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In Parkinson’s disease (PD), alteration of dopamine- (DA-) dependent striatal functions and pulsatile stimulation of DA receptors
caused by the discontinuous administration of levodopa (L-DOPA) lead to a complex cascade of events affecting the postsynaptic
striatal neurons that might account for the appearance of L-DOPA-induced dyskinesia (LID). Experimental models of LID have
been widely used and extensively characterized in rodents and electrophysiological studies provided remarkable insights into the
inner mechanisms underlying L-DOPA-induced corticostriatal plastic changes. Here we provide an overview of recent findings
that represent a further step into the comprehension of mechanisms underlying maladaptive changes of basal ganglia functions in

response to L-DOPA and associated to development of LID.

1. Introduction

In Parkinson’s disease (PD), degeneration of dopaminergic
neurons of the substantia nigra causes critical reduction in
dopamine (DA) levels in the target areas. The subsequent
abnormal DA receptor stimulation exerts its main effects in
the striatum, the principal input structure of basal ganglia-
thalamo-cortical network, producing changes in input inte-
gration that lead to imbalance between direct and indirect
striatofugal pathways and dysfunctional changes in basal
ganglia output.

Impairment in the induction of the two forms of striatal
synaptic plasticity, the long-term depression (LTD) and the
long-term potentiation (LTP), has been found to correlate
with DA depletion and onset of symptoms in experimental
models of PD. DA depletion initially affects LTP and then,
when symptoms are fully manifested, also LTD is impaired
[1].

The resulting motor symptoms are effectively treated
with a replacement therapy that uses the DA precursor L-
3,4-dihydroxyphenylalanine (L-DOPA) to rescue striatal DA-
dependent neuronal activity. However, L-DOPA treatment

does not arrest disease progression and, with time, neu-
ronal degeneration advances and leads to the emergence
of a complex pattern of alterations that involves other
basal ganglia nuclei, causing symptoms that are refractory
to conventional therapy. In addition, the initial excellent
antiparkinsonian effects of L-DOPA are lost in the long run,
and the route of drug administration utilized in the clinical
practice leads to a pulsatile stimulation of DA receptors that
causes a broader neuronal destabilization. Therefore, new
motor complications unavoidably develop, resulting in L-
DOPA-induced dyskinesia (LID), a very disabling long-term
side effect of L-DOPA therapy associated with the loss of
corticostriatal bidirectional plasticity [2].

The expression of an aberrant plasticity following
chronic L-DOPA treatment has been also demonstrated in
PD patients [3-5], further supporting the notion that a
treatment with a drug able to ameliorate disease symptoms
can be associated with the recovery of a selective form of
synaptic plasticity.

This review provides an overview of papers that con-
tributed to characterize the plastic changes occurring at
striatal synapses in experimental models of LID. After a
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description of the main forms of DA-dependent synaptic
plasticity at glutamatergic corticostriatal synapses, we will
introduce seminal studies focusing on the plastic changes
observed in dyskinetic models. We will then review the most
recent papers that further explored mechanisms underlying
L-DOPA-induced changes in experimental PD models and
discuss recent findings that, in our opinion, represent new
promising avenues to future electrophysiological studies on
dyskinetic animals.

2. DA-Dependent Synaptic Plasticity at
Corticostriatal Synapses

At corticostriatal synapses, repetitive cortical activation can
induce either I'TD or LTP in the striatal medium spiny
neurons (MSNs), depending on the level of membrane
depolarization, the subtype of glutamate receptor activated
[6-8], and the interneuronal subtypes involved in the induc-
tion process [9]. Unique characteristic of striatal neurons
is that DA critically regulates both the induction and the
maintenance of neuroplasticity via DA D;-like (D;) and
D,-like (D;) receptors activation. Specifically, DA acting on
D; receptors cooperates to the induction of LTP, whereas
activation of both D; and D, receptors is required for LTD
(2, 10, 11].

Electrophysiological studies in corticostriatal slices from
6-hydroxydopamine- (6-OHDA-) lesioned parkinsonian rats
have shed light on the pivotal role that DA exerts in modulat-
ing glutamatergic transmission and synaptic plasticity within
the striatum [12].

A complete DA denervation abolishes both forms of
corticostriatal plasticity [11, 13] that can be restored by
treatment with either DA receptor agonists or the DA
precursor L-DOPA [2, 11, 14].

We have recently shown that distinct degrees of DA
denervation influence the two forms of plasticity in different
ways, as full DA denervation blocks the induction of both
LTP and LTD, while partial DA depletion allows LTP
induction but selectively alters its maintenance, leaving LTD
induction unaffected [1].

A third form of striatal plasticity, distinct from LTD,
called synaptic depotentiation, results from the reversal of
an established LTP by the application of a low-frequency
stimulation (LFS) of corticostriatal fibers [2, 15]. This form
of plasticity critically relies on glutamatergic N-methyl-
D-aspartate (NMDA) receptor activation [16] and striatal
endogenous tone of acetylcholine [17]. During LTP, protein
kinase A (PKA), a downstream effector of DA D; receptors,
phosphorylates and activates DA- and cAMP-regulated phos-
phoprotein of 32 KDa (DARPP-32), a potent inhibitor of
protein phosphatase 1 (PP-1). PP-1 dephosphorylates several
downstream targets of PKA, thereby amplifying behavioral
responses produced by activation of cAMP signalling [18—
20], and it is necessary for depotentiation, as this form of
plasticity is blocked by application of PP-1 inhibitors.

DA and glutamate receptors functional interaction in
the striatum has been shown to regulate locomotion,
positive reinforcement, attention, and working memory.
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In particular, activation of D; receptors is needed for
the correct integration of cortical glutamatergic signals
to the striatum [21]. In striatal MSNs, D; receptors are
located within dendritic spines, where they colocalize with
NMDA receptors [22, 23] regulate the rapid trafficking
of NMDA receptor subunits [24] and the potentiation
of NMDA responses [25], leading to activity-dependent
adaptive changes [10] and also to the activation of excitotoxic
pathways. Among the signalling cascades regulating D,
receptor-dependent enhancement of NMDA responses in the
striatum, the most important involves PKA- and DARPP-32-
regulated phosphorylation of NMDA receptor NR1 subunits
[26].

D; DA receptor stimulation also enhances phospho-
rylation of the alpha-amino-3-hydroxy-5-methyl-4-isox-
azolepropionic acid (AMPA) glutamate receptor subunit
GluR1 at the PKA site, increases surface expression of AMPA
receptors, and facilitates their synaptic insertion in several
brain areas [27, 28].

Besides the concurrent activation of glutamatergic and
dopaminergic receptors, activity-dependent plasticity of
glutamatergic synapses at MSNs is also modulated by
other signalling pathways like endocannabinoids, adenosine
(presynaptically), and metabotropic glutamate (pre- and
postsynaptic) receptors [29] and by striatal interneurons
[30, 31], which represent a minority of total striatal
population but play a crucial role in the modulation of
basal ganglia function, contributing to the processing of
corticostriatal information [9, 13, 32]. In particular, two
interneuronal subtypes have been suggested to play a critical
role in the pathogenesis of LID: the large-aspiny cholinergic
interneurons and the nitric-oxide-synthase- (NOS-) positive
interneurons.

The cholinergic interneurons, which represent the main
source of acetylcholine within the striatum [33], play a
permissive role in corticostriatal synaptic plasticity by modu-
lating the striatal cholinergic tone [9, 34]. These interneurons
respond to cortical stimulations with long lasting changes
of synaptic efficacy [17, 35] and are important sites of
interaction among DA, adenosine, and endocannabinoid
receptor signalling systems [36], further supporting the idea
that cholinergic interneuronal activity contributes to striatal-
dependent learning and motor habit formation.

The NOS-immunoreactive neurons represent, along with
the cholinergic interneurons, the other interneuronal sub-
type that plays an important role in the induction of LTD
[13, 31, 34]. These interneurons express mRNA encoding for
ionotropic glutamate receptors that appear to be coupled to
nitric oxide production [37—40]. Nitric oxide activates solu-
ble guanylyl cyclase (sGC), which in turn induces increases of
intracellular cyclic guanosine monophosphate (cGMP) levels
to activate the protein kinase G (PKG) [41-43], whose levels
are regulated by the action of phosphodiesterases (PDEs), a
family of enzymes responsible for the conversion of cGMP to
GMP. Accordingly, pharmacological LTD can occur in MSNs
following the application of phosphodiesterases inhibitors
[13], as a consequence of increased cGMP levels. In fact, the
amount of this nucleotide is crucial for the activity of PKG
and DARPP-32, which in turn control the phosphorylation
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of AMPA receptor, a main player in the induction of LTD
[10].

In summary, the integrative action exerted by striatal
projection neurons on the converging information arising
from the cortex, the nigral DA neurons and the striatal
interneurons, shapes the activity of neurons throughout the
entire basal ganglia circuitry.

3. L-DOPA-Induced Plastic Changes at
Glutamatergic Synapses

The effects of L-DOPA administration in the DA-depleted
striatum have been extensively studied in experimental
models of LID, leading to the concept that a combination
of presynaptic and postsynaptic maladaptive changes is
needed for the parkinsonian animals to develop dyskinesia
(3, 44, 45].

During progressive degeneration of nigrostriatal termi-
nals, sprouting of DA terminals and reduced DA uptake
contribute to preserve DA striatal levels [46], and increase in
glutamate transmission is observed in corticostriatal pathway
[47-51] as well as in basal ganglia output nuclei [52, 53].

However, such presynaptic adaptive changes together
with changed presynaptic and postsynaptic DA receptor
sensitivity and density lead to an altered substrate in
which L-DOPA exerts its actions. Thus, initially, L-DOPA is
converted into DA, stored in synaptic vesicles, and released
by surviving DA-releasing terminals. However, when degen-
eration advances, DA catabolism and uptake are reduced and
decarboxylation of L-DOPA to DA and release occur in non-
dopaminergic cells [54, 55], causing a failure in the buffering
of DA levels.

The consequent large fluctuations in extracellular DA
concentrations, mainly relying on the drug-dosing cycle,
contribute to the establishment of further morphological and
functional changes at both pre- and postsynaptic levels.

During chronic treatment with L-DOPA, several postsy-
naptic pathways downstream DA and glutamate receptors
activation are progressively dysregulated, causing a loss
of control of phosphorylation cascades with increase of
phosphorylated striatal substrates such as NMDA receptor
subunits [56, 57], AMPA receptor subunits [58], and extra-
cellular signal-regulated kinase (ERK)1/2 [44, 58-60]. One
crucial pathway that has been extensively investigated is the
signalling activated by D, receptor stimulation [61]. In the
DA-depleted striatum, in fact, chronic L-DOPA treatment,
through stimulation of sensitized D receptors causes hyper-
activation of PKA and increased striatal phosphorylation of
DARPP-32 at the threonine-34 residue [58, 62]. As above
mentioned, this protein plays a pivotal role in the synaptic
alterations caused by unphysiological stimulation of DA D,
receptors. In fact, DARPP-32 is a potent inhibitor of PP-
1 activity, which in turn is necessary to depotentiate the
synapse.

A critical link between abnormal involuntary move-
ments (AIMs), resembling human dyskinesia, and loss of
bidirectional synaptic plasticity at corticostriatal synapses
of dyskinetic rats has been firstly provided by our group

[2, 63]. In the unilateral 6-OHDA model of PD, chronic
treatment with either high or low doses of L-DOPA is
able to restore LTP expression. However, in a consistent
number of treated animals, the corticostriatal glutamatergic
signalling undergoes further adaptive changes and AIMs
develop [2, 64, 65]. Hyperphosphorylation of DARPP-32
at the threonine-34 residue occurs selectively in animals
developing dyskinetic behavior and is associated to the
loss of capability to depotentiate the corticostriatal synapse
[2]. Moreover, in dyskinetic animals, prolonged L-DOPA
treatment remarkably reduces synaptic D;/NMDA receptor
complexes without changing their interaction [23]. However,
further complex molecular alterations take place at gluta-
matergic synapse that are strictly correlated to abnormal
synaptic plasticity and motor behavior in L-DOPA-treated
dyskinetic rats [2, 16]. Specifically, levels of NR2A subunit
are higher in dyskinetic animals compared to nondyskinetic
ones, and this effect is paralleled by decreased levels of
NRyp subunit, which are found increased in extrasynaptic
sites [16]. Such redistribution of NMDA receptor subunits
is associated with alterations in the binding of NMDA
receptor subunits with their cargo proteins, in particular,
SAP-97 and SAP-102 [16]. Impairment of the physio-
logical trafficking of NMDA receptor subunits from the
reticulum toward the postsynaptic density may, therefore,
determine the enhancement of NMDA receptor signalling in
dyskinesia.

Accordingly, pharmacological manipulation aimed at
reducing synaptic localization of NR,g, and consequently
increasing NRys/NRyp ratio at synaptic sites, causes in
nondyskinetic subjects a worsening of motor symptoms
with appearance of dyskinetic behaviours [16]. Intracerebral
administration of a cell-permeable peptide (TAT2B), able
to alter the NRyp synaptic localization by perturbing its
binding with scaffolding proteins, causes loss of depotenti-
ation that correlated with AIMs in nondyskinetic animals
[16].

Taken together, these findings support the notion that
abnormal activation of PKA and concomitant hyperphos-
phorylation of DARPP-32 observed in experimental models
of LID are two of the main causes of changes in the state
of phosphorylation state of target effector proteins, with
consequent profound repercussion on the excitability and
plasticity of striatal MSNs.

4. Novel Insights into L-DOPA-Induced
Changes in Corticostriatal Synaptic Plasticity

Three new studies have investigated further on the mech-
anisms underlying the loss of synaptic scaling down at
corticostriatal synapses.

Gardoni and coworkers have recently shown that phar-
macological manipulations interfering with the interactions
between NMDA receptor subunits and their scaffolding pro-
teins, responsible for their trafficking and correct assembly at
synaptic membranes, prevents the unbalance of NRya/NRyp
subunit ratio by reducing the synaptic localization of NR;,
subunit. Systemic coadministration of the cell-permeable



peptide TAT2A and L-DOPA reduces the percentage of
animals developing dyskinesia [66]. However, once the AIMs
are established, the administration of TAT2A fails to reduce
incidence of dyskinesia, indicating that altered NMDA recep-
tor composition has a critical role in initiating the dyskinetic
phenotype. Moreover, these data support the concept that
molecular disturbances of the glutamatergic synapse, initially
caused by DA denervation, create a pathological substrate
that induce and maintain the overworking synapse at an
altered steady state that triggers the development of LID
(2, 16].

A further advance in the characterization of bidirectional
synaptic plasticity following L-DOPA therapy has been
made in a recent study conducted by our group. Based on
the evidence that striatal cGMP signalling is decreased in
dyskinetic animals [67], we explored the possibility that LTD,
which strictly relies on the nitric oxide-dependent activation
of PKG, was altered following L-DOPA treatment. We
found that MSNs recorded from L-DOPA-treated dyskinetic
parkinsonian rats do not express activity-dependent LTD.
Increase of cGMP levels by PDEs inhibitors leads to the
activation of PKG, mimicking the action of nitric oxide
released from NOS-positive neurons that represents a critical
factor for LTD induction following HES [13]. Accordingly,
application of a low dose of PDEs inhibitor, unable to induce
per se a pharmacological LTD in dyskinetic parkinsonian
rats, is sufficient to rescue activity-dependent LTD in these
animals.

Interestingly, application of PDEs inhibitors induces
pharmacological LTD in both dyskinetic and nondyskinetic
rats but not in untreated parkinsonian animals, indicating
that the presence of endogenous striatal DA represents a
critical condition also for the induction of this form of
pharmacological plasticity. Local injection of these drugs into
the striatum of dyskinetic rats rescues LTD and reduces the
dyskinetic response to L-DOPA [62].

This phenomenon, together with the loss of depoten-
tiation [2], is in line with the view that LID is caused by
impaired control of striatal excitatory synapses with excessive
increase of glutamatergic transmission.

Accordingly, the third study by Usiello and coworkers
investigated the contribution of a basal hyperglutamatergic
tone in the development of dyskinesia associated to altered
DA-dependent bidirectional synaptic plasticity.

Using mutant mice lacking the D-Aspartate Oxidase
(Ddo) enzyme (Ddo™~ mice), showing nonphysiological
high levels of the excitatory free D-amino acids D-aspartate
and NMDA [68], they found that a condition of persistent
hyperstimulation of glutamatergic transmission results in an
aberrant striatal synaptic plasticity. In the MSNs recorded
from Ddo ™™ mice, similar to what observed in dyskinetic ani-
mals, LES protocol fails to reverse the synaptic transmission
levels to those preceding LTP.

When subjected to 6-OHDA lesion, Ddo™~ mice display
increased sensitivity to L-DOPA and early onset of dyskinetic
behavior [69] further supporting the concept that increased
glutamatergic release is a critical risk factor to develop
LID.
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5. New Promising Avenues to Further
Investigate L-DOPA-Induced Corticostriatal
Plastic Changes

In the recent past, new molecular targets for LID have
been explored that may play a critical role in the synaptic
alterations underlying plastic changes in the DA-depleted
striatum exposed to long-term L-DOPA. An important
contribution to the understanding of mechanisms involved
in the development of dyskinesia has been provided by the
evidence that not only ERK but also its downstream targets,
including molecules involved in the regulation of protein
translation and gene transcription [60, 70], are entailed in
the dysregulation of phosphorylation cascades induced by
L-DOPA. The group of Fisone and coworkers has recently
demonstrated that abnormal activation of ERK is associated
to increased signalling of mammalian target of rapamycin
complex 1 (mTORC1) via inhibitory control of tuberous
sclerosis complex (TSC) 1 and 2 that, in turn, suppresses
activation of Ras homolog enriched in brain (Rheb), a highly
conserved member of the Ras superfamily of G-proteins,
ultimately responsible for mTORCI activity. Coadminis-
tration of L-DOPA and rapamycin, a selective allosteric
inhibitor of mTOR complex, diminishes the development
of LID without interfering with the therapeutic effects of
L-DOPA [56]. Recently, it has been shown that besides Rheb,
another small G protein, the Ras homologue enriched in
striatum (Rhes), is critically involved in the pathological
upregulation of mTORC1 during LID [71]. These data
further strengthen the hypothesis of an involvement of
mTORCI signalling in LID, as Rhes knockout mice show
reduced dyskinesia in response to L-DOPA, but the ther-
apeutic improvement of limb motion remains unchanged.
Interestingly, a role of mTORCI in synaptic plasticity has
been recently put forward [72]. Relevant to corticostriatal
pathway, it has been shown that inhibition of mTORC
complexes is able to block a pathological form of persistent
LTP associated to increased glutamatergic signalling and
neurodegeneration [73].

Taken together, these data suggest that enhanced mRNA
translation, leading to abnormal local protein synthesis
in the cytoplasm, may participate in the development of
aberrant enhancement of synaptic strength, as observed in
LID.

Another intriguing aspect that has been recently investi-
gated is the capability of L-DOPA to exert its action through
nondopaminergic systems. Indeed, as PD progresses, degen-
eration of nigrostriatal terminals also advances, and
L-DOPA is converted in DA, stored, and released also from
other cellular elements within the striatum, including the
serotonin (5-HT) terminals [54, 74, 75]. This action might
have both beneficial and detrimental consequences in that
it allows L-DOPA to maintain DA levels in the virtual
absence of dopaminergic neurons but it also enhances the
non-physiological DA receptor stimulation as the feedback
control of DA release is absent in the 5-HT system.
This might have important implications for corticostriatal
synaptic plasticity as unregulated DA transmission may
induce further adaptive rearrangement of DA/glutamatergic
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ionotropic receptors interactions at postsynaptic sites that
would critically affect the bidirectional synaptic plasticity.

The hypothesis of the involvement of 5-HT terminals
in LID has gained support from recent evidence showing
that lesion of the 5-HT system by 5,7-dihydroxytryptamine
[75] or pharmacological manipulation of serotoninergic
transmission [54, 74] significantly reduces L-DOPA-induced
increase of extracellular DA levels in the striatum and abol-
ishes dyskinetic movements in parkinsonian rats chronically
treated with L-DOPA [54]. However, decrease of corti-
costriatal glutamate release could be another mechanism
underlying additional antidyskinetic effect [76-78].

A potent synergistic interaction between 5-HTix
and 5-HT;p receptors in counteracting the induction of
dyskinetic movements has also been demonstrated in the
1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine- (MPTP-)
treated macaques, in which administration of 5-HT;, and
5-HT)p agonists reduces the upregulated levels of FosB, the
main postsynaptic striatal marker for LID [79, 80].

Most recently, it has been demonstrated that profound
structural changes are associated to the capability of sero-
toninergic terminals to release DA as “false transmitter.”
Cenci and coworkers provided evidence that L-DOPA
treatment induces the sprouting of 5-HT axon terminals
(increased number of synaptic contacts between 5-HT termi-
nals and striatal neurons) [55]. This specific morphological
feature positively correlates with the severity of dyskinesia as
shown by increased binding levels of the plasma membrane
5-HT transporter in both experimental models (rodents
and nonhuman primates) and in PD patients subjected to
L-DOPA therapy. Such increase was correlated with the
dyskinetic score and paralleled by the upregulation of brain-
derived neurotrophic factor (BDNF) expression [55, 81],
which exerts complex functional and structural actions
within the striatum.

These results are consistent with the evidence that
increased concentrations of striatal BDNF are associated with
LID [82] although the role of this neurotrophin in LID
development is still under debate [83].

A link between BDNF and LID is also suggested by the
fact that striatal BDNF is regulated by the activity of another
nondopaminergic pathway involved in the development of
LID, the striatal purinergic system. Indeed striatal adenosine,
through A, receptors, has been suggested to play a pivotal
role in the regulation of BDNF function and levels in
the brain [84, 85] and it has been also implicated in the
development of LID [86].

Presynaptically, A, receptors act to finely tune glutamate
release from corticostriatal terminals and they are also
present postsynaptically on striatopallidal MSNs of the
indirect pathway that express DA D, receptors.

In control condition, concomitant activation of DA
D, receptors and blockade of A,y adenosine receptors is
able to decrease striatal glutamatergic transmission [87].
This interaction is made possible by a retrograde action
of endocannabinoids released by postsynaptic MSNs and
acting on CB1 cannabinoid receptors located on glutamater-
gic terminals [36] suggesting that the convergence of DA
D, and A,s signalling systems on the endocannabinoids

pathway represents a potent feedback mechanism to control
glutamatergic transmission in the striatum. While in con-
trol condition, concurrent activation of D, and blockade
of Ayp are necessary to reduce glutamate release via an
endocannabinoid-dependent mechanism, in DA-depleted
animals, D, receptor agonism alone is able to reduce
glutamatergic transmission due to D, receptor sensitization.
This effect could be further enhanced by A,x receptor
antagonists providing a solid experimental support for the
combined use of D, receptor agonists and A, receptor
antagonists in clinical settings. In fact, alterations in Ajx
receptor expression and signalling have been extensively
observed in PD patients undergoing L-DOPA therapy and in
experimental models of LID and A, antagonists have proven
to be effective in clinical and preclinical studies [86].

Notably, striatal cholinergic interneurons, coexpressing
D, and A4 receptors, are also interested in this pharma-
cological modulation, since concomitant activation of D,
DA receptors and blockade of Ay receptors reduces the
firing rate of this neuronal subtype and muscarinic M;
receptor antagonism blocks the D,/A;5 receptor-mediated
modulation of excitatory transmission in both D,- and D; -
expressing MSNs [36]. These results are in agreement with
previous studies showing altered acetylcholine signalling in
DA-denervated striatum [88] resulting in a loss of feedback
control of acetylcholine release [89]. Striatal acetylcholine
levels critically determine the direction of synaptic plasticity
at corticostriatal synapses with low levels of acetylcholine
facilitating LTD and high levels facilitating LTP [90].

Taken together, these data suggest a strong involvement
of the striatal cholinergic interneurons in LID pathogenesis.
A recent paper [91] shows that in animals lacking the
transcription factor Pitx3, modeling PD, chronic L-DOPA
enhances baseline and DA-induced firing rate in striatal
cholinergic interneurons. This effect is seen also in 6-OHDA-
lesioned mice and is associated with increased phospho-ERK
immunoreactivity in this neuronal population as inhibition
of ERK is able to restore firing rate at control values [91].
In both the unilateral lesion and the genetic models, chronic
L-DOPA caused development of LID that was attenuated
by administration of dicyclomine, a muscarinic antago-
nist, without affecting L-DOPA’s beneficial antiparkinsonian
action.

These findings provide new lines of evidence that L-
DOPA exerts its widespread action at multiple levels in the
functional organization of the striatum (Figure 1). However,
a clear-cut definition of a scenario comprising the various
maladaptive changes is made difficult by the fact that striatal
response to DA-denervation and subsequent DA replacement
may vary between the two distinct populations of striatal
projecting neurons, the striatopallidal and the striatonigral
MSNs, with the latter population being more consistently
involved in LID induction, as suggested by some recent
reports [61, 70, 92]. A recent in vivo electrophysiological
study has given substantial foundation to the distinction
between direct and indirect pathways suggesting that a range
of different dysfunctional changes in these two populations
of projecting neurons may concur to the induction of LID.
One interesting aspect that comes out from this paper is
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FiGurk 1: (a) In control condition, dopamine (DA) transmission is regulated by feedback control of release from nigrostriatal terminals
(black) through D2 autoreceptors and uptake processes. DA binds striatal postsynaptic D1 receptors inducing the formation of cAMP, which
in turn favours the activation of PKA, able to phosphorylate and activate DA- and cAMP-regulated phosphoprotein of 32 KDa (DARPP-32)
and extracellular signal-regulated kinase (ERK). Once phosphorylated, DARPP-32 is able to inhibit protein phosphatase 1 (PP-1). Glutamate
(blue) and BDNF (red) are released from corticostriatal terminals into the striatum. Glutamate release is regulated by endocannabinoids
(eCB) activated by increases in intracellular calcium (Ca?") concentrations through adenosine A2a and muscarinic M1 receptors activation,
among other mechanisms, and retrogradely released by postsynaptic striatal neurons. Once released, glutamate activates metabotropic as well
as NMDA and AMPA ionotropic receptors, whose activity and surface expression at postsynaptic membrane is also regulated by D1 receptors.
In serotoninergic afferents, 5-hydroxytryptophan is converted to serotonin (5-HT) (green) by Aromatic-L-Amino Acid Decarboxylase
(AADC) and released into the striatum. Cholinergic and nitric oxide synthase (NOS)-positive interneurons cooperate to induction of
corticostriatal LTP and LTD. (b) In dyskinetic state L-DOPA is converted to DA by AADC and released from serotoninergic terminals in
unregulated manner. Higher levels of striatal BDNF may support morphological changes in serotoninergic neurons. Excess of DA abnormally
stimulates D1 pathway with hyperphosphorylation of ERK and uncontrolled activation of PKA that results in hyperphosphorylation of
DARPP32, which persistently blocks PP-1 causing loss of synaptic depotentiation. Abnormal D1 receptor stimulation is associated to
increased intracellular Ca®* levels and dysregulation of NMDAR subunit composition with reduction of NR2B-containing NMDAR at
synaptic sites, leading to increase in NR2A/NR2B ratio that has been suggested to have a role in the loss of depotentiation. Hyperactivation of
ERK through convergent altered signalling pathways brings to increased inhibition of tuberous sclerosis complex (TSC)1/2, and consequent
disinhibition of Rheb/Rhes, leading to excessive increase of signalling of mTORCI that, in turn, exerts its long term effects through changes
in protein synthesis. After chronic L-DOPA, cholinergic interneurons show increased phospho-ERK immunoreactivity and higher firing
rates with increased release of acetylcholine (Ach). Striatal cGMP signalling is decreased and corticostriatal LTD, which strictly relies on the
nitric-oxide- (NO-) dependent activation of protein kinase G (PKG) is abolished in dyskinetic state.

that also striatopallidal neurons present specific alterations
of synaptic plasticity in response to L-DOPA, although
the study leaves open unresolved questions regarding the
relevance of these findings for in vivo behavior [93].

Besides the distinct contribution of direct and indirect
pathways to LID, several lines of evidence support the
idea that also striatal regional compartmentalization matters
in the response to L-DOPA. Within the striatum, it is
possible to distinguish two compartmentalizations, whose
activation can be modulated by striatal interneurons: the
matrix, including the direct and indirect pathway MSNs that
form parts of sensorimotor and associative circuits, and the
striosomes, which contain MSNs that receive input from
parts of limbic cortex and project directly or indirectly to
the dopamine-releasing neurons of the substantia nigra pars
compacta.

An interesting recent review has strengthened this idea,
discussing the role of imbalances between striatal striosome

and matrix functions in relation to neurodegenerative
disorders, including LID [94]. Findings in support of this
idea may have important implications in the perspective of
considering PD and LID as network disorders that cause a
range of motor and nonmotor symptoms.

6. Concluding Remarks

We have discussed seminal and recent papers that explored
the mechanisms underlying the establishment of aberrant
forms of synaptic plasticity at glutamatergic corticostriatal
synapses in LID experimental models. We have also provided
an overview of recent studies dealing with novel aspects
of the multifaceted L-DOPA effect. Taken together, all the
reviewed studies strongly support the notion of a failure
of the principal scaling down mechanisms at corticostriatal
synapses as a major mechanism in the development of LID.
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The scenario emerging from these findings is predictive of
a more complex pattern of altered plasticity that involves
structural and functional changes within the striatal circuitry
and opens new perspectives for future electrophysiological
investigations.
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