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Articular cartilage remains among the most difficult tissues to regenerate due to its
poor self-repair capacity. The lysyl oxidase family (LOX; also termed as protein-lysine 6-
oxidase), mainly consists of lysyl oxidase (LO) and lysyl oxidase-like 1-4 (LOXL1-LOXL4),
has been traditionally defined as cuproenzymes that are essential for stabilization of
extracellular matrix, particularly cross-linking of collagen and elastin. LOX is essential in
the musculoskeletal system, particularly cartilage. LOXs-mediated collagen cross-links
are essential for the functional integrity of articular cartilage. Appropriate modulation of
the expression or activity of certain LOX members selectively may become potential
promising strategy for cartilage repair. In the current review, we summarized the
advances of LOX in cartilage homeostasis and functioning, as well as copper-mediated
activation of LOX through hypoxia-responsive signaling axis during recent decades.
Also, the molecular signaling network governing LOX expression has been summarized,
indicating that appropriate modulation of hypoxia-responsive-signaling-directed LOX
expression through manipulation of bioavailability of copper and oxygen is promising
for further clinical implications of cartilage regeneration, which has emerged as a
potential therapeutic approach for cartilage rejuvenation in tissue engineering and
regenerative medicine. Therefore, targeted regulation of copper-mediated hypoxia-
responsive signalling axis for selective modulation of LOX expression may become
potential effective therapeutics for enhanced cartilage regeneration and rejuvenation in
future clinical implications.

Keywords: lysyl oxidase, cartilage, hypoxia-inducible factor, copper, transcription activity, regeneration,
rejuvenation

INTRODUCTION

The lysyl oxidase family (LOX; also termed as protein-lysine 6-oxidase) has been traditionally
defined as cuproenzymes that are essential for stabilization of extracellular matrix (ECM),
particularly cross-linking of collagen and elastin (Rucker et al., 1998; Kagan and Li, 2003).
LOX mainly comprises of five members that were originally considered copper-dependent amine
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oxidases, including lysyl oxidase and lysyl oxidase-like 1-
4 (LOXL1-LOXL4), is a copper-containing amine oxidase
belonging to a heterogeneous family of enzymes, which catalyzes
oxidative deamination of the amino group in certain lysine and
hydroxylysine residues of collagen molecules for stabilization
of collagen fibrils (Kagan and Li, 2003). To date, LOX has
been demonstrated to regulate a diverse range of cellular
processes and biological functions (Smith-Mungo and Kagan,
1998), as well as certain pathogenesis of various diseases,
particularly fibrotic diseases, ischemic cardiovascular diseases,
and cancer progression, which is mainly mediated by ECM
remodeling and elastogenesis (Schmelzer et al., 2019), epithelial-
mesenchymal transition and intracellular signaling (Lopez et al.,
2010; Busnadiego et al., 2013; Cox et al., 2013, 2015; Klingberg
et al., 2013; Rimar et al., 2014; Schmelzer et al., 2019). The
LOX has been demonstrated as crucial contributors for normal
embryonic development of various tissue and organ systems,
including cardiovascular (Martinez-Gonzalez et al., 2019), and
respiratory systems (Maki et al., 2002; Maki, 2009; Maki et al.,
2005), as well as essential for normal physiological and cellular
properties, such as sprouting angiogenesis of endothelial cells
(Lucero and Kagan, 2006; Bignon et al., 2011).

Cartilage is an avascular collagen-abundant tissue. Unlike
bone, cartilage seems to lack efficient self-reparative/regenerative
capacity, making arthritis common and costly, affecting the
well-being and quality of life of millions of people worldwide
(Huey et al., 2012; Mobasheri and Batt, 2016; Deng et al.,
2019). Inflammatory arthritides, such as rheumatoid arthritis,
and psoriatic arthritis, are among the most challenging auto-
immune diseases and health problems worldwide (Mobasheri
and Batt, 2016; Flores et al., 2019; Zhou B. et al., 2019). Of
note, osteoarthritis (OA) is the most common form of arthritis,
which is one of the most prevalent chronic immune diseases. OA
is characterized by articular cartilage degeneration, subchondral
bone remodeling, osteophyte formation and synovial changes
(Yuan et al., 2014). OA is a multifactorial disease and various
risk factors of OA have been reported, such as obesity (Aspden,
2011), body mass (Messier et al., 2005), and aging (Lotz and
Loeser, 2012). Until now, the etiology and pathophysiology of
OA have not been well documented. Various treatments, such
as cellular therapies (Fu et al., 2014; Lee and Wang, 2017; Lin
et al., 2017; Teo et al., 2019; Xu et al., 2019), administration
of certain drugs or chemicals (Zhang et al., 2016, 2019; Yao
et al., 2019), therapeutic surgeries (Chen Y. et al., 2015), and bio-
fabrication approach (Tatman et al., 2015; Onofrillo et al., 2018;
Lee et al., 2019), have been intensely studied and tested in various
preclinical studies and clinical trials during recent decades (Lee
and Wang, 2017; Zhang et al., 2019). However, several hurdles
are required to be addressed for therapeutic optimization before
clinical translation. And currently there are no effective clinical
options treating OA (Mobasheri and Batt, 2016; Chen et al., 2018;
Griffin and Scanzello, 2019).

Cross-linking is essential for the stabilization and mechanical
support of collagen networks within native cartilage. Of note,
the formation of lysine-derived, covalent pyridinoline (PYR)
cross-links relies on the enzyme LOX, which is hypoxia-response
element-directed upregulation during HIF1-transcriptional

activation (van Vlimmeren et al., 2010; Gao et al., 2013). The
activity of LOX is regulated by proteolytic cleavage of the LOX
pro-peptides. Importantly, the activity of LOX is also mainly
dependent on the presence of copper (Wang et al., 1996).
The LOX family plays central roles in the musculoskeletal
system, such as tendon (Danielsen, 1982; Robinson et al., 2005;
Marturano et al., 2013), ligaments (Makris et al., 2014), and
cartilage (Iftikhar et al., 2011; Makris et al., 2014).

Of note, copper, an important co-factor of various chaperones
and enzymes, is vital for maintenance of integrity and
homeostasis of cartilage tissues. However, until now, the
underlying detailed mechanisms remain elusive. In the current
review, we summarized the advances of LOXs family in cartilage
homeostasis and regeneration, including embryogenesis, and
potential involvement during pathophysiology of arthritis, as
well as copper-mediated activation of LOXs and hypoxia-
responsive signaling axis during recent decades, the main
molecular modulation signaling network controlling LOXs
expression, which is promising for potential clinical implications
of cartilage regeneration in regenerative medicine and tissue
engineering. Also, we propose potential links between the
LOXs family and aging-related chronic inflammation and
cartilage degeneration. Modulation of certain the LOXs family
members may become a promising therapeutic approach for
cartilage regeneration.

LYSYL OXIDASES IN CARTILAGE
FUNCTIONING

Endochondral ossification is one of the two main forms
of skeletal formation during embryogenesis. Mesenchymal
chondroprogenitor cells differentiate into chondrocytes through
cellular condensation processes, which are then surrounded by
an abundant layer of extracellular matrix, including type II,
IX, and XI collagens, which is the characteristics of cartilage
(Mendler et al., 1989).

Generally, aging-induced cartilage degeneration in arthritis
is becoming increasingly prevalent, which is accompanied with
the changes in the components of ECM of cartilage (Loeser
et al., 2016; Varela-Eirin et al., 2018). The expression of LO and
LOXLs has been detected in chondrocytes near the joint cavity
undergoing appositional growth, as well as in the epiphyseal
plate of femur undergoing endochondral ossification. Strong
expression of LO was observed in marrow cavity. And the
localization of LOXL was mainly detected in chondrocytes
of the reserve, proliferating cartilage, and hypertrophic zones,
suggesting their vital functions during cartilage embryogenesis
and potential roles for the normal function of adult cartilage
(Hayashi et al., 2004; Thomassin et al., 2005). Further studies
have indicated the expression of LO, LOXL2, and LOXL4 on
chondrocytes of articular cartilage layers (Huang et al., 2010).
Also, expression of LOXL2 has been detected in proliferating
and hypertrophic chondrocytes of normal growth plate in vivo
(Iftikhar et al., 2011). The general histologic structure of joint
cartilage (mainly including growth plate and articular cartilage)
has been presented in Figure 1.
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FIGURE 1 | Histology of growth plate and articular cartilage through Safranin O-Fast green staining of the proximal tibia from adult C57BL/6 mice. Mature articular
cartilage is mainly comprised of four zones based on histologic features: superficial layer, transition or mid (middle) layer, deep or radial layer, and calcified layer that is
lined by subchondral bone. Growth plate is mainly characterized by several morphologically distinct zones, including resting zone, proliferating zone, prehypertrophic
zone, and hypertrophic zone. LO is mainly expressed in marrow cavity, while LOXL2 expression is mainly localized in proliferating and hypertrophic zones of growth
plate. LOXL was mainly found on chondrocytes of resting, proliferating and hypertrophic zones of growth plate. The expression of LO, LOXL2, and LOXL4 was
descended from superficial to deep layers of articular cartilage. Lysyl oxidase: LO; lysyl oxidase like-2: LOXL2; lysyl oxidase like-4: LOXL4; Lysyl oxidase-like
enzymes: LOXL. Scale bar: 100 µm.

Notably, the activity of LOX is of pivotal importance for
maintaining the tensile and elastic features of connective tissues
in the musculoskeletal (Weiner and Traub, 1992; Herchenhan
et al., 2015), cardiovascular and pulmonary systems (Ohmura
et al., 2012; Nave et al., 2014). In cartilage, LOX is capable
of modification of amino acids lysine and hydroxylysine into
covalent PYR cross-linking (i.e., heterotypic collagen II/IX/XI)
(Eyre et al., 2004), in particular the most abundant type of cross-
links in native articular cartilage, which is tightly correlated with
the tensile properties of native articular cartilage (Williamson
et al., 2003; Eyre et al., 2008). Nevertheless, inactivation of LOXs
induced by copper metabolic disorder or gene mutation would
lead to dysfunction of connective tissues and collagen-containing
organs (Kuivaniemi et al., 1982; Maki et al., 2002). To date,
the discovery of crystal structures of copper-containing amine
oxidase and lysyl oxidase-like 2 has been reported in the current
literature (Figure 2) (Duff et al., 2003, 2004; Lunelli et al., 2005;
Zhang X. et al., 2018).

To date, the LOX family has been reported essential for
cartilage maturation, chondroprotection, and homeostasis
maintenance of cartilage. LO and LOXL-3b have been

demonstrated crucial for cartilage maturation during zebrafish
development, respectively (Reynaud et al., 2008; van Boxtel
et al., 2011). Further, studies have indicated the upregulation
of LOXL2 in OA cartilage in response to injury, which may
be considered as a naturally protective response that promotes
anabolism while inhibiting specific catabolic response during
OA pathophysiology (Alshenibr et al., 2017; Bais and Goldring,
2017). Likewise, a recent study further confirmed that systemic
adenovirus-delivered LOXL2 expression or LOXL2 genetic
overexpression both exhibited chondroprotective effects through
inhibition of catabolic factors and IL-1β-induced NF-κB
signaling in mice (Tashkandi et al., 2019). Also, Matrigel
constructs of human chondrocytes from the knee joint and
TMJ implanted in nude mice showed enhanced anabolic
responses after LOXL2 transduction, including increased
expression of sex determining region Y-box containing gene
9 (SOX9), aggrecan (ACAN), and COL2A1, whilst reduced
the levels of extracellular matrix (ECM)-degrading enzymes
matrix metalloproteinases and inhibited chondrocyte apoptosis
(Alshenibr et al., 2017). Therefore, LOX-mediated collagen
cross-links are essential for the functional integrity of articular

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 April 2020 | Volume 8 | Article 359

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00359 October 21, 2020 Time: 18:32 # 4

Lin et al. Lysyl Oxidases-Mediated Cartilage Regeneration

FIGURE 2 | Crystal structures and ligand interactions of copper-containing amine oxidase and human lysyl oxidase-like 2 (http://www.rcsb.org/). (A) Copper-
containing amine oxidase extracted from bovine serum (BSAO) was crystallized and its three-dimensional structure at 2.37A resolution. The biological unit of BSAO
is a homodimer, formed by two monomers related to each other by a non-crystallographic 2-fold axis. Each monomer is composed of three domains. (B) Ligand
interaction of copper iron [(CU)901] in copper-containing amine oxidase extracted from BSAO. (C) Crystal structure of human lysyl oxidase-like 2 (hLOXL2) at 2.4-Å
resolution. (D) Ligand interaction of zinc iron ([ZN]803:A) in hLOXL2. The copper-binding site of hLOXL2 is occupied by zinc, which blocks lysyl tyrosylquinone (LTQ)
generation and the enzymatic activity of hLOXL2. The LTQ precursor residues in the structure are distanced by 16.6 Å, corroborating the notion that the present
structure may represent a precursor state and that pronounced conformational rearrangements would be required for protein activation.

cartilage and cartilage homeostasis. Appropriate modulation
of the expression or activity of certain LOXs family members
selectively may become potential promising strategy for
cartilage repair.

The components of extracellular matrix are vital for the
maintenance of phenotype and function of chondrocytes (Shi
et al., 2017; Li et al., 2018; Zhang et al., 2020). The expression
of a novel LOX-related gene, named LOXC, has been detected in
cartilage in vivo, which modulates the formation of collagenous
extracellular matrix (Ito et al., 2001). A series of further
studies have confirmed LOX as a key enzyme responsible for
the formation of collagen cross-links. Furthermore, hypoxia-
induced endogenous LOX expression has been applied in the
repair of de novo multiple musculoskeletal tissues (i.e., cartilage,
meniscus, tendons, and ligaments) as important regenerative
strategies, which is mainly mediated through mechanisms of
hypoxia-induced enhanced PYR crosslinking and increased
tensile properties of collagen-rich tissues (Makris et al., 2014).

Simultaneously, studies have demonstrated that combined
treatment of copper sulfate and hydroxylysine would additively
or synergistically enhance collagen cross-linking in engineered

articular cartilage, improving the tensile and biomechanical
properties of the neocartilage (Makris et al., 2013). LOXL2
promotes chondrogenic differentiation through regulation of
SOX9 and SNAIL (Iftikhar et al., 2011). Also, LOX activity has
been reported vital for phenotypic modulation of chondrocytes
(Farjanel et al., 2005). Therefore, modulation of endogenous
LOX activity or expression selectively has been demonstrated
effective for promotion of tensile properties and cross-linking
of cartilage, as well as phenotypic control of chondrocytes,
which appears as promising clinically applicable approaches of
regenerative medicine and tissue engineering (Makris et al., 2014;
Hadidi et al., 2017) (Table 1).

Regulation of Hypoxia-Inducible Factor-1
in Chondrogenesis and Cartilage
Homeostasis
The physiological oxygen tension between 2%∼9% in healthy
individuals, which is termed as ‘physiologic normoxia’ (Simon
and Keith, 2008). Generally, hypoxia-inducible factor 1
(HIF-1) is expressed in a variety of organs and tissues in
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TABLE 1 | Therapeutic approaches for enhanced cartilage regeneration through LOXs modulation.

Authors Source/Species Detailed Treatments Experimental Model Therapeutic
Outcomes

Mechanisms

Makris et al., 2014 Calves Continuous hypoxia
conditioning or
exogenous LOXL2
administration

Trochlea groove
cartilage and knee
meniscus explants

Enhanced neocartilage
formation and
functional properties

Increased collagen
cross-linking

Tashkandi et al.,
2019

Mice Intra-articular injection
with MIA (monosodium
iodoacetate) or
intraperitoneal injection
of adenovirus vector
(Adv)-RFP-LOXL2

MIA-induced OA in
LOXL2-overexpressing
transgenic mice or
Cho/+ mice injected
with Adv-RFP-LOXL2

Systemic LOXL2
adenovirus or LOXL2
genetic overexpression
in mice protected
against OA

Inhibition of IL-1β-induced
phospho-NF-κB/p65 and
MMP13 expression;
upregulation of anabolic
genes

Makris et al., 2013 Juvenile bovine knee
joints

0.0016 mg/ml copper
sulfate and 0.146%
mg/ml hydroxylysine
either or in combination

Chondrocytes-self-
assembly-tissue culture
constructs

Synergistic tensile
properties in
combination of copper
sulfate and
hydroxylysine-treated
group

Enhanced PYR
cross-links

Hadidi et al., 2017 Bovine hind limbs taken
from skeletally
immature calves

Exogenous LOXL2
administration along
with copper and free
hydroxylysine

Culture constructs:
primary articular
chondrocytes and
meniscus cells seeded
in non-adherent
agarose wells

Enhanced tensile
properties of and
near-native tissue
values in terms of
glycosaminoglycan
content in
LOXL2-treated
constructs

Increased collagen and
PYR cross-links

Lin R. et al., 2019 New Zealand white
rabbits

Copper-incorporated
bioactive
glass-ceramics
(Cu-BGC)

Model of osteochondral
defects with a diameter
of 5 mm

Facilitated the
regeneration of
cartilage and
osteochondral interface
significantly by Cu-BGC
treatment

Activation of HIF-1
signaling and inhibition of
inflammatory response via
inducing an
anti-inflammatory M2
phenotype in macrophage

Alshenibr et al., 2017 Human In vivo implantation of
human articular and
temporomandibular
joints (TMJ)
chondrocytes in nude
mice; expression
detection in human
tissue sections

Human knee and hip
joints and TMJ

Upregulated expression
of LOXL2 in OA
cartilage

A protective response that
promotes anabolism while
inhibition of specific
catabolic responses
(promoted specific
chondrogenesis in
implants lacked fibrosis
and mineralization)

Iftikhar et al., 2011 Not available Induction of
chondrogenic
differentiation

ATDC5 cell line Expression of LOXL2 in
ATDC5 chondrogenic
cells and LOXL2
promoted ATDC5
chondrogenic
differentiation

Through regulation of
SOX9 and SNAIL

healthy mammalians under physiologic normoxic conditions,
including brain, kidney, liver, heart, and cartilage (Stroka et al.,
2001; Coimbra et al., 2004). Articular cartilage is residing
in a hypoxic microenvironment of avascular hypoxic zone
in vivo under normal physiological conditions, ranging from
7∼10% oxygen tensions in the superficial zone, and 1%
oxygen in the deep zones (Ferrell and Najafipour, 1992).
Hypoxia-inducible factor 1α (HIF-1α) have been demonstrated
essential for cartilage maturation (Duval et al., 2009; Stegen
et al., 2019). Also, local activation of HIF-1α is necessary
for survival and homeostatic function of chondrocytes, as
well as normal joint development (Aro et al., 2012; Long,
2019). Thus, hypoxia and HIF-1 have been exploited to
modulate chondrocyte phenotype and represent an efficient

approach to improve cell properties before implantation for
cartilage repair.

Notably, HIF-1 is of pivotal significance for survival and
growth arrest of chondrocytes during cartilage development,
as well as cartilage homeostasis of osteoarthritic cartilage
(Pfander et al., 2006; Gelse et al., 2008). HIF-1 is conducive
to the maintenance of chondrogenic specific markers (SOX9,
type II collagen, and aggrecan) and inhibition of cartilage
hypertrophy (Duval et al., 2012). HIF-1 has been demonstrated
as a positive regulator of SOX9 activity, which is required
for chondrogenesis and synthesis of cartilage ECM (Robins
et al., 2005; Zhang et al., 2011). Nevertheless, dysregulation
of HIF-1α signaling axis would lead to skeletal dysplasia
by interfering with cellular bioenergetics and biosynthesis
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(Stegen et al., 2019). A recent study has indicated the increased
expression of genes involved in matrix degradation, hypoxia-
responsive, and inflammatory signaling in damaged cartilages
comparing with healthy counterparts through whole genome
microarray analysis, suggesting potential involvement of HIF-
1α during the progression of OA pathophysiology (Yudoh et al.,
2005; Aşık et al., 2019), which may be a natural protection
response of the body since previous studies have demonstrated
chondroprotection efficacy through activation of HIF-1 signaling
axis (Gelse et al., 2008; Maes et al., 2012; Lin R. et al.,
2019). Further comprehensive studies elucidating detailed roles
of HIF-1α in certain stages of OA pathogenic progression,
as well as detailed mechanisms on hypoxia-induced LOXs
expression and activity, require further elucidation. Therefore,
appropriate modulation of transcriptional activity of HIF-1α

may become a potential feasible therapeutic approach for
cartilage regeneration.

Chondroprotective Effects of Copper
in Cartilage
Copper, an essential redox-active trace element, which is essential
for most aerobic organisms (Tapiero et al., 2003; Solomon et al.,
2014). Simultaneously, copper functions as a co-factor of various
proteins and enzymes, including cytochrome C, superoxide
dismutase, tyrosinase, ascorbate oxidase, lysyl oxidase, and amine
oxidase, exhibiting diverse fundamental cellular functions in
normal physiology, including energy generation, iron acquisition,
oxygen transportation, cellular metabolism, peptide hormone
maturation, blood clotting, neurotransmitter biosynthesis, and
intracellular signal transduction (Huffman and O’Halloran, 2001;
Hamza and Gitlin, 2002; Kim et al., 2008; Turski et al., 2012;
Grubman and White, 2014; Wang et al., 2018; Miller et al.,
2019). Generally, copper is able to exist in two oxidation
states in the body of mammalians: Cu+ and Cu2+ (Lin and
Kosman, 1990; Pushie et al., 2007; Solomon et al., 2014).
The trafficking of copper into specific intracellular targets is
delivered by metallochaperones (Hamza et al., 2001; Puig and
Thiele, 2002; Chen G. F. et al., 2015). And there is no free
copper in the cytoplasm under normal physiological conditions
(Rae et al., 1999).

In general, moderate copper levels are essential for normal
growth, development, health, such as the normal functioning of
innate immune system (Djoko et al., 2015; Bost et al., 2016), and
bone health (Eaton-Evans et al., 1996; Qu et al., 2018). Of note,
copper is also vital for maintenance of integrity and homeostasis
of cartilage tissues. Copper metabolic disorder correlates closely
with ischemic cardiovascular diseases (Jiang et al., 2007; Kim
et al., 2010), embryonic and neonatal abnormalities, and anemia
(Cartwright and Wintrobe, 1964; Jensen et al., 2019), as well as the
onset of osteoarthritis (Scudder et al., 1978; Yazar et al., 2005).

Supplementation of dietary copper has been reported to
reduce the severity of osteochondrosis and other developmental
cartilage lesions, which may result from enhanced collagen
cross-linking and increased collagen II synthesis (Knight
et al., 1990; Hurtig et al., 1993; Yuan et al., 2011). The
chondroprotection efficacy of copper may be attributable

to the anti-catabolic effects of Cu2+, which abrogates the
degradation of cartilage matrix proteoglycan via inhibition
of nitric oxide release (Pasqualicchio et al., 1996). A recent
study has reported that copper-incorporated bioactive
glass-ceramics facilitated the regeneration of cartilage and
osteochondral interface effectively, which was mediated
in part through activated HIF-1 signaling and inhibited
inflammatory response, representing a feasible approach for
treating osteoarthritis associated with osteochondral defects (Lin
R. et al., 2019). However, until now, the detailed mechanisms
of interactions between copper and chondrocytes, as well
as copper trafficking within chondrocytes remain elusive.
To date, copper has been identified as a cofactor of several
identified major cartilage formation-associated enzymes
(Rucker et al., 1998; Heraud et al., 2002; Makris et al., 2013),
however, cellular and molecular mechanisms underlying
intracellular copper transportation in chondrocytes are not
yet clearly understood. A cartilage matrix glycoprotein, a
membrane-associated protein synthesized by chondrocytes,
has been demonstrated to bind copper and exert some oxidase
activity similar with ceruloplasmin, which may function
as an important copper transporter in chondrocytes and
a potential chondrogenic marker (Fife et al., 1986, 1993;
Harris, 2000; Ranganathan et al., 2011; La Mendola et al.,
2012; Ishihara et al., 2014; Linder, 2016; Magri et al.,
2018). The proposed cellular model of copper intracellular
transportation has been presented in Figure 3 according to
current literature (Okado-Matsumoto and Fridovich, 2001;
Carr et al., 2005; Horng et al., 2005; Turski and Thiele,
2009; Ohrvik and Thiele, 2014; Urso and Maffia, 2015; Miller
et al., 2019; Shi et al., 2019), illustrating the routes of copper
trafficking and how it functions within chondrocytes and
during ECM remodeling.

Further, emerging evidence has indicated that copper
stabilizes the HIF-1α protein through inhibiting prolyl
hydroxylases-mediated prolyl hydroxylation in an iron-
independent manner, which is required for transcriptional
activation of HIF-1 of a series of target genes (Martin et al.,
2005; Feng et al., 2009; Himoto et al., 2016; Liu et al., 2018; Chen
et al., 2020), suggesting that appropriate copper levels may be
required for normal cartilage function through regulation of
HIF-1α transcriptional activity. However, detailed mechanisms
of transcriptional processes initiating specific target genes
expression of HIF-1 require further elucidation. Therefore,
copper may modulate cartilage homeostasis through regulation
of activity of HIF-1 transcription and chondrogenic-associated
proteins and markers, such as LOXL2, and SOX9 (Robins et al.,
2005; Amarilio et al., 2007; Schietke et al., 2010), as well as
VEGF, which is essential for chondrocyte survival (Cramer
et al., 2004; Maes et al., 2004, 2012) (Figure 4). Also, further
extensive studies on regulation of HIF-1 expression (such as
heat shock protein 90, HSP90), and specific targeting of certain
transcriptional activation of certain HIF-1 target genes (Minet
et al., 1999; Isaacs et al., 2002; Katschinski et al., 2004), as well
as regulation of systemic copper metabolism are promising
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FIGURE 3 | Proposed cellular models of intracellular copper trafficking in chondrocytes. Cu2+ is transformed to Cu+ by a putative metalloreductase, which then
enters the cell through plasma membrane importer CTR1. Once inside the cell, copper is handed off to copper chaperones. CCS incorporated copper into the
cytosolic protein Cu/Zn-SOD. ATOX1 delivers copper into secretory compartments of Golgi and Endoplasmic Reticulum through ATP7A/B. Copper can be
incorporated into copper-dependent proteins, such as LOXs pro-peptides (secreted forms of LOXs), which is involved in ECM remodeling. Once inside the
intermembrane space of mitochondria, copper is handed off to COX17 and then passed onto either SCO1, which then transfers copper to COX2 subunit of
cytochrome oxidase, or COX11, which transfers copper to COX1 subunit of cytochrome oxidase. Copper exporter ATP7A/B exports copper out of the cell by
translocating to plasma membrane when intracellular copper concentrations are high. Glycoprotein interacts with copper and regulates ECM remodeling. Cu,
Copper; Copper-transporter 1, CTR1 (a major copper importer); CCS, Copper chaperone for superoxide dismutase; Cu/Zn-SOD, copper/zinc-superoxide
dismutase; ATOX1, a copper chaperone, also known as HAH1; LOXs, lysyl oxidases; COX, cytochrome oxidase; SCO, synthesis of cytochrome c oxidase; ATP,
copper transporting P-type ATPases [systemic copper absorption (ATP7A) and copper excretion (ATP7B)]; ECM, extracellular matrix.

for potential therapeutic optimization (Isaacs et al., 2002;
Kim et al., 2010).

Potential Links Between LOX and
Aging-Associated Cartilage
Degeneration
Aging, which is characterized by a chronic and low-grade
inflammation, also termed as age-associated inflammation, which
has been referred to as ‘inflamm-aging’ (Franceschi and Campisi,
2014; Huang et al., 2019; Josephson et al., 2019), is also a risk
factor of osteoarthritis (Greene and Loeser, 2015). Inflammation
is a normal process in healthy individuals. Acute inflammation
initiates the regenerative response (Kyritsis et al., 2012). Whilst
chronic inflammation is likely to cause various diseases (Akhurst
et al., 2005; Liu et al., 2019). The signaling pathways that are
implicated in chronic inflammation include NF-κB (Roman-
Blas and Jimenez, 2008; Bamborough et al., 2010), signal
transducer and activator of transcription (STAT) (He and Karin,
2011), mitogen-activated protein kinases (MAPKS) (Thalhamer
et al., 2008). Interestingly, a recent study reported that
LOXL3-mediated deacetylation/deacetylimination abolished the
transcription activity of STAT3, thereby inhibiting differentiation

of naïve CD4+ T cells toward Th17/Treg cells (regulatory T cells)
during inflammatory responses (Ma et al., 2017).

Aging-associated destruction of joints and cartilage
degradation in osteoarthritis is correlated with changes in
extracellular matrix of articular cartilage, such as cartilage ECM
stiffness, and in the levels and solubility profiles of matrix
crosslinks, especially pentosidine, as well as reduced thickness
of cartilage, proteolysis, advanced glycation and calcification
(Eyre et al., 1988; Pokharna et al., 1995; Lotz and Loeser, 2012).
Notably, rejuvenation has emerged as a promising therapeutic
regenerative approach for improvement or restoration of
the self-repair capacity of injured or aging tissue and organ
systems (Leung et al., 2006; Nelson et al., 2008; Luria and
Chu, 2014; Sarkar et al., 2020), which has been proposed as a
conversion into an embryonic-like state recapitulating many
events during embryogenesis, including the reactivation of
embryonic signature genes, and cytoskeletal/ECM components,
and lineage specification (Vortkamp et al., 1998; Jankowski et al.,
2009; Luo et al., 2009; Adam et al., 2015; Caldwell and Wang,
2015; Hu et al., 2017; Ransom et al., 2018; Feng et al., 2019; Lin
W. et al., 2019; Miao et al., 2019). Consistently, the process of
cartilage repair has been considered as recapitulation of various
events during developmental morphogenesis. Chondrocytes in
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FIGURE 4 | Schematic illustration of copper-mediated hypoxia-response element (HRE)-directed transcriptional fine-tuning of cartilage homeostasis-associated
genes in chondrocytes. Under normoxia, HIF-1α undergoes PHDs-mediated prolyl hydroxylation, and prolyl OH HIF-1α is ligated by pVHL, an E3 ubiquitin ligase,
and degraded by the proteasome finally. Copper stabilizes HIF-1α protein by inhibiting PHDs activity in an iron-independent manner. Under hypoxia or through
interaction with HSP90, HIF-1α stabilizes and accumulates in the cell nucleus, where it forms a dimer with the HIF-1β subunit and a putative unidentified
copper-chaperone. The dimer then forms a transcriptional complex with coactivator CBP/p300 through binding with HRE, regulating the expression of various
downstream target genes, such as LOXL2, SOX9, and VEGF. Simultaneously, SOX9 is a negative regulator of VEGF, whilst the expression of SOX9 target genes (i.e.,
Type II collagen, and Aggrecan) is initiated, which is essential for cartilage synthesis and survival during both embryonic joint development and cartilage homeostasis.
HIF-1α, hypoxia-inducible factor-1α; PHDs, prolyl hydroxylases; OH: enzymatic hydroxylation; pVHL, von Hippel-Lindau tumor suppressor protein; HRE,
hypoxia-response element; Ub, ubiquitinated; SOX9, SRY (sex determining region Y)-box 9; HSP90, heat shock protein 90; LOXL2, lysyl oxidase-like 2; VEGF,
vascular endothelial growth factor; Cu, copper.

osteoarthritic articular cartilage usually undergoes a gradual
dissolution of anisotropic organization along with re-expression
of phenotypic biomarkers of immature cartilage, so tissue
maturation is a potential approach for restoration of normal
structure and function (Caterson et al., 1990; Khan et al., 2008;
Hunziker, 2009; Jiang et al., 2015; Zhang et al., 2017).

Interestingly, copper is also involved in inflammatory
responses, including both innate and adaptive immunity
(Percival, 1998; Failla, 2003). Increasing evidence has indicated
the potential link between copper metabolic disorder and aging-
related diseases, such as aging-induced cartilage degradation
and dysfunction (Yazar et al., 2005; Lotz and Loeser, 2012; Tao
et al., 2019). And previous studies have demonstrated the vital
roles of LOX in normal chondrocyte function (Sanada et al.,
1978; Ahsan et al., 1999), which may be correlated with the
pathogenesis of aging-associated osteoarthritis (Pokharna et al.,
1995). Moreover, LOXL1 is expressed in major organs in late fetal
and neonatal mice, but it generally diminishes in aging animals,
which may be associated with aortic fragility resulting from
abnormal remodeling of collagen and elastic fibers (Hayashi et al.,
2004; Behmoaras et al., 2008). The decreased expression of LOXs
may attribute to reduction of HIF-1 activity in aging organisms

(Rivard et al., 2000; Ceradini et al., 2004). Meanwhile, LOXL2
has recently been demonstrated as a potential chondroprotective
factor in aging related joint osteoarthritis, mainly through
inducing anabolic gene expression and attenuating catabolic
genes (Bais and Goldring, 2017; Tashkandi et al., 2019). Thus,
restoration of collagen and elastic fiber synthesis in juvenile ECM
components though regulation of signaling pathways governing
LOX expression may become a promising therapeutic approach
for amelioration of aging-associated cartilage degeneration and
enhanced cartilage regeneration.

Meanwhile, changes in cell-ECM interactions are important
features of aging phenomenon (Sun et al., 2011). During the
progression of aging-associated degeneration diseases, altered
cell fate of adult stem cells, or dysfunction of terminally
differentiated mature cells occurs, which may result from
the changed ECM niche modified with aging-related proteins
and reduced expression of ECM-synthesis-associated proteins
(Goupille et al., 1998; Chan et al., 2006; Sakai et al., 2012; Wang
et al., 2015; Jeon et al., 2017; Zhang Y. et al., 2018; Patil et al.,
2019), which may be correlated with the LOX family members.
Therefore, reverting aging-associated genes in ECM may become
an important strategy for joint rejuvenation (Chan et al., 2006;
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Fuoco et al., 2014; Li et al., 2014; Sun et al., 2011; Wang
et al., 2019; Zhou J. et al., 2019). Modulation of expression
of LOXs family members through transcriptional regulation
of HIF-1 may become promising therapeutic approaches
for treating aging-induced cartilage degeneration as potential
rejuvenating therapies.

CONCLUDING REMARKS

In summary, LOXs play pivotal roles in maintenance of
cartilage function and chondrogenesis. Therapeutic modulation
of LOX activity and expression selectively targeting copper-
mediated hypoxia-responsive signaling pathways is promising
for cartilage repair and OA attenuation. Meanwhile, further
extensive basic and preclinical research is warranted for potential
translational application of the LOX family in tissue-engineered
neocartilage in tissue engineering and regenerative medicine
in the future. Specific and moderate manipulation of activities
of LOXs and transcriptional regulation of hypoxia-responsive
transcription factors through copper bioavailability modulation
or continuous hypoxia-conditioning may become effective
interventions for enhanced cartilage regeneration, as well as

promising rejuvenation therapeutics, which may exert further
therapeutic implications in the upcoming clinical arena.
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