-
dant transcripts were those giving hits with venom toxins, hypothetical proteins, antimicrobial
peptides, and α-KTxs. Then enzymes, such as: NADH-dehydrogenases, phospholipases, sulfo-
transferases, elastases and hyalorunidases, which were highly expressed in the venom. The less
abundant transcripts were those having hits with sodium-channel specific peptides and

Table 1. Summary of assembly statistics after Illumina sequencing.

Sequences (nt) Length (bp) Mean length N50 (nt)

Raw reads 83,812,864 101 nt

Mappable reads 83,808,178

Mapped reads 67,026,681

Assembled sequences (contigs) 243,870 109–15,222 260 bp

Unigenes 62,505 727 bp 1,139

doi:10.1371/journal.pone.0127883.t001
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Table 2. Unique sequences encoded by 210 transcripts of theUrodacus yaschenkoi transcriptome.

Seq. Name Fasta Sequence (ORF) amino acids Seq. Description (BLAST)

comp234_c0_seq1 MKLINLMPVFLMLLIVVDYCHSFPFLLSLIPSAISAIKRLGKRSA
KSQQYVDLQKQDLNPDLDFDLDDLEELLDKLSDSDY

antimicrobial peptide

comp17_c0_seq1-4 MKNQFVLLLLAIVFLQLISQSDAILSAIWSGIKSLFGKRGLKNMD
KFDELFDGDFSQADLDFLRELTR

antimicrobial peptide
UyCT3 ndpb precursor

comp17_c0_seq5 MKNQFVLLLLAIVFLQLISQSDAILSAIWSGIKGLLGKRGLKNAD
RLDELFDGDISDADLDFLRELTR

antimicrobial peptide ct5-
ndbp- precursor

comp31_c0_seq1-4 MKTQLAFLAITVILMQMFAQTEAGFWGKLWEGVKNAIGKRGLRNL
DDVDDLFDSGLSDADDLFDSGLSDADDLLDSIFADLDA

antimicrobial peptide
UyCT1 ndbp precursor

comp192_c0_seq1-2 MKNQFAILLLAVVFLQLISQSDAFLSTIWNGIKGLLGKRGLSNLD
QLDELFDGDVSDADLKFLRELMR

antimicrobial peptide pantinin
3 precursor

comp1267_c0_seq1 MNAKVMLVCLLVTMLVMEPAEAGIWSWIKKTAKKVWNSDVAKKLK
GKALNAAKDFVAEKIGATPAEAGQIPFDEFMNVLYS

antimicrobial peptide c22
precursor

comp3813_c0_seq1 MQFKTLLVIFLAYLIVTDEAEAFWGFLAKAAAKLLPSLFSSNKNS
SKRKREIEDFYDPYQKDLDSELERLLSQLQ

antimicrobial peptide

comp588_c0_seq1 MAKHLLAEFLVIMLISSLADGKTTVGQKIKNAAKKVYNKAKDLIG
QSEYGCPMVSTFCEQFCKMKKMNGDCDLLKCVCT

beta-ktx-like peptide

comp17858_c0_seq1 MLLYRFNMASLSLVICIMGAIWTVGRQSKYPGFFPMDENGEVYRC
DRLGYNFFCNATCVFQGGTYGYCAISSCFCENFTLPVAVSDNLG

beta-like toxin tx651

comp18425_c0_seq1 MGKNPGYLLCLPTVQIAPMMQITSERDAILKRYNSIAVLAIQSIL
HNCQ

beta-like toxin tx651

comp35_c0_seq1 MKTQLAFLAITVILMQMFAQTEAGFWGKLWEGVKNAIGKRGLRNV
DQIADLFDSGLSDADDLFDSGLSDADAKFMKMFM

antimicrobial peptide
UyCT1 ndbp precursor

comp35_c0_seq2 MKTQLAFLAITVILMQMFAQTEAGFWGKLWEGVKNAIGKRGLRNL
DDVDDLFDSGLSDADAKFMKMFM

antimicrobial peptide
UyCT1 ndbp precursor

comp3842_c0_seq2 MKPNLVLASLAFLILCSVLEKCTAQSGGRGRCRGRGEVFTYCGTG
CRLTCQNYRNPPQICTLQCFIGCVCRSGWVRDTRSGRCVRPSQCRR

Ascaris-Type protease
inhibitor peptide

comp4363_c0_seq1 MKGTLVVFAFASLCFCSVFEKYGANGGFETFIIPPGECYRYPGEE
VRKCGSACPITCNNYRRYPVPCTKQCVHGCFCIPGLVRDIRSRRCLKPTQCP

Ascaris-Type protease
inhibitor peptide

comp5534_c0_seq1 MAKIAVFGIMLSVLVLAQAFPQNYQPFECNEDEVFVPCLSPCRRT
CKNLSPYPCTRLLPVCVSGCGCKAGRILDNATGKCVLPRDCTR

Ascaris-Type protease
inhibitor peptide

comp75842_c0_seq1 RPGEVFTECGTTCPLTCNNYWNPPRVCPFNCFRGCQCRNGLVRNT
RTGACVRPSQCRR

Ascaris-Type protease
inhibitor peptide

comp1136_c0_seq1 MKYVASFLIVLFAFFVLEDGMVEAGFGCPLNRYQCHSHCLSIGRR
GGYCAGFLRTTCTCYKNK

antimicrobial peptide
defensing

comp3700_c0_seq1 MRHLAFLLVVLIAFSVLEDGMVEAGFGCPLNSYRCHARCKSIKRR
GGRCGGFLNFQCICFR

antimicrobial peptide defensin

comp2227_c0_seq1 MRRLPEYVLVLVFACFVGLIVTTDDRLHVPEAASKRCARKPAGFV
SVKTSGDNGFKIKVSGDVQHYIPGEMYTVSLQGYRTQFSVQKFTG
FMLVVEPSDPLQSFSTTERSNGMFQLLADGLSKLSETCLNAVVHT
SNVPKSDIQVLWLAPPAGTGCVVFRATVIENRELWYMDDGGLTLE
LCEEGPPEVVGECCACDEAKYEVTFEGLWSRFSHPKYFPTNEWLT
HFSDIIGASHTADFRIWELDNYASEGIRQVAEWGATKKLESELNA
EIDKIRTIIKARGLWYPNVTGKTFAVFRVDSKKHLVSLISMLGPS
PDWIVGVSGLELCLKNCSWITGKVINLYPIDAGTDSGVSYISPNS
PTVPQEKIRQITSSYPKNDLSPFYDATGAPMKPIAKLTITRERVY
TRTCNSAGGSATREPPSALTPEEPEDDLNRPECQVTQWSEFSPCS
VTCGEGIRMRNRKYLMEKKAQMMNCVVQLVEKELCEPECSVGFSC
ETINWSAWSECSVTCGKGVRMRNRRYVNSMSRKTCTLSLVEKEMC
TGDVPECEQKEVIDANCAVTQWSEWSPCTVTCGKGMKIRTRLYFD
PSSLDTCNVELIQKMLCMADRTDCSIDPAEAKEICMQPKETGACR
GYFPRWHFDLSRRECVQFIYGGCRGNRNNFERYSDCNQMCSMMVR
GLPSTIATLAASPIQVPNVTEAPPVNCMVTPWSPWSACSRTCGNG
RKERKRMIKVAPLNGGKPCPRRLTQRRRCKDLPQCSVDCMVTPWG
AWSACSTTCGQSSTQQRTREIKRPAKHGGAPCGPRVERRFCSIPL
CTY

Venom protein f- Spondin-1-
like

(Continued)
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Table 2. (Continued)

Seq. Name Fasta Sequence (ORF) amino acids Seq. Description (BLAST)

comp120806_c0_seq1 VMFYEYALGKYPKIDSNKVDINGGLPLLGNLDEHLMQAERDIVKI
VPNPNFNGLGVIDWEAWRPTWEYLWGSLSIYKNRTLELVRVMHPS
SPDNFVQDIAKTIWEDSAKQW

hyaluronidase-1 isoform 1
(partial)

comp7071_c0_seq2 KITCFQTKLISKTDLSFQHHFWKMLAITASMGLDGAVIWGSSDYF
SEKTKCEELEVYINDVIAPAVTTVSSNANRCSKEVCNGNGRCTWP
SEPFTSWKYLADTQLQRRDPVNIVCRCQTGEGRYCN

hyaluronidase-3 isoform x3
(partial)

comp7071_c0_seq1 KIVMFYEYALGKYPKIDSNKVDINGGLPLLGNLDEHLMQAERDIV
KIVPNPNFNGLGVIDWEAWRPTWEYLWGSLSIYKNRTLELVRVMH
PSSPDNFVQDIAKTIWEDSAKQWMSKTLRLAKKLRSDGMWCYYLF
PDCYNYGGKDHPSEFSCGEKIRRSNDELSWMWNKSSALCPSIYFS
GLQINYNESQRTWFLQAKLAEAVRVSRPHTKIYPFINYLVHDSRT
PVPVHHFWKMLAITASMGLDGAVIWGSSDYFSEKTKCEELEVYIN
DVIAPAVTTVSSNANRCSKEVCNGNGRCTWPSEPFTSWKYLADTQ
LQRRDPVNIVCRCQTGEGRYCN

hyaluronoglucosaminidase 1
(partial)

comp1933_c0_seq1 MWFRLVLFCVLVTSIYSLSCPCWRDRASYCGPPPTNCPVGLTDDA
CGCCKVCAKAEGEICGGPWGTSGRCAEGLTCVKPDNVEEFIRNQI
DGVCKKEKQ

Venom protein insulin-like
growth factor-binding protein
7

comp1991_c0_seq1-5 MNNIRFAVMLVFLMVLAVGGLSAKYAPTGGCPLSDALCARYCLKH
NYGRSGKCDGSTCKCSTKLPNIIVL

Alpha-KTx precursor

comp2092_c0_seq1 MNKTLCTIFLVVLVMFAISVLPAESIGGCPIDSMCKSYCKNHKYG
SEGKCDGTNCKCSLG

Alpha-KTx precursor

comp12_c0_seq1 MERILKPVFLAILIVLSFSSQCMGFGESCQAGKHIVPVGQQQIDS
STCTLYKCSNYNRKYALETTSCATLKLKSGCRMVPGAATAPFPNC
CPMMMCKG

la1-like protein 13 precursor

comp13_c0_seq1 MKHLSDAVFFFVCLSICALFSLTLCDGEICQVGSMAIPVGKEQPD
PKGCAKYECLSQSNRVLIKKVTCASQALKRGCKSVPGPAGKRFPE
CCPTTLCRGKQWGQ

la1-like protein 15 precursor

comp3687_c0_seq1 FSLVWAFACVLTYVLVTEVNIDNYRPSCSGNFYTIHSLTFQVVSE
ICTAGKIIIPLNEEKQDPETCALYKCTKYAGRIVLITVTCAPQEP
RRGCRNVDSPVDAPFPDCCPIVLCKVYELGGK

la1-like protein 15 precursor

comp3687_c0_seq2 MDKSAIVILVSLGVCLCFDLCSGYGEICTAGKIIIPLNEEKQDPE
TCALYKCTKYAGRIVLITVTCAPQEPRRGCRNVDSPVDAPFPDCC
PIVLCKVYELGGK

la1-like protein 15 precursor

comp42_c0_seq1 MNTKFTVLIFLGVIVASYGWITEKKIQKVLDEKLPNGFIKGAAKA
VVHKLAKSEYGCMMDISWNKDCQRHCQSTEQKDGICHGMKCKCGK
PRSY

antimicrobial peptide
opiscorpine3-like precursor

comp324_c0_seq1 MQTQCTVLQLLVLVALCSCGGILKEKYFQKGVDYLTSHIPIPVVK
DVVKSAAKQLVHKISKNQQLCLIVDTVQWCNKSCLAAENKEGYCH
GTKCKCGIKVSY

antimicrobial peptide
opiscorpine3-like precursor

comp20745_c0_seq1 MMNLSLSGCGFLCIYHVGVASCFREYAPHVLVDKIAGASGGSLAA
CALICSVSLGETTSDVLRIALQARSRTLGPLHPGFDLNKILYDGL
VRLLPEDAHLRCNGRLHISVTRVKDFKNVLLSEFNSKDDLIQALL
CSCFIPFYSGIVPPKFCGVAYVDGGLSDNLPVLDDNTITVSPFAG
ESDICPEDTSFNILQFNMSNTSIAVSAGNLYRFVSTLFPPHPEVL
SQICQQGFDDALKFLQRNNIISCTRCLAVQSSFGIAESGIVDTKE
LENDHPDDDCIDCRYRRQRALLDSLPEAVVKAIEDCCEQMNKGVI
NWLFRHNPVKILPFFALPYVLPIDITIVVFAKIWETLPYIQREMK
SSLSEMFAFVKNLVYTFDKGSQYSAKFSCQLAIREFDYANKERKL
STGSAVTNVQPSSSAEENTAAKRQFKKRMSYAGCANISQRLPMRR
KSMVETSAPERVIKNMKFGFTVDLSETSMTSENRKKKVIDAFQSL
KENNANVFDIANKVFELEKDYIEYIEPQKSDFVEALEVTNTNEAV
MAFFYKEGKKVKVTEIFNLTEENAGIAMTDDEKEANTNLQWDSGW
DMVSSSLSDYESAVEDDQDCFPVDDHLQPCTSSFGTADAYSMDIH
GHELRRARKKSVISRLPFPSIDK

patatin phospholipase

comp74529_c0_seq1 GESIASLLSIMEVLTGHIAPYKTVSAKALEDCHVLRLRVEAFKVL
LERDPESLLRTTQIIMVRLQRVTFTALHHYLGLSTQLIRTHAKKG
IHTMSPKASPSRPSSRRISQ

patatin phospholipase
(partial)

(Continued)
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Table 2. (Continued)

Seq. Name Fasta Sequence (ORF) amino acids Seq. Description (BLAST)

comp122501_c0_seq1 KIAGASGGSLAACALICSVSLGETTSDVLRIALQARSRTLGPLHP
GFDLNKILYDGLVRLLPEDAHLRCNGRLHISV

patatin phospholipase
(partial)

comp1249_c0_seq1 MGALTLLAFALLTCVAAELNPDNELYVNFEPLPDQTDAWPMARAV
RMQFTRRSENGREFRSFQGCQVLESLNHIAREASRTPEQAIQKIS
KEEMRFFEGRCQRMGDAERTIWGTKWCGAGNTAKKYSDLGIFNNL
DACCRDHDHCDNIPAGKTKYGLKNNGTFTMMNCKCEEAFKKCLDA
ITGKWSSAAIKAFKAVYFEIYGNGCYNVKCATGRSSRGGECPNGV
ATYTGETGLGAVIINS

phospholipase a2

comp5045_c0_seq1 MKTAGVIILLSSLMAAECGIFDVVDKIVPIITTFYKEKDGHRMVE
TIEINTYIDGKKMVDCYLYGHVYIIDKMMEMVPSDIVKEVGKKEM
SKLVNKCSDLLVANIRKGIFNIVKTPFDFARKIFKLLLIFPGTKW
CGAGDVADDYNDLGLFEETDKCCRTHDHCNDSIVGFETKYGLKNK
DFYTKSSCNCDLPFHKCLYEKEAIHSDAVGHLFFNILQTQCFKED
YPIVKCLKKWGIPLIRETCQEYELDCGGRKKHQFFDAKMYKGKKE
SPLLKKLLSH

phospholipase a2

comp9366_c0_seq1 MKVLPVIVLATLSIAEGGIFDAVGDVLPITTTFYRETDGHRMVET
IEVNTYLNGKKTVDCYMYGDSYIIDQMIKLIPTSLTKEVDKEEMS
DLVNQCSELLLNQLSSGVFHSIKSPFDSIRKAFKSLLIFPGTKWC
GAGDVANSEDDLGRAKDTDICCKIHDHCNDSIAGFETKYGLKNKD
FYTKSNCECDRHFHSCLQNGGNLPSDLVGKVFFNVLQTQCFEEDY
PQIRCLEKSGIPLIRESCQEYELDYNGTKKYQFFDAKAYVSRGNA
WILDKLEL

phospholipase a2

comp18666_c0_seq1 MLLLTAFLLSLVQPLPSAVIQLPHENKLTGYYQREKRPHMLIIGQ
TGKVMHCHRYDDKNEADRVLAALKLEDIQRVTPQLMEKLINFCTE
EESIKHPKEQVKKILIYPGTKWCGMGNSAANESELGREKEADSCC
RDHDHCDDSIPAFSIKYNLTNYSPFTKSNCSCDRQFHLCLVKAGT
EAAGIISGLYFDLLKMECFRRTNYCSSNEVCTETWQWKLSSSYF

phospholipase a2

comp11436_c0_seq1 MFFNLFGDLEDLEAILNKKTQKRVLGSGHCSGLIKLLPRYKDLYV
AQDSWNTYNSMLRILKKYVMPVRSSTTTGSKMIAGNTMTFSSYPG
TVFSGDDFYVISSRLIALETTIGNSNSSLWKYIVPNKIVLEWIRN
IVANRLSRTGEGWTYLFSLYNSGTYNNQWMVVDYNRFFPGKPPKK
GALWVLEQLPGHIERKDQTDHLLQETYWPSYNSPFYPDIFNLSGT
LDMVKKYGDWFTYDKTPRALIFKRDHKKVHDLASMMKLMKYNDFK
NDVFSRCNCTPPYSAENAIAARCDLNPPNGTYPFPSLGHRSHGAI
DMKLTSYFMHMRYQFVAYGGPTYDQQPPFQWSKSDFSGEKHEGHP
DLWKFKPIVHKWIGDPES

phospholipase b

comp50294_c0_seq1 WLELKEKDEVNGEKKNAVSKTPSIKFNKFKSSNKGNASNETRYSP
ITPERRIKSLNDSRAEEVKSPKRQVHSEGEMISDDDAKENTSTSA
ISRFRKISLRKLKVWR

phospholipase c epsilon

comp73461_c0_seq1 NGDIVTGDSDGVARIFTCHSDLQASPEEQLLLEEEISKTALTAEE
IGDLKLNSIQGKELLYEPGSRDGQVIIVREGSVVTAHQWSAAEGK
WLKVGDVVGASGSTQNTSGKTLYEGEEYDYVFTVEIEEGKSLKLP
YNITEDPWLAAQQFIHKHNLSQLFLEQTANFIINNTRGMTFEQQS
PTGSDPFTGGSRYIPGNAQ

phospholipase a-2-activating
protein

comp74269_c0_seq1 DYVFTVEIEEGKSLKLPYNITEDPWLAAQQFIHKHNLSQLFLEQT
ANFIINNTRGMTFEQQSPTGSDPFTGGSRYIPGNAQTPTSPPTSA
DSFSSNKSYFPVGNGVVKEEKTETAAFGDGITNTFFPQTEYVTFD
VANIEGITAKLKEFNKKVTPEQQLTDEEIT

phospholipase a-2-activating
protein

comp91550_c0_seq1 FPGLDILRLSVRRSTVNKRVCETAGVQLTDHLLSFLSSDGQVANK
MLSLRTFCNLFSHSAGKKLLTNQVERVLSTASNCHSSDN

phospholipase a-2-activating
protein

comp101154_c0_seq1 KVLASYWKHTRPIMLKFLQSLQALNSTDISIETKLFVVPIYSPTQ
KRIPYARVNHNKYMVTDESAYIGTSNWSGDYFISTGGIGFILENTE

phospholipase d3

comp108928_c0_seq1 AGVQLTDHLLSFLSSDGQVANKMLSLRTFCNLFSHSAGKKLLTNQ
VERVLSTASNCHSSDNRNVQISLATLYLNYVITFCHSKLEVKSQC
VPKILSALKQKTDSEAQFRLLVALGTFIWHDNEAVAFTKTLDLPA
LVEKMSEIKDPPKVGQCAEYLLSVLFDVN

phospholipase a-2-activating
protein

(Continued)
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Table 2. (Continued)

Seq. Name Fasta Sequence (ORF) amino acids Seq. Description (BLAST)

comp116679_c0_seq1 YNMGSFRNVITLKDLKAFLPKANCKLPTNRLKEHFQDVDLRRAGE
IGFDGFATLYHNIVHDEQLLKDLGQYSADGQKITLQEFQNFLIQE
QKDLMAEDERTVSEFMRD

phospholipase c gamma

comp118708_c0_seq1 IKFHEVIKTIKEHAFVTSEYPVILSIENHCTLPQQRKMATAFIEV
FGDMLLSQSVEREGTKMPSPQQLR

phospholipase c gamma

comp140532_c0_seq1 HQQGEVLKKLMELAQTAQMKQLEMKFERENKEMKGKQAKISVETA
REVSGDKTLRNKAERERRLREKNSNNTKKFIEERKTAALKQ

phospholipase c beta

comp147891_c0_seq1 FMRDYLQDPSRDTQEPHFTVFEFLDFLFSKQNEVWDKRHDQVNQD
LTRPLTHYWIASSHNTYLTGDQ

phospholipase c gamma

comp849_c0_seq1 MNAKLIYLLLVVTTMMLMFDTTQAGDIKCSSTKECFRPCEEIGGC
SNAKCINGKCRCYGCIG

alpha-KTx potassium-channel
inhibitor kcug2 precursor

comp849_c0_seq3&8 MNAKLIYLLLVVTTMMLMFDTTQVGGIRCSGTPECYEPCAKKTGC
YSAKCINGRCKCYGCSR

alpha-KTx potassium channel
blocker precursor

comp849_c0_seq4&9 MNAKLIYLLLVVTTMTLMFDTAQAVDIMCSGPKQCYGPCKKETGC
PNAKCMNRRCKCYGCSG

alpha-KTx potassium channel
blocker precursor

comp849_c0_seq10 LTFDTTQAVNIRCSGPKQCFDPCKKETGCSRAKCMNGKCRCNGCRG alpha-KTx potassium channel
blocker precursor

comp1069_c0_seq1 MNAKLIYLLLVVTTMMLTFDTTQAGDIKCSGTRQCWGPCKKQTTC
TNSKCMNGKCKCYGCVG

alpha-KTx potassium channel
blocker precursor

comp1069_c0_seq4 MNAKLIYLLLVVTTMTLMFDTAQAVDIMCSGPKQCYGPCKKETGC
PNAKCMNRRCKCYGCSR

alpha-KTx potassium channel
blocker precursor

comp2965_c0_seq1 MNAKLICLLLVVTTMILMFDTTQVRAVKCFHNKMCLIPCGMKTGC
PEGICVKGRCKCSGCNGKEKKCFFQS

alpha-KTx potassium channel
blocker precursor

comp14979_c0_seq1 MGTIIHMAILISLLLLGEREAKDDYPRNFEGNCYRCKYLEIGYCD
AICKMHKAETGYCSRSNLFCYCTGIEDEYVSARNFLYQQNLKINN
EELKDFDGNTL

Sodium-Toxin scx1_titse
precursor

comp17675_c0_seq1 MGTIIHMAILISLLLLGEREAKDDYPRNFEGNCYRCKYLEIGYCD
AICKMHKAETGYCSRSNLFCYCTGIEDEYVSARNFLYQQNLKVNN
EELKDFDGNTL

Sodium-Toxin scx4_titse
precursor

comp644_c0_seq1 MRVPLALLATVCFVLGKPQDDTGYGRPAVPPKPIGDYDEDVGGPA
KEPDDYDNTGGGKVPVTADYDPLPNPGLKPAPNDPDDYADDKPKG
SDAGIDGDKNCICVPYYQCKEGEIVTDGTGILDARKKPPPETELP
LDSKFEPPFCGSFHVCCKAPLEPTPGTIYEPKCGVRNPGGIYSRI
LAPDKKGEANFGEWPWQAAILKVERKINIFQCGGVLIDQRHVLTV
AHCICHYRELNQYPLKVRLGEYDTQKTDEFLAHDDFEVEKIICHR
DFRNNSLWNDIGILRLDREVAFSPHIDTICLPTYQNVFEGQSCVV
TGWGKDAYKGGSYSNIMKEVNIPVINNTKCESLLRKTRLGKYFKL
HENFICAGGEEGLDSCKGDGGGPLVCYRKDGTYALAGLVSWGIDC
GQPGVPGVYVRVQKFLPWITEQTGFPLEHYFPKKYE

Putative conserved domains
of serine proteinase stubble

comp1431_c0_seq1 MKMYFIFFVFANILLQAHFLPAKEEGRIFRGREVNDGEFPWMVFI
KLTDELNCSGFLISNYYVVTAAHCMIRSATDMRGVIGSVDREQDN
MLEFETYFIHPEYNREKNFYADVALLKLKTPIQFTSLIQPICIGK
KSSFIQKDNEVLQMGWGRDRNDSTIVSKKLKVTDVGKLMSQDYCN
SFFEELNGTSIGKICVKNTEIEGVCEGDSGGPLVYNDPEDGYVVI
GLLSFGFYVNCTVTNEYPEIYTNVAYYSDWITENVKSPCVIE

Putative conserved domains
of serine proteases 1 2-like

comp1589_c0_seq1 MKMYFIFFVFANILLQAHFLPAKEEGRIFRGREVNDGEFPWMVFI
KLTDELNCSGFLISNYYVVTAAHCMIRSATDMRGVIGSVDREQDN
MLEFETYFIHPEYNRRKADVALLKLKTPIVFTNLIKPICIGKKSS
FIQKDNEVLQMGWGRDRNDSTIVSKKLKVTDVGKLMSQDYCNSFF
EELNGTSIGKICVKNTEIEGVCEGDSGGPLVYNDPEDGYVVIGLL
SFGFYVNCTVTNEYPEIYTNVAYYSDWITENVKSPCVIE

Putative conserved domains
of serine proteases 1 2-like

(Continued)
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Table 2. (Continued)

Seq. Name Fasta Sequence (ORF) amino acids Seq. Description (BLAST)

comp4148_c0_seq1 MSESELNVDSIISRLLEVRGCRPGKTVQLTEAEVRGLCLKSREIF
LSQPILLELEAPLKICGDIHGQYTDLLRLFEYGGFPPEANYLFLG
DYVDRGKQSLETICLLLAYKIKYPENFFLLRGNHECASINRIYGF
YDECKRRYNIKLWKTFTDCFNCLPIAAIIDEKIFCCHGGLSPDLQ
SMEQIRRIMRPTDVPDTGLLCDLLWSDPDKDVQGWGENDRGVSFT
FGADVVSKFLNRHDLDLICRAHQVVEDGYEFFAKRQLVTLFSAPN
YCGEFDNAGGMMSVDETLMCSFQILKPSEKKAKYQYGGLNSGRPV
TPPRGPVKKK

Putative conserved domains
of serine threonine-protein
phosphatase pp1-beta
catalytic subunit

comp10302_c0_seq1 DSDDSSVCTALEYTSQDLAVDCSTSHLLDLTHSNNLNCCAKQLCV
PQEADFPKDEEDVGDDPPKHNNQNEITALDMSLQRSKGNNCEDMM
DSAEEITYDTFTNMDHTLKLYIEMQLFNANEELEASIEAVLVSHS
TTIKNKGLLLLSTKRLHFMKLAENLNEDPKNNVTPLEAVELHLLH
TVQIFTGNQGASFIWGSEKNPSHCKGCYTCLFRDADYCCTFITYF
IDFMKHKVSLLPAINASSEFNLSQVKQDVLFAGAQNSVSCKISTE
ILAFIIVDKCQLESPEKEYGIAALTLTSTDICLTDIIFTKRSSKP
SEFFKPVESYMLIAKQKVTNLVSVHPHFDTCKIGLHFLDEDSDKE
LLWMIVLKTKRMLYLLVNTLKEPWQDNFGIEMKTETPADCECNLY

Putative conserved domains
of serine threonine-protein
kinase 11-interacting

comp17155_c0_seq1 MDLIQHELVDIRKHCESHIPGCKLITCVQAMVRVDIVRTEHKQLT
ACIQFPKKYPNETLLIELKSKYFSEKLLDGLTKVCDEKCRKHLGK
PQVLELLKFIQNFIAENPLCVCSEEIAAIKKRLSTEKDELRLKQK
TSSLALRIYQDLYFLVVKIQVPDNYPLEQIKIEDKDSNFPELFKR
HFTSQAVEIARQCVQPPLKRKPKDPPFEPKPSLWPVVGFLIDQVK
RVPLEDCPLCKTRCLPSDPKDIITDDKDDTFAERIYCGHVFHNGC
LNKYMKMPPFQGKTCPKCEQRIYHEKWKATPQLVEARWAHEEAKK
RELGEVVEFLQ

Putative conserved domains
of serine threonine-protein
kinase mrck beta-like

comp22520_c0_seq1 GEFDNAGAMMSVDETLMCSFQILKPTDKKKYPYGANRPVTPSQIT
KKNSKK

Putative conserved domains
of serine threonine-protein
phosphatase pp1-beta

comp30034_c0_seq1 LFPNLQVINVSHNRLANAIGLKYLTKVSAVNLGYNNLSKIPTFSD
ESFKFLQELSLRNNNLEDLKGLESLRNLHDLDLSYNCLSEHSVLF
PIHSLPYLQLLKLVGNPLAIQRLHRILTAKHLHPNVLVVGMKLDG
RQLTKTEIGKVTQVRAINTYYNNRNGERIQTNSLLEEANIIRNVT
VSSLSHCASFSSLDRHTVASESSLKNDTESITSTKSDFVKKGKSK
SRKKKEIIIEDCGSTQQYFLTQNFPEKECKTKELKATLAARRENL
GQQWLVSTYSTSLPSESILRNMTTMPESSREISVHNDTSGPSFNN
TIESSPSTGITAILVGTKEVENYSEEVDNVEKKVKKKISVASDGI
EVICSEHIHQDKIADNDFSMCKSCMQLDQEDNNEIDFQENRNAYN
IKYGIAGEDENIESNVFLVEKKVSQDETAIIFVSIGEKYLNEEDT
LTNDLLDSLDLSVLDTVEMLGKNTIKLDFKIFKSSQRERTYCTES
EVAAEEMLNLLLPHADARSLRNIIKNALRCLKCDVQFTKNIVEER
FISDIAHPLAKYILRDNNLSEIEFEGKDICPVCESLMIVEDNDCP
VTTSLLKDANYSPAIISGYLFVPQNTSSSVSVDFTSNLLLTFKHP
PKVKQDTVSSLSNNATVNAASHGEA

Putative conserved domains
of serine threonine kinase 11-
interacting protein

comp35829_c0_seq1 YQYSWNNFETLKFKQNFAFSRIGNYIASKRNKTRWIWISAIVASG
ICAFSYIRNCSRVYCNQEKTYQREIEKCRDILRRRKDEVGAPGII
IGVSINGRTVWQEGLGYADVENRVPCTENTVMRIASISKSLTMAA
VAKLWEDGKLDLDKPVKTYVPYFPEKTFEGKKVDITCRHLVSHLS
GIRHYDKKNLEKDSEKLDSKIKKEENNKEKDEISKRNENEQKSEF
DLKEYLIKEKYESVKASLDLFKDDPLVHKPGTKFLYTTHGWTLLS
AVVEALAEKPFATFMKQLFKDFGMTNTYLDTNDAIIYHRARFYLR
DKKGHLQNTPYVDNSYKWAGGGFLSTVGDLLRFGNIMLYSLQHKA
QDLEKNINQSNELQKAEDSRCVETNTSSPTKELCYNTSADNTEIT
LCALPGYLKDETVKAIWLPVENATPNWEGGIRYGMGWGIVSQKQK
CGYCRE

Putative conserved domains
of serine beta-lactamase-like
protein mitochondrial

(Continued)

Urodacus yaschenkoi Transcriptome

PLOSONE | DOI:10.1371/journal.pone.0127883 May 28, 2015 11 / 33



Table 2. (Continued)

Seq. Name Fasta Sequence (ORF) amino acids Seq. Description (BLAST)

comp59215_c0_seq1 NTAEAEVKKIQDEVNTLKKKNCELESELTKFRQQQREFLTGKHEF
EPFQDEKYQNKEYEKMMRHLKAEKEDLHRELTEVQEKLKLQSKEL
KDALCQRKLAMTEYAEVSDKLSELRAQKQKLSRQVRDKEEELENA
LQKIDTFRQDLRKADKLRRELEARIEDFKSDSLKERRMKERSEEY
SRHLEEEMESLKQRHVGWGANPSHLESQEITRLKLEIESLEVQQK
EMLTQQQSRFSAEMSNLLDQLQDAESIKESLDEEIISLKEKAEKA
RSESSIEHQEVINELKRTQEREKQLLQEDNRKLNLEIERMTELIN
KQQDDKRRLEEDLIQIREKKESIIQWEAQISEIIQWVSDEKDARG

Putative conserved domains
of serine threonine-protein
kinase mrck beta

comp59760_c0_seq1 ILISELKIIHIEFLNFNIPYSFNCVFDGLLIFNGKTTESDILLHA
CGQSFPKNVTSTGPFLHLIFYIDGIWNYGGFALRFKQISPREPCG
EHQITCRNYNCVNRTLICDGADDCRDGTDEECGYKRQRLICGRPK
IKPEFIDDRIVGGTKAVPGSWPWQASLRVPSAEPFGHVCGGSLIN
EQWILTAAHCFRDIQKESWTVHLGKYNKNKRDHTEQLRYIKRLFI
HPQYLEMIKKE

Putative conserved domains
of serine protease

comp92380_c0_seq1 LKVTHCMETVQGGIDLSMFKSLLMLELKKTPIHLLLGLNELCSQL
ETLVCSCSISSLHELVGNKSLEWTVLKQLNLSHNYLEDLQEDTK

Putative conserved domains
of serine threonine-protein
kinase 11-interacting protein

comp112232_c0_seq1 LELKKTPIHLLLGLNELCSQLETLVCSCSISSLHELVGNKSLEWT
VLKQLNLSHNYLEDLQEDTKLFPNLQVINV

Putative conserved domains
of serine threonine-protein
kinase 11-interacting protein

comp130276_c0_seq1 MDRVKFPSLPDSEDTEWTYAMRRDMQEIIPGLFLGPYS Putative conserved domains
of serine threonine tyrosine-
interacting protein

comp6164_c0_seq1 MQFKRLLVALTLICIVSCEEKRDSSGRSCSVTGICMKSCARFLHQ
PANHKKCLPDGVCCTLIY

toxin-like toxin tx277

comp6514_c0_seq1 MQFKRLLVALTLICIVSCEEKRDSSGRSCSATGICMKSCARFLHQ
PANHKKCLPDGVCCTLIY

toxin-like toxin tx277

comp395_c0_seq1 MLKTVIFCIAVLASVCTGEENSEEGRTFPLLFSADGRNSLGCWIT
YSFSYQPTADIDTKIAAQNTLCECMKKGLVPK

toxin-like toxin tx707

comp493_c0_seq1 MKATVLLIAVFILFSVFGDMGYCEFCDTPHCTRVCYDHCVRLNKH
YKTCCMTNINDRIRMECLCEDKTGIKPYYPNNI

toxin-like protein 10 precursor

comp26529_c0_seq1 ALFILFSVFCQMGYCQSSNSRRCYRSCLDYCTRLNQVYKSCNVSN
SNGVKHLRCDCES

toxin-like protein 10 precursor

comp3375_c0_seq1 TCVLSHPAFCVDDSGVRYKPGDVWYDDEKCEKLRCSGAEASLKII
GAGCGTIHVVGCETVRGSGHYPNCCPRPKC

toxin-like protein 14 precursor
(partial)

comp4212_c0_seq1 DIVKVVCVDKSGVEHKPGEVWYDDERCQKLSCDRIKWNLEIVGMG
CAPAVSAHCNPVRCSGHYPNCCLHC

toxin-like protein 14 precursor
(partial)

comp4212_c0_seq2 MNTYNSRFYIFSLAIALVILEGTEGYMFRIAQDPGAVVCVDKSGV
EHKPGEVWYDDERCQKLSCDRIKWNLEIVGMGCAPAVSAHCNPVR
CSGHYPNCCLHC

toxin-like protein 14 precursor

comp79719_c0_seq1 MNTCNARFYIFSLAIALMILKDAEGYIYRIPQKQGAVSCVDDSGV
KFNPGNVWYDDEKCERMSCDGAVGNLEIV

toxin-like protein 14 precursor

comp299_c0_seq1 MKVACSLVLLVAFTCTVSARVVSKKTCKTHTGVILRHGEEWKDPN
HCSIYRCTIYDGEAELDGLMCATYQVPRNCKFVRGGGKLYPSCCP
TVVCK

toxin-like tx11_opicy

comp749_c0_seq1 MKASTLVVIFIVIFITISSFSIHDVQASGVEKREQKDCLKKLKLC
KENKDCCSKSCKRRGTNIEKRCR

calcium-channel toxin
Contig20-Uy precursor

comp10032_c0_seq1 MNFSSKISFLLLVTAVVFAVTGGEVDRLFEQYKESDIERDLPPSD
EYGTCVRPRKCKPHLKCSKAQTCVDPKKGW

calcium-channel txs2b_liowa

comp27527_c0_seq1 AEPAYAEARCIRRGRMCDHNKYGCCNNGPCRCNLFGTNCRCQRRGLFQG calcium-channel u8-agatoxin-
ao1a-like isoform 1 (partial)

comp104104_c0_seq1 LNAEKRSCVRRGGPCDNRPNDCCQNSSCRCNLWGTNCRCQRAGLFQRWTGRK calcium-channel u8-agatoxin-
ao1a-like isoform 1 (partial)
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Table 2. (Continued)

Seq. Name Fasta Sequence (ORF) amino acids Seq. Description (BLAST)

comp1735_c0_seq1 MSQGIMKQQISVFIFITFAFVSTNGKNICNSKYRSIHPEHSMCKT
RNDSCRFTQRIEENAKELLDVHNQIRNSIHHVIGKDYFEGENMKM
MQWDHELYLMALKHVLQCSELPDCSLCHQTDRFHVEQNFAVKTFT
SVSQSFNGTVERFKMVIMEWAKEILQYNPDIVNRFHSVGLPTNWT
NIFRATTYKVGCASVGYHTQIEESFREVYICNYGPALLMENEVIY
KPSYRSCTNCNSSSNCSANDNLCRNHFPWKYGHNNSYTFNELLRR
GKRKAGSSGKKWCDSKERRYEQDPCTDEYQNITADHSFCKPPNME
CECSRNYERYRKLLVDTHNEIRNSVQAYASWHDSTATNMRVMEWD
DELYAIAYRYVSQCLEEPDCYLCHQAKSFPVEQNFVAKVLIDTSS
RSGKRFADIVKEWATEFRQFSQQDVEYLPEEAAKDQNNHWINIFR
AGSWKVGCASISFKNSTGTSSDNRLVKEIYLCNYGPAKLIPGEKV
YEIGKSCSNCEIGFSCDEKYPNLCSSSINHAVVTPAFTKENDITD
ATPAPATITSTTAPVPIMTTSTTPSPTMKTTTITPAPTMTTTTTT
TPVPATTTTPTPTPTTTTTTPAPTTTTTTTLSLSTTTTSTTLTPT
TTISTIPVPTTTTTTTPVPTTTTTTRAPTITTTPVPTTHAAETTV
SSQQSFTDLISNYSASYTTNTPKLPIDLSTAFPSSNKEKASGRSV
IWKCTLSFLDELTCRNEQQCYKAWTLSTDEKQPYMEIDIPEDTRS
GLLFLENIYIDKPSCFTFAFRKTGLNTLSFLTSILYGIAVRIENN
ENVIVETSEDFPDWNSLFVDIPWIKVFIQVGIAVKTNGGIGMQHV
EIKDFLVYHGPCSAL

Putative conserved domains
of venom allergen 5

comp4029_c0_seq1 MTSVAVITLALWITAIRCFASNDTCDERYSRITTDHTMCKSINQN
CNFLKRREKVFEERLLRTHNSIRNSIRKYVGRKYHLATNMKVMQW
HDELYAMARLHSLQCAEKPDCDLCHQIGDFPVEQNFAVKTFKKSK
SARSGGPFRRFQTTIKEWAAELRLYNRDVVKSFRTTAGLPTDWTN
ILRATTIFVGCASTSFKTDERGTFKEVYVCNYGPANLTEGEEIYK
AGKKSCSECEDGIGCDTEFKHLCFPGDVEKEH

Putative conserved domains
of venom allergen

comp4170_c0_seq1 MTSVAVITLALWITAIRCFASNDTCDERYSRITTDHTMCKSINQN
CNFLKRREKVFEERLLRTHNSIRNSIRKYVGRKYHLATNMKVMQW
HDELYAMARLHSLQCAEKPDCDLCHQIGDFPVEQNFAVKTFKKSK
SARSGGPFRRFQTTIKEWAAELRLYNRDVVKSFRTTAGLPTDWTN
ILRATTIFVGCASTSFKTDERGTFKEVYVCNYGPANLTEGEEIYK
AGKKSCSECEDGIGCDTEFKHLCSPTEKKTT

Putative conserved domains
of venom allergen

comp4913_c0_seq1 MKVFDILALALLSWLRWTSSVAQQYLPIVNIGQGALRGRILKTSN
GRDFYAFRGIPYATPPVGVFRFKEPNPHAGWGGVLDAIDYRAKCP
QIDLQGVQTGDEDCLFINVFTPTLPTFQPSSQRSSVRLVTYPTMV
FIHGRTFDSGSSNLYGAERLLDKGVVVVTFNYRLGALGFLSTGDD
KASGNWGLLDQRMALGWIQNNILRFGGDPKTVTLFGQGSGAASIL
IHIISPLSHNLFHRAILQSGSALCDWTIQHNPLSYAKNMATRLGC
QTYSTEAIVKCIREQPASSIVREQANMKVFGDFPTGALPVIDKNS
ASNFLPEHPENLLEYGNFKAVPIIIGVNKDEGAFFYPLLTRKYKE
DIQTIPGYFQNTLLPNFLQATTNLNNNLDVISQELIYRYYGGLDL
SNPYNILEPFINMSTDAMYVACTERTLQLYSRLNPTSTYMYTFEY
KGTNSLANFQPNLSPQQSQQVDGVSNGDELLYLFNMQIDGLRHPS
HLDNMISNRILTLWTDFAKLGKAPQYVNYEYPEWRNYQYDDRSYY
RIDRSLSLQHNYRTGVKDLWLRKLRELSSSINPTNSPLTQMQGVE
PFYRTLAWAMVAICIALLVLIVVLLAILYNQKKSQSFKANHENQS
RMSGSTLY

Putative conserved domains
of venom carboxylesterase-6-
like

comp16713_c0_seq1 MGLRLFALVVLIASCHCWPRKRCSEPCEPVPNNCKAGVTNDYEGC
CPICAKSEGEECGGMWNAYGVCGVD

venom protein insulin-like
growth factor binding protein-
1 (partial)

comp13767_c0_seq1 MKTSIAIVFLFGFIAAAIASHKDPYERNCPIGDKDLGNGDEWADE
RRCVKYKCQVRGPDAALLITRCPSVGIYPPDKCRELPGKGDFPNC
CPKLQCD

toxin-like venom peptide 1a

comp330_c0_seq1 MLKTVIFCIAVLASVCTGEENSEEGRTFPLLFSADGRNSLGCWIT
YSFSYQPTADIDTKIAAQNTLCECMKKGLVPKGGTTTQPPSG

toxin-like venom protein

comp727_c0_seq1 MGKLCWIAILLLGVSLRAMSLTCNPCGTYECPSPPTNCRAGQVKD
VCNCCIVCGKGLNEECGGPWDIAGKCGRGLKCVKRESSFNARGRCQKF

toxin-like venom protein 302-
like

(Continued)
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Table 2. (Continued)

Seq. Name Fasta Sequence (ORF) amino acids Seq. Description (BLAST)

comp727_c0_seq2 MTGKLCWITILLLGVSLSAMSLRCRPCGSYECRPPPTNCQAGQVK
DICNCCIVCGKGLNEECGGPWDIAGKCGRGLKCVKRESSFNARGR
CQKF

toxin-like venom protein 302-
like

comp1980_c0_seq1 MNPRHVLLFLTVIVCTSHAQSNGFCKPNEEYREAGCEVVCERILE
NNCFRAEKKPGCYCKAGTMRDERGDCISLKECSKRVCTQKNKRLN
LSGCFTVCTGPGTSYSGCPFVPNPKCMCEKGYATQNGFYGECIPV
SKCQGNRNGE

Venom protein (spondin-like)
venom protein-9

comp2323_c0_seq1 MNPRHVLLFLTVIVCTSHAQSNGFCKPNEEYREAGCEVVCERILE
NNCFRAEKKPGCYCKAGTMRDERGDCISLKECSKRVCTQKNKRLN
LSGCFTVCTGPGTSYSGCPFVPIPKCICEKGYATQNGFYGECIPV
SKCQGNRNGE

Venom protein (spondin-like)
venom protein-9

comp3435_c0_seq1 MAQIFLLVFLLPCLVLGSDEPAKFISYRNYAYSPLSEGKCKSSNE
KLIEDGDTWYREDFCEKVYCFRTGTMGNMIVRGCAPMTPLNPNCT
VVQSPGLYPDCCSGNIVCDQHSEPKSDVEMAEIIRSMLESNRK

toxin-like venom protein-7

comp4735_c0_seq1 MANRFYFITLLLFGVFMRAMTLKCRMCDRNDCPPSPENCAVGIVK
DVCNCCDVCAKNEHETCGGPWDILGRCGEGLKCVKVSEKDFSAKGTCQKA

toxin-like venom protein 302-
like

comp7830_c0_seq1 MVYVRGCCCWRNTKDGSIACGYFTLLTRLIGAALIIVGLVNLTSF
ATYIHGSHSYITSLRLLFISQLIDCLVFIVFSAMLIYGTKTDNTV
MMFPWIVWMVIEIGSLIVLLILTFIGVTQGMVTAAVVLAVLISMV
FLGIDIYTLLCVTSQYRLLHHGPPSYSVIA

venom PROTEIN

comp13102_c0_seq1 MGLRLFALVVLIASCHCWPRKRCSEPCEPVPSNCKAGVTNDYEGC
CPICAKSEGEECGGMWNAYGVCGVDLVCQTNGQASSEYDLPIGTC
VIARRFSSRNIVKRMLRWF

venom insulin-like venom
protein 302-like

comp13814_c0_seq1 MKLYIFFVLFACAVLPSWCLIHYHGHLCRYNLIDRFCGLNDRKTP
IECLQESEQAARVTEIFKACFTSVKEGVAEFDDQVNEVCKLKHDE
YAVFKRCFHNGLVLQQRRDEKSYKAFEECIEKSEKREEKACHYGH
YGSVSFRFGWFV

venom protein-5

comp65882_c0_seq1 MCKCLWSIFWLVVLIFIAYPIGLFFAEIYVLLSPLQGCCEDCCTG
VIEFLLKLVQLPLLCAR

venom protein-2

comp21903_c0_seq1 MKAVLITIFLVPLIISQTSAKIRQRRQGFEFPSEAESCTTPGNQP
GNCISLSRCESLRRTNDFNLLTNSICGFDNDVPRVCCPDGTANPD
VKEITTTSGPKTDNLEPVEITTIPIRPIIITSVAPVTSSPARGKP
AILPDECGMSTIPLTRVVGGSPSELAAWPWMAAVYFTRTGLRSGT
DCGGSLVTSRHVITAAHCVTDNRGNEVRASTLTVRLGEHILNDDN
DGASPIDVPVARLVRHENFQRRVFKNDIAILTLQRDVPFNKFIRP
ICLPYGVFENADLARMRPWAAGWGTTSFDGEFSPRLSHIQISIET
NEDCNRAFRTERVPITQEYLCAGVSDGTKDTCKGDSGGPLMLPVD
LKFYLIGIVSFGKRCATVGYPGVYTRVTMYLDWIARNLT

Putative conserved domains
of venom serine protease

comp221_c0_seq1 MKVFCIVLVVVAALALGEAKSIRSIKSNRLVRSIAPVSARLARSA
QSMTDITILTAGATGKRNAKPTESDEELDALIGLSMLEELAKEQK
RSVAPKVQHKKRQSGASEEAAEAILGLDLLEELANEAKRSIAKAA
KKRDLSRRQSASDEEAVQAVLGLAPLDELAGDKKRKVKKSLFKPL
KATKSIKRRATKLFFPFM

venom PROTEIN

comp221_c0_seq2 MKVFCIVLVVVAALALGEAKSIRSIRSNRLVRSIAPVSARLARSA
QTGATGKRNAKPTESDEELDALIGLSMLEELAKEQKRSVAPKVQH
KKRQSGASEEAAEAILGLDLLEELANEAKRSIAKAAKKRDLSRRQ
SASDEEAVQAVLGLAPLDELAGDKKRKVKKSLFKPLKATKSIKRR
ATKLFFPFM

venom PROTEIN

comp233_c0_seq1 MKVFCIVLVVVAALALGEAKSIRSIKSNRLVRSIAPVSARLARSA
QSMTDITILTAGATGKRNAKPTESDEELDALIGLSMLEELAKEQK
RSVAPKVQHKKRQSGTSEEAAEAILGLDLLEELANEAKRSIAKAA
KKRDLSRRQSASDEEAVQAVLGLAPLDELAGDKKRKVKKSLFKPL
KATKSIKRRATKLFFPFM

venom PROTEIN

(Continued)
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cytochrome oxidase I (COI). In S1 Table the FPKM for venom related compounds and house-
keeping genes is shown.

Functional annotation
Unigene annotations provide functional information, including protein sequence similarities
and gene ontology (GO) information. Only 31,807 unigenes had hits with the searched data-
bases and therefore only those were annotated. The fact that only 51% of the total number of
unigenes had significant hits suggests that many scorpion-specific genes still remains undiscov-
ered. This data agrees with the annotated sequences of other scorpion transcriptomes for ex-
ample: the C. noxius transcriptome [16].

The GO database comprised three ontology domains: molecular function (MF), cellular com-
ponent (CC) and biological processes (BP). For the first Go term, 5,642 unigenes were matched
with 392 GO terms. For the cellular component term, 7611 sequences were annotated with 257
Go-terms and for the biological processes component 18,554 sequences were annotated with
1690 Go-terms (Fig 1), making the BP the most abundant and diverse term. In addition, a graph
showing the most abundant Go-term categories per domain is shown in Fig 2. Supplemental
data show graphs for the sub-dataset containing only toxins and venom related components:
most abundant Go-terms, pie charts with the most abundant Go term per domain and enzyme
distribution (Fig B, Fig C (A-C) and Fig D in S1 file, respectively). Fig E in S1 file of supplemental
data shows the most abundant family of enzymes found in the whole transcriptome.

Scorpion toxins and venom components identified in the venom gland
transcriptome of U. yaschenkoi
From the 62,505 unigenes only 51% had significant hits against the searched databases. From
those sequences, only 3,900 had sequences similar to toxins, venom related components (such as
hyaluronidases, phospholipase, and other enzymes) and housekeeping genes (for example, heat
shock protein, β-actin, RNA binding protein). These sequences were further analyzed as de-
scribed in Material andMethods. Eleven subfamilies of scorpion toxins were identified (Fig 3)
and 210 delimited sequences code for 111 unique amino acid sequences are shown in Table 2.

The following lines describe each one of these subfamilies of putative proteins/peptides
identified in this transcriptomic analysis, starting with the most abundant components found.

Table 2. (Continued)

Seq. Name Fasta Sequence (ORF) amino acids Seq. Description (BLAST)

comp233_c0_seq2 MKVFCIVLVVVAALALGEAKSIRSIKSNRLVRSIAPVSARLARSA
QTGATGKRNAKPTESDEELDALIGLSMLEELAKEQKRSVAPKVQH
KKRQSGTSEEAAEAILGLDLLEELANEAKRSIAKAAKKRDLSRRQ
SASDEEAVQAVLGLAPLDELAGDKKRKVKKSLFKPLKATKSIKRR
ATKLFFPFM

venom PROTEIN

comp34369_c0_seq1 MTVGNCLWGFFWFLVLLFIGYPVAGFCAGWYVLICPFQACVDGCA
PIIDFLLKATQLPLTCAQNMMSGKPFC

toxin-like peptide-6

comp13137_c0_seq1 MFRLVLLCTFVVSIYSLSCPCWEVEEDCGPPPTDCALGLTTDVCG
CCPVCFKVQGEICGGPWNVNGECGEGLYCRKEHVEEAFDQQEGVC
EPKK

vp302_lycmc precursor

comp71520_c0_seq1 MFRLVLLCTLVAGIYSLTCPCHYYENRTKDCEPLRKVCPLGVTKD
ACGCCDVCFKVEGEICGGP

vp302_lycmc precursor
(partial)

In bold: Mature peptide; Underlined: Signal peptide; italics: precursor and amino acid with postranslational modification (amidation); Names of Seq.

Description (BLAST), names in bold: sequences reported in [41].

doi:10.1371/journal.pone.0127883.t002
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Enzymes. It is well known that scorpion venoms consist of a heterogeneous mixture of
100 to 700 different components, among which are: inorganic salts, lipids, nucleotides, free
amino acids, mucopolysaccharides, peptides and proteins. Among the proteins, enzymes are
the most abundant [67].

From the 210 identified and analyzed nucleotide sequences of U. yaschenkoi (Fig 3 and
Table 2), 31% correspond to enzymes, including hyaluronidases, glucosaminidases, phospholi-
pases, serine proteinases, phosphatases and kinases.

For example, component label comp120806_c0_seq1 in Table 2 corresponds to a partial se-
quence of a putative hyaluronidase-1 (isoform 1) showing 93.58% identity with hyaluronidase
Uro-1 previously identified in the transcriptome of U.manicatus [49]. In addition, the se-
quences comp7041_c0_seq2 and comp7071_c0_seq2 code for putative hyaluronidase-3 iso-
form x3 (Table 2).

The sequence comp374_c0_seq1 (Table 2) from U. yaschenkoi shows similarity with a chy-
motrypsin-like protease-1 fromMesobuthus eupeus.

However, the most abundant enzymes found correspond to proteins with phopholipase ac-
tivity (Table 2), which is in agreement with literature data found in venoms of non-Buthidae
scorpions, such as phospholipin and a heterodimeric phospholipase A2 isolated from the
venom of Pandinus imperator [68] and sequences found in another transcriptomic study con-
ducted with the scorpion P. cavimanus [40], which are assumed to be phospholipases.

Antimicrobial peptides. Linear peptides containing no disulfide bridges (NDBPs) have
been abundantly found in the venoms of scorpions of the families non-Buthidae, contrary to
what is reported for scorpions of the family Buthidae. The latter contains a substantial amount
of peptides tightly joined by disulfide bridges. Among the NDBPs found are peptides display-
ing antimicrobial activity (AMPs). Until now, at least 40 AMPs from scorpions are described
in the literature [69]. These were subdivided in three main categories: long chain peptides

Fig 1. Statistics of Go term annotation of unigenes found in the transcriptome of the venom gland ofUrodacus yaschenkoi scorpion. The three Go
terms domains are plotted with the number of annotated unigenes and also, the variety within each domain is showed (different categories of Go term per
domain).

doi:10.1371/journal.pone.0127883.g001
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(over 35 amino acids long), medium length peptides (20–35) and short chain peptides (less
than 20 residues) [70]. However, venom from Buthidae and non-Buthidae scorpions shows the
presence of peptides with antimicrobial activity that do contain disulfide bridges (DBPs), such
as the defensins and scorpines.

In this work sequences that code for antimicrobial-like peptides were the second most abun-
dant group having 43 sequences (21%). These sequences codify different subfamilies of puta-
tive antimicrobial peptides, such as short antimicrobial peptides (IsCT-like) from the
subfamily of non-disulfide bridges peptides-5 (NDBP-5), defensins and long-chain scorpine-
like peptides, being the first ones the most abundant within this category of AMPs. The short
chain AMPs of the IsCT type were initially isolated from the venom of the scorpion Opistha-
canthus madagascariensis [71]. The IscT peptides are derived from large precursors,

Fig 2. Most abundant categories within every GO-term found in theUrodacus yaschenkoiwhole
transcriptome dataset. The biological process (BP) category was the most abundant, followed by cellular
component (CC) and the molecular function (MF) was the least abundant.

doi:10.1371/journal.pone.0127883.g002

Urodacus yaschenkoi Transcriptome

PLOSONE | DOI:10.1371/journal.pone.0127883 May 28, 2015 17 / 33



characterized for having a signal peptide of 23–24 amino acids, a mature amidated peptide
with less than 20 amino acids long and a propeptide containing from 31 to 46 amino acid resi-
dues. In addition they show a conserved sequence of three amino acids of the type GRR and
GKR, which marks the end of the mature peptide and the beginning of the propeptide (see Fig
4). The identified NDBP-5 sequences found in this work were mostly 13 amino acid long pep-
tides, but seven sequences were 14 residues long and only one sequence was 18 residues long.
All of them were manually analyzed and the signal peptide, the posttranslational modification
motif (GKR) and the propeptide were identified and delimited. Fig 4 shows the alignment of
NBDP-5 sequences found in this transcriptomic analysis. Interestingly, peptide
GFWGKLWEGVKNAI was codified by 7 different genes showing different propeptides, sug-
gesting a wide array of mechanisms for toxins production. Overall, five different antimicrobial
peptides with unique sequence were also found. One of these transcripts is the peptide
ILSAIWSGIKSLF which was previously found in a shotgun cDNA library previously reported
by our group [41] and its theoretical molecular weight can be found in the venom proteome, at
RT 13.88.

Here we compared the sequences of AMPs found inU. yaschenkoi with those reported (19 se-
quences) from the transcriptome ofUrodacus manicatus [49]. Data analysis shows that the

Fig 3. Subfamilies of scorpion toxins and enzymes found in the whole transcriptome of the venom gland of U. yaschenkoi. A total of 62,505
unigenes were searched against the NCBI-nr database, only 51% had an identity against the databases; from those 3900 were related to venom
components and housekeeping genes and 210 sequences codify toxins and enzymes in scorpion venom were identified. The diagram shows the relative
proportion expressed as percentages, of each subfamily of scorpion toxins found in the analysis of the transcripts from U. yaschenkoi venom
gland transcriptome.

doi:10.1371/journal.pone.0127883.g003
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subfamily of peptides having the most shared similarities between these two species is the short an-
timicrobial peptides, NDBP-5 (Fig 4). Sequences CYLIP-Uro-1, CYLIP-Uro-2, CYLIP-Uro-3,
CYLIP-Uro-4 and CYLIP-Uro-5 fromU.manicatus have structural similarities with those coding
for UyCT1 and UyCT3 antimicrobial peptides previously reported fromU. yaschenkoi [41]. In
this work, several new UyCT1-like and UyCT3-like peptides were identified within the U. yaschen-
koi transcritpome (Fig 4). Interestingly, there is a mature peptide sequence having 100% sequence
identity within both species of scorpions. The mature peptide sequence is ILSAIWSFIKSLF and
can be found in comp17_c0_seq1-4 and comp18_c0_seq1-2 fromU. yaschenkoi and in CYLI-
P-Uro-2 fromU.manicatus. However, the precursors in those sequences are different (Fig 4). The
percentage of identity of the mature antimicrobial peptides (NDBP-5) relative to the ILSAIWS-
FIKSLF sequence ranged from 23 to 100% identity showing the diversity of gene sequences.

Results of the comparative analysis also showed that the opistoporine-like peptides of both
species of scorpions are similar. The sequence comp42_c0_seq1 (Table 2) of U. yaschenkoi
compares well with Csab-Uro4 from U.manicatus and the sequence of comp336_c0_seq1
(Table 2) from U. yaschenkoi is equivalent to Csab-Uro3 from U.manicatus. These sequences
show similarities with opiscorpine-3 from Opistophthalmus carinatus [72] and peptide SC11
previously reported for U. yaschenkoi [41].

The fact that all the antimicrobial peptides reported for U.manicatus had a match with the
U. yaschenkoi transcriptome was expected because these two scorpions belong to the same
genus and family of scorpion, both found in Australia.

As previously mentioned, the abundant presence of AMPs peptides in the venoms of non-
Buthidae scorpions, is a particular characteristic of these species. In addition, these AMPs are
example of leading components with potential application as antibiotics due to their demon-
strated antimicrobial activity.

Scorpine-like peptides. Scorpine, the first kind of this peptide described in the literature,
is structurally a hybrid protein containing amino acid sequence similar to AMPs and K+-chan-
nel blocking peptides. It was purified from the venom of the scorpion Pandinus imperator and
shown to be a potent anti-malarial agent against Plasmodium bergei [51].

Fig 4. Sequence comparison of putative antimicrobial peptides fromU. yaschenkoi andU.manicatus.Multiple alignment of sequences obtained from
the transcriptome of U. yaschenkoi that codify antimicrobial peptides from the subfamily NDBP-5. These sequences are compared with CYLIP-Uro-1
(GenBank: GALI01000003.1), CYLIP-Uro-2 (GenBank: GALI01000004.1), CYLIP-Uro-3 (GenBank: GALI01000005.1), CYLIP-Uro-4 (GenBank:
GALI01000006.1) and CYLIP-Uro-5 (GenBank: GALI01000007.1) from U.manicatus [49]. The predicted signal peptide is underlined; the mature peptide is
in bold and highlighted in yellow, the conserved proteolytic site GKR is in italics and underlined and the propetide in italics. The hyphen (-) in the name of U.
yaschenkoi sequences indicates that the amino acid sequence was found within different nucleotide sequences (transcripts), for example: comp17_c0_seq1-
4 means that four different nucleotide sequences codify the same peptide. The percentage of identity of the mature peptide is indicated at the right (%
Identity) with respect to the peptide encoded by comp17_c0_seq1-4; additionally, at the far right, the theoretical molecular weights of the antimicrobial
peptides for U. yaschenkoi are shown. The theoretical molecular weight of the peptide encoded by the sequences comp17_c0_seq1-4 (in bold) has a perfect
match with the U. yaschenkoi proteome previously reported by [41] at the retention time 13.88. Note: several sequences of transcripts found in theU.
yaschenkoi transcriptome codify the same precursors, such as: comp17_c0_seq1-4 and comp18_c0_seq1-2 (not shown); comp17_c0_seq5 and
comp18_c0_seq3-4 (not shown); comp192_c0_seq1-2, comp192_c0_seq4-5 (not shown), comp192_c0_seq7-9 (not shown) and comp196_c0_seq1-7 (not
shown) codify the same precursor.

doi:10.1371/journal.pone.0127883.g004
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The N-terminal domain of Scorpine is a linear segment capable of forming α-helix with
cytolitic and antimicrobial activities, whereas the C-terminal domain is tightly linked by three
disulfide bridges and was shown to have a β-KTx activity against potassium channels [73]. The
presence of two distinct domains in this type of scorpine-like peptides [74] makes difficult to
classify them as either AMPs or K+-channel specific peptides. For this reason they were initially
called orphan peptides [73].

In this transcriptomic analysis four sequences similar to the precursors of scorpine-like pep-
tides were found (Fig 5). Two different sequences: comp42_c0_seq1 and comp47_c0_seq1 from
U. yaschenkoi encode the same scorpine-like, called type 1, because it shows 57.33% identity with
Hg-scorpine-like-1 fromH. gertschi, and also has 94.74% identity with CSab-Uro-4 fromU.
manicatus (Fig 5A). The other two sequences from U. yaschenkoi: comp324_c0_seq1 and
comp336_c0_seq1 code for the same scorpine-like type 2; which shows a longer stretch of amino
acids. This sequence has 58.54% identity with Hg-scorpine-like2 ofH. gertschi and 84.34% iden-
tity with CSab-Uro-3 from U.manicatus, both defined as scorpine-like toxins (Fig 5B).

We had foreseen the existence of these scorpine-like sequences in the transcriptome of U.
yaschenkoi. In fact, only the non-Buthidae scorpions have been reported, thus far, to contain
scorpine-like peptides. However, due to the dual structural characteristics of these peptides,
some erroneous classification of peptides from Buthidae families of scorpions were said to be
scorpine-like components, when in reality they should have been classified simply as putative
K+-channel toxins, because they show sequence similarities only with the C-terminal domain
of scorpine.

Finally, the bi-functionality of the scorpine-like peptides found in venoms of scorpions is
very interesting and promising for the possible development of drugs with antimicrobial and/
or anti-malarial activity.

Toxin-like components. Another well represented group of sequences corresponds to
toxin-like ones. They comprehend 15% of the analyzed transcripts (Table 2). This class of puta-
tive toxins has several cysteines that may form disulfide bridges and have been found in several
scorpion transcriptomes. For many of them, their function has not been directly evaluated. The
majority of toxin-like components were identified in transcriptomes of Buthidae scorpions
(12–37) and to a lesser extend those from non-Buthidae scorpions (19, 21, 38–49).

Sequences similar to potassium channel specific toxins. Potassium channel toxins
(KTxs) are well known scorpion venom components. They are found in Buthidae and non-
Buthidae species. A common feature of these peptides is the presence of one segment of α-helix
and three β-sheet structures cross-linked and stabilized by disulfide bridges (Cs α/β structure),
which forms 3 and/or 4 disulfide bridges, and were classified as α-, β-, γ- and κ-KTxs [75, 76].
The most abundant and best studied are the peptides of the family α-KTx, from which more

Fig 5. Scorpine-like peptides found in theUrodacus yaschenkoi transcriptome. A) The sequence obtained from theU. yaschenkoi transcriptome that
codifies for a scorpine type 1 is shown and it is aligned with the reference scorpine Hg-scorpine-like1 from Hadrurus gertschi. Sequence CSab-Uro-4 from
Urodacus manicatus [49] codifies as well for a scorpine type 1 and is included in the alignment. B) The sequence comp324_c0_seq1 found in the U.
yaschenkoi transcriptome that codes for a scorpine type 2 is shown and aligned with Hg-scorpine-like2 from H. gertschi. Also, sequence CSab-Uro-3 fromU.
manicatus [49] is included. Both alignments show the percentage of identity of each sequence with respect to the reference sequence. The cysteine pattern
(6 Cys) is highlighted in yellow. Note: comp42_c0_seq1 and comp47_c0_seq1 (not shown) code for the same precursor, comp324_c0_seq1 and
comp336_c0_seq1 (not shown), code for the same precursor.

doi:10.1371/journal.pone.0127883.g005
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than 140 different peptides are known and were sub-divided into 30 subfamilies (http://www.
uniprot.org/docs/scorpktx and [76]. Usually they are short peptides containing 23 to 42 amino
acids, whereas the β-KTxs are longer, with more than 50 amino acid residues in their primary
structures. Examples of β-KTxs are peptide TsTx-Kβ of the scorpion Tityus serrulatus and
BmTXKβ of Buthus marthensii Karsch. The first is a blocker of Kv1.1 potassium channels,
which shows an IC50 of 96 nM [77]. A recombinant format of peptide BmTXKβ [78] was ex-
pressed heterologously and shown to be a bona fide blocker of potassium channel.

The transcriptomic analysis of U. yaschenkoi allowed the identification of 17 different se-
quences with structural similarities with other known blockers of voltage-gated potassium
channels that belong to the short potassium channel blocker scorpion toxin family. Within
these sequences, 13 are similar to α-KTx-6 subfamily that is characterized by having 4 disulfide
bridges. In fact, a complete precursor of urotoxin, which was previously reported by our group
[79], was among these 13 sequences described here. Additionally, four sequences similar to tox-
ins of the α-KTx family containing 3 disulfide bridges were also found (Fig 6). These sequences
showed 60% identity with the α-KTx8 toxin of the scorpion Lychas mucronatus [80].

Concerning the identification of β-KTxs Class 2 subfamily of potassium channel blocker
toxins, 3 sequences were found that code for two putatives β-toxins, showing similarities with
CSab-Uro-2 from the scorpion U.manicatus and Hge-beta-KTx ofHadrurus gertschi (Fig 7).
All these sequences show to contain 6 cysteines sharing 21% to 51% identity with that of Hge-
beta-KTx.

The number of sequences that are assumed to code for putative KTxs toxins found in this
work is greater than those reported for other non-Buthidae scorpions. Only one α-KTx tran-
script was identified in O. cayaporum [46], and eight in the scorpion S. jendeki [45]. Concern-
ing the putatives β-KTx only one was identified in the transcriptomic analysis of H. gertschi
[48] and one in P. cavimanus [40]. However, this was expected due to the methodology used in
the present work compared with the techniques used in the other mentioned species (cDNA li-
brary and Sanger sequencing).

Venom Proteins. Additional sequences representing 9% of the transcripts of this work
correspond to proteins containing more than 70 amino acid residues and show similarities

Fig 6. Putative alpha-KTx toxins fromU. yaschenkoi. (A) Alignment of sequences found in the transcriptome of U. yaschenkoi that code for putative α-
KTXs with six cysteines. These sequences are compared against the alpha-toxin KTx8 (UniProtKB/Swiss-Prot: A9QLM3.1) from Lychas mucronatus. Note:
The precursor encoded by comp2100_c0_seq1 is also encoded by sequences comp1991_c0_seq1 to seq5 (not shown). (B) Alignment of sequences from
U. yaschenkoi that code for alpha-potassium toxins with eight cysteines compared against the α-KTx 6.10 toxin (UniProtKB/Swiss-Prot: Q6XLL5.1) from
Opistophthalamus carinatus. For all sequences, the percentage of identity of U. yaschenkoimature peptides (%I) is shown in relation to the toxin of reference.
The theoretical molecular weight (MW) of each U. yaschenkoi peptide is also shown. The signal peptide is underlined; the mature peptide is in bold; the
residues probably involved in amidation and the propeptide are indicated in italics. The conserved cysteines are highlighted in yellow. The symbol “&”
indicates that the sequence was encoded by two different nucleotide sequences (transcripts). MW in bold indicates that this molecular weight was found in
the venommass fingerprint previously reported [41] and is indicated the retention time (RT) in which it was found. Note: comp849_c0_seq6 (not shown)
codes for the same precursor as sequence comp1069_c0_seq1; comp1069_c0_seq5 (no t shown) codes for the same precursor as sequence
comp849_c0_seq3&8; comp1069_c0_seq3 (not shown) and comp849_c0_seq5 (not shown) code for the same precursor as comp849_c0_seq1;
comp2981_c0_seq1 (not shown) codes for the same precursor as comp2965_c0_seq1.

doi:10.1371/journal.pone.0127883.g006
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annotated as “venom proteins” of other transcriptomic analysis, such as venom protein-5 and
venom protein-2 of the scorpionMesobuthus eupeus (GenBank: ABR21071.1 and ABR21036.1,
respectively) and SCO-spondin-like from Bombyx mori (NCBI Reference Sequence:
XP_004924398.1), as shown in Table 2. This type of sequences has been found both in Buthi-
dae and non-Buthidae scorpions. They might be present in any scorpion family, contrary to
what was described previously concerning AMPs or α- and β-KTxs.

Calcins. Different types of proteins that control calcium ion permeability across biological
membranes are known, and are defined as calcium channels. Among these are the voltage-
gated, voltage-independent and ligand-activated channels. The last ones include the ryanodine
sensitive calcium channels (RyRs) of the endoplasmic reticulum of heart and skeletal muscle,
which are recognized by some peptides found in the venom of scorpions and are generically
named calcins [5]. The first calcins characterized were the imperatoxins IpTxi and IpTxa, isolat-
ed from the venom of the African scorpion Pandinus imperator [5]. Imperatoxin A (IpTxa) is a
33 amino acid long peptide stabilized by three disulfide bridges, structurally organized in a spe-
cial folding arrangement known as the “inhibitor cysteine knot”. This three-dimensional fold-
ing is commonly found in toxins from spiders and snails that affect voltage-dependent calcium
channels [81] [82]. IpTxa affects the RyRs receptors modifying the channel activity [5]. Other
calcins with similar structure and function were also isolated and characterized, such as: hemi-
calcin, opicalcin-1, opicalcin-2, hadrurin and maurocalcin (revised in [83]). The sequence
Comp749_c0_seq1 identified in the transcriptome of U. yaschenkoi (Table 2) codifies for a pu-
tative imperatoxin-A-like calcin. It has 33 amino acids, six cysteines and shares 69% of identity
with imperatoxin-A and 87% with maurocalcin (Fig 8A). Furthermore, the scorpion Liocheles
australasiae has a peptide called toxin LaIT1, described to affect the function of the RyRs chan-
nels. This peptide has 36 amino acid residues, similar to the known calcins, but is rather toxic to
insects than to mammalians [84]. The peptide Phi-liotoxin-Lw1a, isolated from the Australian
scorpion Liocheles waigiensis [85], also affect the activity of both ryanodine-sensitive calcium
channels RyR1 and RyR2 with high potency and has sequence similarities with LaIT1. Its struc-
ture shows two-stranded beta-sheets or DDH for disulfide-directed beta-hairpin, stabilized by 2
disulfide bridges [86]. In the present work with U. yaschenkoi, the sequence comp10032_c0_-
seq1 is a LaIT1-like peptide. It has 36 amino acid residues with four cysteines and shows se-
quence identity over 75% with the other LaIT1-like peptide (Fig 8B). The sequence
comp10032_c0_seq 1 of U. yaschenkoi resembles the three DDH-like peptides reported from U.
manicatus: DDH-Uro1, DDH-Uro2 and DDH-Uro3 (Fig 8B). The high degree of similarity of
these peptides is certainly due to the fact that they belong to related Australian scorpions.

Finally, four sequences were found in the transcriptome of U. yaschenkoi code for peptides
similar to spider toxins such as Omega-agatoxin-IVB from Agelenopsis aperta. This peptide
blocks P-type calcium channels of cerebellar Purkinje neurons [87]. The same peptide para-
lyzes insects by blocking the neuromuscular transmission. The peptides of the transcripts

Fig 7. Putative β-KTxs found inU. yaschenkoi transcriptome.Multiple alignments of U. yaschenkoi sequences that code for putative β-KTx. These
sequences belong to the long chain scorpion toxin family, Class 2 subfamily.U. yaschenkoi β-KTx sequences are compared against CSab-Uro-2 from U.
manicatus and with the Hge-β-KTx from Hadrurus gertschi. All these sequences have 6 cysteines (highlighted in yellow). The percentage of identity (%I) is
shown in relation to Hge-β-KTx. The theoretical molecular weight (MW) of U. yaschenkoi toxins is shown. In bold, the MW found in the mass fingerprint
previously reported [41]. The retention time (RT) of this component is also indicated. Note: Sequence comp596_c0_seq1 (not shown) codes for the same
mature peptide as the sequence comp588_c0_seq1 from this alignment.

doi:10.1371/journal.pone.0127883.g007
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found in the transcriptome of U. yaschenkoi here described, are thought to share structural
similarities to the cystine knots of spider toxins, which are formed by a triple-stranded antipar-
allel beta-sheet, stabilized by 4 disulfide bridges. The sequences comp27527_c0_seq1 and
comp10414_c0_seq1 code for a 42 and 47 amino acid agatoxin-like calcins, respectively (Fig
8C). In these sequences the 8 cysteines are conserved, including the double CC sequence and
the triple amino acid GTN of these calcins (Fig 8C).

In conclusion, the data reported here indicate that U. yaschenkoi is the first scorpion whose
transcriptomic analysis of the venom gland shows sequences that code for three distinct types
of putative calcins. In addition, it also suggests that non-Buthidae species of scorpion seems to
contain more calcin-like peptides than the Buthidae species.

La1-like peptides. The venom of the scorpion Liocheles australasiae apart from the insect
toxin peptide described in the precedent section also contains a very abundant peptide, simply
called La1. It is the most abundant component of the venom. It is composed by 73 amino acid
residues with 8 cysteines forming 4 disulfide bridges. This peptide was assayed for possible in-
secticide activity on crickets and mammalian specific toxicity in mice, without any effect (74).
Similar peptides were reported to exist in transcriptomic analysis of the scorpions of the species
O. cayaporum, P. cavimanus, S.margarisonae,H. petersii and Scorpio maurus palmatus [19, 39,
40, 43, 46]. In the transcriptomic analysis of U. yaschenkoi, we have identified 8 sequences that
code for precursors similar to La1. They all show to contain 8 cysteines and sequences identities
varying from 36 to 64% of that of La1 of L. australasiae (Fig 9). Unfortunately their abundant
presence and possible function still remains unknown.

Fig 8. Putative calcium channel specific toxins found inU. yaschenkoi transcriptome. Three different multiple alignments of sequences are shown that
code for: (A) calcins. Comp749_c0_seq1 codes for a calcin of 33 amino acid similar to other scorpion calcins as Hadrucalcin (UniProtKB/Swiss-Prot:
B8QG00.1) from Hadrurus gertschi, Imperatoxin-A (UniProtKB/Swiss-Prot: P59868.1) from Pandinus imperator, Maurocalcin (UniProtKB/Swiss-Prot:
P60254.1) from Scorpio maurus palmatus and Opicalcin-1 (UniProtKB/Swiss-Prot: P60252.1) fromOpistophthalmus carinatus. All of them have 6 conserved
cysteine; (B) LaIT1-like calcins. Sequence comp10032_c0_seq1 of U. yaschenkoi is compared with DDH-Uro-1 (GenBank: GALI01000015.1), DDH-Uro-2
(GenBank: GALI01000016.1) and DDH-Uro-3 (GenBank: GALI01000017.1) from U.manicatus, Insecticidal toxin LaIT1 from Liocheles australasiae
(UniProtKB/Swiss-Prot: P0C5F2.1) and Phi-liotoxin-Lw1a (UniProtKB/Swiss-Prot: P0DJ08.1) from Liocheles waigiensis. This class of calcins has four
cysteines. The sequence reported for DDH-Uro-3 contains undefined nucleotides and therefore the XX undefined amino acids. Finally, (C) Omega Agatoxin-
like calcins. Putative calcium channel specific toxins encoded by sequences Comp27527_c0_seq1 and comp104104_c0_seq1 from U. yaschenkoi are
shown and compared with DAPPUDRAFT_310236 of Daphnia pulex, LOC100163563 of insect Acyrthosiphon pisum and Omega Agatoxin IVB (Omega-
Aga-IVB; GenBank: P37045) of spider Agelenopsis aperta. This class of calcin has eight cysteines. The percentage of identity (% Identity) is shown for all
alignments with respect to the first sequence of each alignment. Conserved cysteines and amino acids are highlighted in yellow and bold, respectively.

doi:10.1371/journal.pone.0127883.g008
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Ascaris-Type Protease inhibitors. Proteins with proteolytic activity are found in all living
organisms, from bacteria to arthropods, plants and vertebrate animals, with a large number of
activities and specificities, which are exquisitely controlled by inhibitors, in order to avoid un-
specific proteolytic digestion of other existing proteins in their living cells. They are found in
the body of organisms, but also in their secretions (revised in [88]). Peptides with protease in-
hibitor activity were described to be present in scorpion venoms, specially the Kunitz-type pep-
tides. Some of which were reported as ion channel blockers, also known as Kunitz-type toxins.
The first described is the peptide SdPI of the scorpion Lychas mucronatus [89]. Other Kunitz-
like peptides were described in transcriptomic analysis of scorpions, such as: LmKTT-1.a,
LmKTT-1.b, and LmKTT-1.c from Lychas mucronatus [90]; BmKTT-2, BmKTT-3, BmKTT-1
fromMesobuthus martensii [37, 90] and Hg1 fromHadrurus gertschi [48, 91].

However, the Kunitz-type protease inhibitor peptides are not the only ones present in the
venom gland of scorpions. The peptide SjAPI identified in Scorpiops jendeki is capable of inhib-
iting serine-proteases. It shows a structural folding similar to the “Ascaris-type inhibitor” [88].
In U. yaschenkoi transcriptome we have found 7 distinct sequences that are assumed to code
for putative Ascaris-type protease inhibitors (Fig 10). The seven sequences reported here show
similarities to peptide SjAPI with identities from 27 to 41%; all of them having 10 cysteine resi-
dues like the Ascaris-type inhibitors (Fig 10).

The venom gland of both Buthidae and non-Buthidae scorpions contain protease inhibitors.
It is assumed that their principal function is to protect the other venom components from
being degraded and play an important role for survival of the venomous animals [92–94].

Allergens. Sequences that are assumed to code for venom allergens were found at the level
of 2% of the transcripts. Allergens are known to occur in the venom of: bee, wasp, ant, spider
and centipede [95–98]. The first described was the bee venom allergen-5, which was reported
to cause allergy in humans [99]. In the transcriptome described here we encountered 4

Fig 9. La-1-like peptides found in the U. yaschenkoi transcriptome. The alignment compares the La-1-like peptides encoded by U. yaschenkoi
transcripts with the model La1 peptide from Liocheles australasiae. La1 is amidated with a molecular weight of 7781.6 Da. Only the theoretical molecular
weight amidated of comp12_c0_seq1 (in bold) was detected in the proteome of U. yaschenkoi [41], in retention time 30.59. La1 peptide has eight cysteines
that are conserved in all the putative La-1-like peptides found herein (highlighted in yellow). The percentage of identity with respect to La1 is shown. Note:
comp12_c0_seq1 and comp15_c0_seq1 (not shown) encode the same peptide; comp3687_c0_seq2 and comp4167_c0_seq2 (not shown) encode the
same peptide; comp3687_c0_seq1 and comp4167_c0_seq1 (not shown) code for the same peptide and comp13_c0_seq1 and comp16_c0_seq1 (not
shown) code for the same peptide.

doi:10.1371/journal.pone.0127883.g009

Fig 10. Comparison of Ascaris-type protease inhibitor peptides found in U. yaschenkoi transcriptome.Multiple alignment ofU. yaschenkoi
sequences that code for ascaris-type protease inhibitor compared against the ascaris-type protease inhibitor precursor from Scorpiops jendeki scorpion
(SjAPI; GenBank: P0DM55). The sequence of comp75842_c0_seq1 is partial. The predicted signal peptide is underlined; putative propeptides is in italics
and the common trypsin inhibitor like cysteine rich domain in bold with its ten cysteines highlighted in yellow. The percentage of identity (%I) with respect to
SjAPI is shown. Note. Sequence comp4363_c0_seq1 encodes the same precursor as sequence comp4053_c0_seq1 (not shown); comp5534_c0_seq1
encodes the same precursor as comp4356_c0_seq1 (not shown) and comp135491_c0_seq1 (not shown) codes for the same partial sequence as
comp75842_c0_seq1.

doi:10.1371/journal.pone.0127883.g010
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nucleotide sequences thought to code for different allergens (Table 2). The sequences found in
U. yaschenkoi have close to 30% identity with allergen-5 of Tityus serrulatus, which is com-
posed of 212 amino acid residues and contains disulfide bridges (UniProtKB/Swiss-Prot:
P85840.1). For two sequences, comp4029_c0_seq1 and comp4170_c0_seq1 (see Table 2); it
was possible to identify the signal peptide and the mature peptide of these allergen-like se-
quences, which have 237 and 236 amino acid residues, respectively. These sequences have simi-
larities with CAP-Uro-1 y CAP-Uro-2 from the scorpion U.manicatus [49]. From this analysis
it is clear that allergens are present in Buthidae and non-Buthidae scorpion venoms.

Sodium-channel specific toxins. Scorpion toxins specific for Na+-channels (NaTxs) rec-
ognize and modulate the function of sodium channels of excitable and non excitable cells and
are the most important venom components medically speaking, because are the ones responsi-
ble for the intoxication symptoms of humans (7). They contain usually 58–76 amino acid resi-
dues tightly cross-linked by 4 disulfide bridges. Two main physiological functions are
described for these toxic peptides: alpha-toxins (α-NaScTxs) and beta-toxins (β-NaScTxs).
They both are modulators of the gating mechanism of Na+-channels. The first one prolong the
action potential making the closing mechanism of the channel longer in time; the β-NaScTxs
modify the open mechanism by producing an activation of the channel at less negative poten-
tials (reviewed in [73]). At this moment, there is more than 300 known NaTxs, either directly
isolated from scorpion venoms or identified based on gene cloning (see UniProt in www.
uniprot.org). It is well known that these peptides occurs mainly on Buthidae species and are
poorly represented in venoms from non-Buthidae species of scorpions (reviewed in [73]). Only
three sequences assumed to code for putative NaTxs were found in U. yaschenkoi transcrip-
tome (Table 2). This finding is in agreement with proteomic and transcriptomic studies con-
ducted comparatively between Buthidae and non-Buthidae scorpions (revised in [83]).

Comparison of transcriptome and proteome components found in U.
yaschenkoi
In our previous proteomic work [41], the molecular masses of several components of U.
yaschenkoi venom were obtained. Table 3 compares the values of 16 theoretical molecular
weight expected of putative toxins and antimicrobial peptides deducted from the sequences
obtained by the high-throughput transcriptome with 16 experimentally (LC-MS/MS) deter-
mined molecular weights of components identified by proteome analysis. From these correla-
tions, eight putative potassium channel specific toxins from the subfamily α-KTx-3 were
found and matched. We also found that the antimicrobial peptide UyCT3 and the putative
antimicrobial peptide encoded by sequence comp1267_c0_seq1 are the same. A putative β-
KTx toxin encoded by sequences comp588_c0_seq1 and that of comp596_c0_seq1 were coin-
cident with the proteome found components. Similarly, the putative calcin encoded by se-
quences comp10032_c0_seq1 and comp11072_c0_seq1 are the same. Finally, peptide
La1-like coded by sequence comp12_c0_seq1 matches with a peptide found in the proteome
analysis (see Table 3).

A comparison between results of the cDNA library shotgun approach [41] and the results
found with the NGS RNA-seq transcriptome showed that both techniques are reliable for charac-
terization of venom components found in scorpion venom glands. The same type of family com-
ponents was identified by both methodologies. As it can be seen in Fig 3 of [41] and in Fig 3 of
this communication, the subfamilies of toxins and peptides are almost the same and furthermore,
they have the same proportions. Both studies reports antimicrobial peptides (UyCT3), calcin-like
(Contig 20), scorpine-like peptides, La-1–like peptides, alpha and beta potassium channel specif-
ic toxins. The NGS approach reported here allowed the identification of a greater number of
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mass sequences than the shotgun methodology reported earlier by our group, when the results
are compared with the mass values obtained in the proteome analysis.

One might argue that the correlation found is somehow limited. However there are several
plausible reasons that explain these findings: a) the crude venom used for the experiments re-
ported previously [41] and the venom glands used for RNAseq studies reported here were not
the same, b) the extracted vemom, during handling and isolation procedures might suffer
small modifications, which does not allow a perfect match of the molecular masses determined
in proteomic analysis; c) an important number of sequences of putative peptides and proteins
obtained by transcriptome analysis are not fully characterized, thus it is difficult to predict the
exact molecular mass expected; d) a few sequences could be subjected to post-translational
modifications, which will again make difficult to predict the exact molecular mass expected.

Comparison of this transcriptome with that of Centruroides noxius
scorpion
A comparison of the data between C. noxius [16] and U. yaschenkoi transcriptomes resulted in
273 similar sequences. The percent pairwise identity of most sequences is above 75%. Similar
sequences are mainly represented by enzymes or components involved in biological processes.
For example: kinases, enolases, helicases, phosphatases, actins, zing finger proteins and RNA
related proteins. It supports the conclusion that both species of scorpions share the same ma-
chinery to produce the venom, although the venom components are certainly different.

Both scorpions, C. noxius and U. yaschenkoi, have in their venom hyaluronidase enzymes,
venom allergens, venom insulin-like growth factors and of course, venom toxins but for C. nox-
ius the most represented are the sodium channel toxins while for U. yaschenkoi few putatives
sodium channel toxins were identified.

One of the most abundant components identified from U. yaschenkoi transcriptome were
the antimicrobial peptides (21%) whereas for C. noxius transcriptome only one isogroup con-
taining 6 reads was similar to porine, an antimicrobial peptide. Once again, this finding was ex-
pected because non-Buthidae scorpions are a well known source of antimicrobial peptides
[100–103] while Buthidae scorpions lack these compounds.

Despite the fact that studies related to scorpion venom components have been steadily in-
creasing over the past four decades, the first whole transcriptome [16] and the first genome
[22] of singular species have only recently been obtained. Both studies were made with Buthi-
dae scorpions (Centruroides noxius andMesobuthus martensii) and the results gave a general
view of the cellular and molecular processes in the assembly of the scorpion venom compo-
nents. Additionally, metabolic pathways and the dynamics of expansion of scorpion gene fami-
lies were elucidated. On the contrary, for scorpions of non-Buthidae species, there is lack of
similar information, especially at the transcriptomic level. The results reported here should be
considered as an extended analysis of the genes expressed in the venom gland of an Urodacidae
scorpion, filling in the missing information. This communication reports the whole transcrip-
tomic analysis, in which hundreds of venom components are fully characterized, contributing
to the large-scale discovery of scorpion toxin sequences and should serve as a reference for
comparative studies and subjects related to evolution of venoms and venomous animals.

Conclusion
A total of 210 different nucleotidic sequences that code for 111 unique and specific toxins, pep-
tides and proteins in the Urodacus yaschenkoi venom were identified; some of them were previ-
ously found in the U. yaschenkoi cDNA library shotgun approach reported by our group. The
correlation between the proteome and this data set permitted the identification of 16
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theoretical molecular weights deducted from the whole transcriptome. An extended cross-ref-
erence to other scorpion known venom components is included. This work analyzed in detail
the whole array of transcripts expressed in the venom gland of a non-Buthidae scorpion of the
family Urodacidae. It is expected that the identification of these new toxins and peptides will
contribute to the production of new putative bioactive compounds or pharmacological tools.
Meanwhile, this dataset will serve as a public information platform to accelerate studies in
venomics research and will serve as a reference for non-Buthidae scorpions.

Supporting Information
S1 file. Distribution of contigs and sequences from Urodacus yashenkoi venom gland. Size
distribution of the Urodacus yashenkoi venom gland contigs obtained from the de novo assem-
bly of high-quality clean reads (Fig A). Most abundant Go-terms for the sub-dataset containing
only toxins and venom related components (Fig B). Pie charts with the most abundant Go
term per domain for the sub-dataset containing only toxins and venom related components.
Fig C-A: cellular component, Fig C-B: biological process and Fig C-C: molecular function (Fig
C). Enzyme distribution for the sub-dataset containing only toxins and venom related compo-
nents: Oxireductases, transferases, hydrolases, lyases, isomerases and ligases (Fig D). Most
abundant families of enzymes found in the whole transcriptome (Fig E).
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