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Abstract
Background and objectives Transcriptomic landscape of prostate cancer (PCa) shows multidimensional variability,
potentially arising from the cell-of-origin, reflected in serum markers, and most importantly related to drug sensitivities. For
example, Aggressive Variant Prostate Cancer (AVPC) presents low PSA per tumor burden, and characterized by de novo
resistance to androgen receptor signaling inhibitors (ARIs). Understanding PCa transcriptomic complexity can provide
biological insight and therapeutic guidance. However, unsupervised clustering analysis is hindered by potential confounding
factors such as stromal contamination and stress-related material degradation.
Materials and methods To focus on prostate epithelial cell-relevant heterogeneity, we defined 1,629 genes expressed by
prostate epithelial cells by analyzing publicly available bulk and single- cell RNA sequencing data. Consensus clustering and
CIBERSORT deconvolution were used for class discovery and proportion estimate analysis. The Cancer Genome Atlas
Prostate Adenocarcinoma dataset served as a training set. The resulting clusters were analyzed in association with clinical,
pathologic, and genomic characteristics and impact on survival. Serum markers PSA and PAP was analyzed to predict
response to docetaxel chemotherapy in metastatic setting.
Results We identified two luminal subtypes and two aggressive variant subtypes of PCa: luminal A (Adipogenic/AR-active/
PSA-high) (30.0%); luminal S (Secretory/PAP-high) (26.0%); AVPC-I (Immune-infiltrative) (14.7%), AVPC-M
(Myc-active) (4.2%), and mixed (25.0%). AVPC-I and AVPC-M subtypes predicted to be resistant to ARI and have low
PSA per tumor burden. Luminal A and AVPC-M predicted to be resistant to docetaxel and have high PSA/PAP Ratio.
Metastatic PCa patients with high PSA/PAP ratio (>20) had significantly shorter progression-free survival than those with
low ratio (≤20) following docetaxel chemotherapy.
Conclusion We propose four prostate adenocarcinoma subtypes with distinct transcriptomic, genomic, and pathologic
characteristics. PSA/PAP ratio in advanced cancer may aid in determining which patients would benefit from maximized
androgen receptor inhibition or early use of antimicrotubule agents.

Introduction

Previous attempts to subtype PCa by transcriptomic varia-
bility, including ETS transcription-factor– based classifications
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and luminal/basal lineage models [1–3], was not able to pro-
vide additional clinical information beyond known risk factors
[4]. Currently, therapeutic options for advanced PCa include
AR signaling inhibitors (ARIs - abiraterone, enzalutamide,
apalutamide), antimicrotubule agents (docetaxel, cabazitaxel),
and immune therapy (sipuleucel-T). However, increasing
evidences suggest intrinsically AR-independent tumors exist,
characterized by neuroendocrine or small cell histology and
mutations of multiple tumor suppressors PTEN, TP53 or RB1
[5–7]. PCa of intrinsic resistance to docetaxel has been
reported [8], too. Therefore, an ideal PCa classification system
should be able to determine for which tumors ARI, docetaxel,
immunotherapy or other newly developing therapies can be
offered.

PCa is characterized by multifocality or intratumoral het-
erogeneity [9, 10]; in addition, stromal contents (fibroblasts,
endothelial cells, immune cells) can add further diversity.
Therefore, it is likely that a tumor may be composed of more
than two molecular subtypes that differ in the tumor cell, as
well as tumor-microenvironment gene expression [11–13].
Whole-transcriptome analysis of tumor tissue is susceptible to
those potential confounding factors when attempting to iden-
tify subtypes based on the tumor cell intrinsic heterogeneity.

For normal prostate tissue, single-cell analysis precisely
defined epithelial-expressed genes and confirmed the exis-
tence of luminal, basal, or bipotential progenitor populations
with specific anatomical locations and potential relevance to
cancer characteristics such as AR independence [14–16]. We
hypothesized that the PCa transcriptome can be interpreted
based on their cell-of-origin of gene expression, especially
considering therapeutic relevance. Using the single- cell
RNA-seq data and an established deconvolution analysis tool,
we developed a single-sample subtype classifier with pro-
portion estimate (PE) for a given prostate tumor RNA-seq
data. We report four transcriptomic subtypes with different
predicted sensitivities to antimicrotubule agents and ARIs,
and utility of serum biomarkers PSA and prostate-specific
acid phosphatase (PAP) combination to select patients who
will most likely benefit from each class of drugs.

Materials and methods

Prostate epithelial-expressed gene identification
from single-cell and bulk RNA-seq data

We used single-cell RNA-seq data from Henry et al. [14] that
used three human prostate specimens. Mapped read count
data were downloaded from GEO (GSE117403) and aggre-
gated using 10X Genomics Cell Ranger aggregate function.
We followed the analysis pipeline of Henry et al and repli-
cated differentially expressed gene (DEG) lists for luminal,
basal, club-like, hillock-like, and neuroendocrine prostate

epithelial cells. We chose overexpressed genes by those five
epithelial cell populations in comparison to the rest epithelial
and non-epithelial cells (Supplementary Table S1A).

We also analyzed the bulk RNA-seq data of corresponding
fluorescence-activated cell sorting- isolated human prostate
cell types from the same study [14]. We downloaded the
fragments per kilobase million (FPKM)-value matrix of basal,
luminal, and other epithelia, and fibromuscular stroma from
GEO (GSE117271), selecting genes overexpressed by more
than 5-fold by all epithelia, or by an epithelial subpopulation
vs. the remainder of the epithelia (Supplementary Table S1B).
We merged the DEG lists from single-cell and bulk
datasets, and kept genes that mapped to an Entrez gene ID
(Supplementary Table S1C).

Consensus clustering of TCGA-PRAD (The Cancer
Genome Atlas Prostate Adenocarcinoma)
RNA-seq data

We downloaded annotated TCGA-PRAD gene expression,
clinical, and genomic data from the UCSC Xena browser.
RNA-seq by expectation maximization (RSEM) data con-
taining mRNA expression levels of 550 samples were
uploaded to the GenePattern Public server (cloud.genepattern.
org). We used Consensus Clustering Module version 7.2 with
parameters set at: Kmax= 15; resampling iterations= 20;
clustering algorithm= self-organizing map; cluster by=
columns; distance measure= Euclidean; resample=
subsample with a proportion of 0.80; merge type= average;
descent iterations= 2000; normalize type= row-wise; nor-
malization iterations= 0. We used pre-calculated DNA purity
(ABSOLUTE, CLONET) and RNA purity (ISOpure, DeMix
purity) scores, AR activity score, AR mRNA and protein
expression and survival data from the TCGA- PRAD dataset
at the cBioPortal.

RNA-seq data deconvolution and single-sample PE

We used CIBERSORT, a digital cytometry tool for decon-
volution of heterogeneous tissues based on bulk mRNA-seq
data [17]. RNA-seq read-normalized gene expression values
(RSEM, RPKM, and FPKM for TCGA, CPC-GENE and
DKFZ, and SU2C-PCF datasets, respectively) with Entrez
gene ID and HUGO gene-symbol annotations were loaded
as a “mixture” file. The gene signature was defined by the
average gene expression values of prostate epithelial-
expressed genes in the TCGA-PRAD dataset clusters pre-
determined by Consensus Clustering.

In silico docetaxel and paclitaxel sensitivity test

To predict docetaxel sensitivity in PCa patients, we used a
previously published gene expression signature associated
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with breast tumor response to docetaxel therapy, evaluated
by the degree of reduction in tumor size [18]. Genes
overexpressed (n= 13) and underexpressed (n= 43)
in docetaxel responders were used as gene sets to run
single-sample gene-set enrichment analysis (ssGSEA) loa-
ded as a module in the GenePattern platform. The docetaxel
responder score was calculated by subtracting the ssGSEA
score of underexpressed genes from that of overexpressed
genes. To predict paclitaxel sensitivity, we searched the
cancer therapeutics response portal (CTRP v2, http://portal.
broadinstitute.org/ctrp.v2.1) and selected genes whose
expression correlated positively (Pearson r > 0.3) with
cancer cell lines relative sensitivity to paclitaxel (1- area
under curve value). All score values underwent z-score
normalization.

Docetaxel response analysis in the Yonsei University
Health System (YUHS) database

The study design was approved by Severance Hospital
Institutional Review Board (IRB #4-2020- 0812). The
YUHS Big-Data team identified case of PCa patients who
had serum PSA and PAP test results in a single sample to
calculate the PSA and PAP ratio (PPR). The team also
identified cases of metastatic castration-resistant prostate
cancer (mCRPC) patients who (1) underwent at least three
consecutive cycles of docetaxel-predisone chemotherapy,
(2) had abdominopelvic CT and whole-body bone scan
imaging before, during, and after chemotherapy to assess
radiographic response, and (3) had serum PSA and PAP test
results acquired within 30 days ahead of initial che-
motherapy start date. Docetaxel response was measured
using RECIST 1.1 criteria.

For serum PAP measurements, two assays were used:
Prostatic Acid Phosphatase ran in IMMULITE 2000
(Siemens Genesis, result provided in ng/mL) and ACP
Reagent (Roche) ran in TBA C8000 (Toshiba, result pro-
vided in U/L). We performed simple linear regression in
samples of both data available (n= 975) and interpolated
missing values from the equation (n= 78) (Supplementary
Fig. S4f).

Statistics and reproducibility

Statistical analyses were performed with GraphPad Prism
version 8.4.3 (GraphPad, San Diego, CA, USA). P values
were estimated using log-rank (Mantel–Cox) test for survival
curve comparison, unless indicated otherwise. For analysis of
correlation between drug-sensitivity scores and subtype PEs,
Spearman r values and two-tailed P value were reported.
For multiple comparisons, ANOVA and Kruskal–Wallis test
were used. Vector graphics were created with Biorender.com
(https://biorender.com/).

Results

Prostate epithelial-cell–expressed genes define four
tumor clusters

We identified 1629 genes expressed by epithelial cell
populations vs. all other cell types from single-cell and
bulk RNA-seq data of human prostate-tissue samples
(Supplementary Table S1, courtesy of Dr. Douglas Strand at
UT Southwestern Medical Center) [14]. Initial consensus
self- organizing map clustering of the TCGA-PRAD dataset
using these 1593 genes (24 removed due to gene ID/symbol
mismatching) suggested an optimal number of clusters in
the range 2–5, but the absence of a plateau in consensus
cumulative distribution function (CDF) plots implied that
the population could not be cleanly separated (Supple-
mentary Fig. S1a, b). Alternatively, we filtered samples by
DNA purity (ABSOLUTE, CLONET purity values >0.5)
and RNA purity (ISOpure, DeMix purity values >0.5),
selecting 138 of 275 samples of purity data available
(50.2%, Supplementary Table S2). Using this “pure” subset,
we repeated consensus clustering and found four robust
clusters (clusters A–D) with a minimal proportion of
ambiguously clustered pairs (Supplementary Fig. S1c–f).

Deconvolution analysis identify four transcriptomic
subtypes of PCa

We generated gene signatures containing 1271 DEGs among
the four clusters and calculated proportion estimates (PEs) of
each cluster by running CIBERSORT deconvolution analysis
(P < 0.05) (Fig. 1a, Supplementary Table S3). Single sample
GSEA (ssGSEA) of the prostate cell lineage groups [14] and
correlation analysis showed that cluster A and B were enri-
ched by luminal cells, and cluster C by endothelia and
immune cells (Fig. 1b, upper). Further analysis showed that
cluster A enriched of adipogenesis and androgen response;
cluster B enriched of spermatogenesis and protein secretion;
cluster C enriched of G2M checkpoints, angiogenesis and
mitotic spindle; cluster D enriched of Myc targets and DNA
repair genesets (Fig. 1b, lower).

We assigned the samples to a subtype when the cluster
PE was >0.5, and those with maximal PE ≤0.5 were
designated “mixed”. By this definition, samples were clas-
sified as luminal subtypes A (n= 163, 30.0%), B (n= 141,
26.0%) and non-luminal subtypes C (n= 80, 14.7%), D
(n= 23, 4.2%), or mixed (n= 136, 25.0%) (Fig. 1a). The
luminal subtypes overexpressed ANPEP encoding Alanine
aminopeptidase (CD13) and RLN1 encoding Relaxin, both
of which specifically expressed by mature luminal epithelial
cells [14] (Fig. 1c). When comparing luminal subtypes A
and B, luminal A overexpressed SPINK1 and TFF3, which
are coexpressed in ERG-negative tumors [2, 19], whereas
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luminal B overexpressed ERG (Fig. 1d). When comparing
non-luminal subtypes C and D, subtype C overexpressed
conventional neuroendocrine PCa markers CHGA and
NKX2-1, whereas subtype D overexpressed a recently dis-
covered neuroendocrine PCa marker CEACAM5 [20]
(Supplementary Fig. S4f).

Non-luminal subtypes are Aggressive Variant
Prostate Cancers (AVPCs)

We compared the pathologic and genomic characteristics of
the four subtypes using the cBioPortal’s group comparison
function [21]. The non-luminal subtypes C and D were
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characterized by a higher Gleason score and more advanced
T and N stages than subtypes A and B (Fig. 2a, b), reflected
in relatively shorter progression-free survival (Fig. 2d).
Subtype A was characterized by frequent SPOP mutation
and Chr 6q21 homodeletion, and the absence of ETS family
fusion. In contrast, subtypes B, C and D were characterized
by ETS fusion and PTEN deletion. Further, Subtype C and
D showed TP53 mutation/loss of heterozygosity, PIK3CA
mutation, and amplifications of Chr 8q24.3, which harbors
PTK2 or focal adhesion kinase (FAK) (Fig. 2e–h).

We applied the gene signature for deconvolution of three
additional PCa datasets. The CPC- GENE 2017 dataset
consists of localized non-indolent tumors (Gleason score
6–7, clinically organ-confined) [22]. The DKFZ 2018
dataset consists of tumors diagnosed in patients <55 years
old [23], and the SU2C-PCF 2019 dataset consists of
metastatic castration-resistant prostate cancer (mCRPC)
[24]. Interestingly, the CPG-GENE localized tumors were
consisted largely of subtype A (31%) and B (62%), while
the DKFZ early-onset tumors were consisted mostly of
subtype A (85%). The SU2C-PCF mCRPC tumors con-
sisted of subtype A (12%) and C (88%). The distribution of
Gleason score, tumor stage and genetic alteration events
were similar to that of the TCGA dataset (Supplementary
Fig. S2a–c). Subtype C of the SU2C-PCF mCRPC dataset
showed a tendency of adrenal, hepatic and pulmonary
metastases enriched (Supplementary Fig. S2c).

Because the non-luminal subtypes C and D are featured
by advanced T/N stage, high Gleason score, PTEN and
TP53 alterations, they fit into the criteria of Aggressive
Variant PCa (AVPC), which defined clinically by rapid
progression after androgen deprivation, low PSA level
relative to tumor burden, visceral metastasis, neuroendo-
crine markers or histology, and molecularly by two or more
alterations of PTEN, TP53 and RB1 (AVPC molecular

signature, AVPC-ms) [25]. Indeed, TP53 mutation and
PTEN deletion were the top significant genomic features of
non-luminal subtypes (Fig. 2i, Supplementary Fig. S2d).
Further analysis showed that 23–27% of non-luminal
tumors had AVPC-ms, whereas only 3–11% of luminal
tumors had AVPC-ms (Fig. 2j).

Interestingly, though, overall survival was not significantly
different between subtype A and C in the SU2C-PCF dataset
(Supplementary Fig. S2e).

PCa subtypes intrinsic sensitivity to AR signaling
inhibitors and docetaxel

To summary, both subtype A and B are enriched of luminal
epithelial cell genes. Subtype A is enriched of adipogenesis
and fatty acid metabolism genes, whereas subtype B is enri-
ched of protein secretion and spermatogenesis. In this regards,
we named the subtype A as luminal A (Adipogenic), and
subtype B as luminal S (Secretory). The luminal A subtype is
further characterized by absence of ETS family fusion and
high AR activity. The luminal S subtype has ETS fusion in
similar ratio to the non-luminal subtypes C and D.

The most distinguishing features of subtype C and D from
the luminal subtypes were the AVPC signatures – both
molecularly (combined losses of PTEN, TP53 or RB1), and
pathologically (high Gleason scores and advanced T/N
stages). Thereby, we considered them as AVPCs. Since
subtype C is enriched of leukocyte genes and angiogenesis
signature, we named it as AVPC–I (Immune- infiltrative).
Subtype D is instead characterized by Myc oncogene targets
overexpression and chromosome 8q24 amplifications (where
Myc is located), we named it as AVPC-M (Myc-active).

Reduced AR transcriptional activity of tumor is a feature
of AVPC, often reflecting by relative low PSA and
can predict AR signaling inhibitor (ARI) resistance [25, 26].
To gauge the subtypes sensitivity to ARI, we used pre-
calculated AR activity scores [3, 24]. AR score was highest
in luminal A, followed by luminal B, and lowest in the two
AVPC subtypes as expected (Fig. 3a). In contrast, AR
mRNA levels were low in luminal A and AVPC-M
(Fig. 3b), and AR protein levels were not different among
the subtypes (Fig. 3c, d).

To differentiate PCa subtype-wise sensitivities to doc-
etaxel, we used a modified version of an in silico drug-
screening logic to predict sensitivity in cancer cell line sam-
ples based on their transcriptome data [27]. Briefly, gene sets
were defined based on genes reported to positively or nega-
tively correlate with tumor drug response. Drug response or
sensitivity score in a sample is then computed by ssGSEA.
Using this algorithm, we found that luminal S and AVPC-I
are likely to be docetaxel responders, whereas luminal A and
AVPC-M are likely to be docetaxel nonresponders (Fig. 3e,
Supplementary Table S4). Correlation analysis was consistent

Fig. 2 Pathologic and genomic characteristics of prostate cancer
molecular subtypes. a–c. Cluster-wise distributions of radical pros-
tatectomy (RP) Gleason score (a), pathologic T (pT) stage (b) and pN
stage (c) from the TCGA-PRAD dataset. P values and Q values by chi-
square test and Benjamini–Hochberg procedure. d. Kaplan–Meier Plot
of Progression-free Survival. Survival data downloaded from cBio-
Portal. P value by Log-rank test. f–h. Frequencies of SPOP, TP53, and
PIK3CA mutations (e), copy-number alteration events (f), ETS-family
fusions (ERG; ETV1, 4, 5, or 6) (g) and TP53 copy-number alteration
(CNA) (h). P values and Q values by chi-square test and Benjamini–
Hochberg procedure. i, j. Enrichment frequency scatter plot of gen-
ome-wide mutations and copy number alteration in between luminal
subtype(s) vs. non-luminal subtype(s) of the TCGA-PRAD dataset (i)
and the SU2C-PCF 2019 dataset (j). Dot color blue if Q value < 0.05
by chi-square test and Benjamini–Hochberg procedure. k. Frequency
of AVPC molecular signature (AVPC-ms) in the clusters of TCGA
dataset (upper) and SU2C-PCF dataset (lower). AVPC-ms = two or
more of PTEN, TP53 or RB1 mutation/deletion. P values by chi-
square test. l. Kaplan–Meier Plot of Progression-free Survival of the
SU2C-PCF dataset. Survival data downloaded from cBio-Portal.
P value by Log-rank test.
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with subtype-wise comparison, showing that cluster B
(luminal S) and C (AVPC-I) proportion estimate (PE) posi-
tively correlate, and cluster A (luminal A) PE negatively
correlates, with docetaxel responder score (Fig. 3f). The result
of SU2C-PCF dataset was similar (Fig. 3g). The analysis also
predicted that luminal A is likely to be resistant to paclitaxel
(Supplementary Fig. S3a, b).

PCa docetaxel resistance has been associated with AR
activation and loss of KDM5D (also known as JARID1D)
expression, a histone demethylase enzyme gene [8, 28]. We
found that KDM5D mRNA expression level was lowest in
luminal A subtype (Supplementary Fig. 3c). For the AVPC-M
subtype, the in silico drug screening suggested DNA damage-
inducing purine analogues as potential drug of choice
(Supplementary Fig. 3d and Supplementary Table S4).

Serum PSA/PAP ratio predicts progression-free
survival after docetaxel in mCRPC

KLK3 gene encoding prostate specific antigen (PSA) is an
AR target gene incorporated in the AR activity score [3].
ETS fusion-negative and SPOP-mutated tumors are char-
acterized by higher PSA than ETS fusion-positive tumors
[29, 30]. As expected, KLK3 mRNA level was highest in
luminal A, followed by luminal S, and lowest in the two
AVPC subtypes (Fig. 4a). However, preoperative serum
PSA levels were not significantly different among the
subtypes, either by average level or by distribution (Sup-
plementary Fig. S4a). This is likely due to the variance of
tumor burden across samples. When stratified by pT stage,
pT2C luminal A tumors showed significantly higher PSA
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levels than pT2C luminal B (Supplementary Fig. S4b). In
the mCRPC dataset, luminal A tumors serum PSA and
KLK3 mRNA levels were significantly higher than AVPC-I
tumors (p < 0.01, Supplementary Fig. S4c, d). KLK3 mRNA
level was significantly higher in mCRPC enzalutamide
responder group than nonresponder group, too (Supple-
mentary Fig. S4e).

ACP3 gene encodes prostatic acid phosphatase (PAP), an
early generation PCa serum marker. The ACP3 mRNA level
was higher in luminal subtypes than the AVPC subtypes in
the TCGA dataset (Fig. 4b). However, in the mCRPC
datasets, the ACP3 mRNA level was not significantly dif-
ferent between luminal A and AVPC-I, or enzalutamide
responders and nonresponders (Supplementary Fig. S4d, e).

The difference between TCGA dataset and the mCRPC
datasets are the presence/absence of ongoing androgen
deprivation therapy (ADT). Indeed, a clinical trial (DK-301)
from our institution evaluating goserelin acetate 10.8-mg
depot as first-line ADT in advanced PCa patients (n= 12)
showed a gradual decline of PSA/PAP ratio following first-
line ADT (Fig. 4d).

Based on the in silico drug sensitivity test and serologic
characteristics, we hypothesized that the two PCa specific
serum markers PSA and PAP combination can predict
molecular subtypes and drug responses of mCRPC patients:
the KLK3/ACP3 mRNA expression ratio is lowest in
AVPC-M and lumina A subtypes that are predicted to be
docetaxel-resistant (Fig. 4c). We reviewed 1052 serum PSA
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and PAP paired samples from 651 patients of our institution
from 2006 to 2020 (Supplementary Fig. S4f, further
details described in methods section), which revealed two
subpopulations of PSAhigh and PAPhigh (Fig. 4e). We further
examined 30 mCRPC cases who received docetaxel-
predisone chemotherapy and eligible for radiographic pro-
gression and survival analysis. Their serum PSA/PAP ratio
did not show a downward trend during docetaxel treatment
(Supplementary Fig. 4g). From the earlier analysis, we
estimated that 25–35% of the mCRPC patients would be
classified as AVPC-M or luminal A subtypes, and divided
the groups in to pretreatment PSA/PAP ratio >20 (n= 11,
36.7%) and ratio ≤20 (n= 19, 63.3%). Of note, the cut-off
value (PSA/PAP ratio= 20) separated the PSAhigh popula-
tion from the rest in the scatter plot (Fig. 4e). Intriguingly,
we found that the PSA/PAP ratio >20 group showed sig-
nificant shorter progression-free survival than the PSA/PAP
ratio ≤20 group (median survival: 91 days vs. 210 days,
Log-rank test, p= 0.011). Hazard ratio (Mantel–Haenszel)
was 3.4 (95% CI= 1.3–8.8). The overall survival did not
show significant differences (median survival: 309 days vs.
551 days, Log-rank test, p= 0.165) (Individual sample data
available in Supplementary Table S5).

Discussion

In case of transcriptome-based molecular subtyping of
breast cancer [31, 32], expression of a set of 494 breast
tumor-cell–intrinsic genes was defined to overcome het-
erogeneity arising from the stroma [31]. Following this
strategy, we used previously deposited prostate-tissue
epithelial cell- lineage–specific gene expression profiles
assessed by bulk and single-cell RNA sequencing [14, 15].
We discovered four transcriptomic subtypes of primary
prostate adenocarcinoma – luminal A, luminal S, AVPC-I
and AVPC-M (Table 1 summarized their characteristics).
Our classification partly overlapped with earlier findings
from multi-omics-based or marker-based clustering
approaches [1–3, 19]. However, subtype definitions were
not absolute, resulting in classification of ~25% of tumors
as mixed. Strikingly, KLK3 and ACP3 mRNA expression
levels, encoding PSA and PAP, respectively, showed
potential to identify subtypes; this was further supported
by serum PSA and PAP levels measured before prosta-
tectomy or docetaxel chemotherapy.

Identification of cancer molecular subtypes has deepened
our understanding of cancer biology and clinical implica-
tions, including therapeutic target identification. In breast
cancer docetaxel adjuvant chemotherapy was not beneficial
in the luminal A population or in patients with ER- positive
and HER2-negative cancers [33–35]. We claim that such
findings can be translated to PCa. Our analysis suggests thatTa
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luminal A subtype, with the strongest AR activity, should
undergo treatment with the new AR target agents and avoid
taxanes if diagnosed in advanced stage [36].

Encouragingly, data from recent molecular profiling of
mCSPCs support that the SPOP-mutated tumors are less likely
to become castration-resistant [37]. In contrast, TP53 inacti-
vation, a distinguishing feature of AVPC subtypes from the

luminal tumors, was predictive of abiraterone and enzaluta-
mide outcomes in mCRPCs [38]. For the AVPC-M subtype
which predicted to be resistant to both docetaxel and AR
signaling inhibitors, DNA damage-inducing agents (purine
analogues) might be tried. Indeed, clinical trials showed that
AVPC-ms (+) tumors can benefit from DNA-damaging pla-
tinum-based chemotherapies in addition to cabazitaxel [39].

Fig. 5 Upstream regulators of KLK3 and ACP3 genes expression.
KLK3 (a) and ACP3 (b) genes promoters and enhancers public ChIP-
seq data integrative analysis (original data available from the Signaling
Pathways. Each transcriptional factor binding site was identified by the
Model-based Analysis of ChIP-seq (MACS2) algorithm and ranked by

the MACS2 score. Top 10 TFs are listed. c a schematic diagram of
transcriptional regulators of KLK3 and ACP3 genes. Note that
while both genes are regulated by AR and AR cofactors, ACP3 is (in
addition) regulated by pro-inflammatory factors such as STAT1/3
and IRF1.
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The established PCa serum biomarker combination of
PSA and PAP may be useful to predict the transcriptomic
subtype and docetaxel sensitivity at an advanced stage.
Reports shows that the 5- year survival rate was sig-
nificantly lower in metastatic cancer patients with a low
PSA/PAP ratio than with a high ratio (24% vs. 48%, P=
0.002) [40]. In localized tumors, elevated PAP before
treatment has been regularly identified as a significant
prognostic factor following definitive therapies [41–44].
Although the benefit of docetaxel is repeatedly seen in
mCRPC, adjunct docetaxel therapy is not superior to
androgen deprivation therapy alone in high-risk cancer with
rising PSA only [45]. We postulate that patients with rising
PSA and PAP together (low PSA/PAP ratio) may be the
suitable candidates to test the benefit of early docetaxel
treatment. In contrast, patients with rising PSA but not PAP
(high PSA/PAP ratio) are most likely of luminal A or
AVPC-M subtypes, which are predicted to be insensitive to
docetaxel. The PAP protein is also a target antigen of
therapeutic vaccine Sipleucel-T [46]. We found a sub-
stantial variability of PAP expression per tumor cell, which
suggest that the benefit of immunotherapy may be subtype-
specific, like as ARI and docetaxel. Indeed, a post-hoc
analysis found that lower baseline PSA is associated with a
greater overall survival benefit [47]. Together, we propose
to measure serum PAP in combination with PSA and con-
sider their ratio as tumor cell subtype marker in settings of
systemic therapy. While the individual markers expression
may correlate with the progression during therapy, the PSA/
PAP ratio maybe a specific marker of tumor cell subtype,
since the variation of tumor burden is subtracted out in the
calculation. It is possible that free PSA and PAP combi-
nation maybe a better markers, though, considering the
biological half-life of PSA (2-3 days), free PSA and PAP
(1.1–2.6 h) [48].

Both KLK3 (coding PSA) and ACP3 (coding PAP)
genes are regulated by AR. An integrative analysis on
their gene promoters and enhancers public ChIP-seq data
(available from the Signaling Pathways Project http://signa
lingpathways.org) indicate that ACP3 gene is regulated also
by ETS family transcription factors (SPI1, ERG) and
inflammation-related factors (STAT1, STAT3) (Fig. 5a, b,
Supplementary Table S6). This might be the underlying
mechanism that PSA/PAP ratio in general decreases fol-
lowing androgen deprivation therapy (Fig. 4d). In other
words, PSA/PAP ratio may reflect the activity of alternative
signaling pathways (ETS family, STATs) that leads to early
onset castration-resistance (Fig. 5c).

In addition to the fact that SPOP-driven prostate tumors
(Luminal A) and ERG-driven tumors (Luminal S and
AVPCs) exist in mutually exclusive manner, our analysis
support that the AVPCs mostly arise in ERG-driven
tumors by losses of PTEN and p53. ERG activation

coordinate with PTEN loss in prostate cancer progression,
and it is likely that loss of p53 on top of ERG/PTEN loss
promote androgen-independent tumor growth and metas-
tasis. These are shared characteristic of AVPC-I and
AVPC-M, and imply that the AVPCs harbor significant
chromosomal instability that potentially be associated
with microtubule stabilizer’s anti-tumor mechanism. We
further speculate that compared to AVPC-I, AVPC-M
have less vascularization, slow in cell cycle, and frequent
genetic mutations of PI3K-Akt-mTOR pathway that pro-
motes resistance to taxanes.

Our finding does not contradict earlier reports that ERG
induces taxane resistance in CRPC [49]. Rather, it under-
scores the importance of radiographic and clinical responses
over PSA response in mCRPC cases, where increasing
numbers of PSA-low neuroendocrine–like cancers are seen.
We argue that ETS-fusion tumors can be subdivided - luminal
S, AVPC-I and AVPC-M, and the taxane-resistance and
castration-resistance might be dependent on molecular con-
texts such as combined losses of PTEN, TP53 or PIK3CA
associated with ETS fusion [5–7].

Interpretation of our data is limited due to the study’s
retrospective design and unplanned subset analysis. For
instance, serum PAP data was not available for the TCGA or
the SU2C-PCF dataset. For docetaxel response analysis in our
cohort, we used pre-chemotherapy serum PSA and PAP
levels measured after long-term androgen deprivation. Ana-
lysis of the magnitude of the decrease in those markers sug-
gest that the PSA/PAP ratio may change during androgen
deprivation. A further prospective trial is warranted, particu-
larly in metastatic castration-sensitive or non-metastatic cas-
tration-resistant settings, where the benefit of molecular
subtyping and tailored therapies can be maximized. Molecular
profiling of metastatic tumors is still a challenge because of
difficulty in acquiring the representative tumor samples.
Blood sampling of the established serum markers PSA, PAP,
together with analysis of circulating tumor DNA may serve as
a noninvasive marker combination sufficient to guide treat-
ment choices.

Collectively, we present a novel PCa molecular classifi-
cation system, connecting the previous efforts of classifying
PCa to an unbiased, biology-oriented and clinically-relevant
subtypes.
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