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ABSTRACT

High-throughput RNA sequencing unveiled the complexity of transcriptome and significantly increased the records of long
noncoding RNAs (lncRNAs), which were reported to participate in a variety of biological processes. Identification of
lncRNAs is a key step in lncRNA analysis, and a bunch of bioinformatics tools have been developed for this purpose in re-
cent years. While these tools allow us to identify lncRNA more efficiently and accurately, they may produce inconsistent
results, making selection a confusing issue. We compared the performance of 41 analysis models based on 14 software
packages and different data sets, including high-quality data and low-quality data from 33 species. In addition, computa-
tional efficiency, robustness, and joint prediction of the models were explored. As a practical guidance, key points for
lncRNA identification under different situations were summarized. In this investigation, no one of these models could
be superior to others under all test conditions. The performance of a model relied to a great extent on the source of tran-
scripts and the quality of assemblies. As general references, FEELnc_all_cl, CPC, and CPAT_mouse work well in most spe-
cies while COME, CNCI, and lncScore are good choices for model organisms. Since these tools are sensitive to different
factors such as the species involved and the quality of assembly, researchers must carefully select the appropriate tool
based on the actual data. Alternatively, our test suggests that joint prediction could behave better than any single model
if proper models were chosen. All scripts/data used in this research can be accessed at http://bioinfo.ihb.ac.cn/elit.

Keywords: long noncoding RNA identification; tools comparison; simulated and biological data sets; joint prediction;
non-model species

INTRODUCTION

Long noncoding RNAs (lncRNAs) are transcripts with little
or no coding ability and longer than 200 nt (Mercer et al.
2009). As a class of important biomacromolecules in eu-
karyotes, lncRNAs were reported to participate in the reg-
ulation of gene expression, cell differentiation, cancer
progress, and many other biological processes (Fatica
and Bozzoni 2014; Yang et al. 2014). Benefiting from the
advances in RNA sequencing (RNA-seq) and computation-
al techniques, a large number of novel lncRNAs have been
identified and their entries in databases are accumulating
rapidly (Pauli et al. 2012; Iyer et al. 2015; Maracaja-
Coutinho et al. 2019). While the GENCODE database
has recorded 15,512 lncRNAs (Harrow et al. 2012), the
ENCODE project predicted that 62%–75% of the human
chromosome sequences could be transcribed, most of
which are noncoding sequences (Djebali et al. 2012). Iyer
claimed that there are 58,648 lncRNA genes in the human

genome, accounting for 68% of expressed genes (Iyer
et al. 2015), which are more than 2 times of protein-coding
genes (21,313). In fact, the NONCODE website has col-
lected up to 144,134 human lncRNA genes (Zhao et al.
2016b), which are approximately as many as 6–7 times of
the protein-coding genes.

While lncRNA shares many features with mRNA (e.g.,
both can be multiexonic and be polyadenylated [Kung
et al. 2013]), its roles in organisms are completely different
from those of mRNA, and research approaches for them
differ as well (Rinn and Chang 2012; Yan et al. 2012;
Cech and Steitz 2014; Holoch and Moazed 2015; Liu
et al. 2015; Kashi et al. 2016). Therefore, the discrimination
of the two RNA types is the first thing in research, and the
development of effective lncRNA recognition methods
becomes a basic issue in lncRNA research.
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Despite the discovery of bifunctional RNAs that function
as both mRNA and lncRNA (Nam et al. 2016; Williamson
et al. 2017; Ransohoff et al. 2018), the essential difference
between mRNA and lncRNA lies in the protein-coding
ability in the overwhelming majority of cases. Thus,
lncRNA recognition becomes a problemof classifying cod-
ing capabilities. Open reading frame (ORF) is a straightfor-
ward feature for discrimination because transcripts with
longer ORFs are more likely to encode proteins. However,
the transcripts assembled using popular RNA-seq technol-
ogies are pretty poor in the integrity of ORFs, which ob-
structs this simple classification (Uszczynska-Ratajczak
et al. 2018). Therefore, other features independent of
the integrity of transcripts, such as MLCDS (the most-like
coding domain sequence) and k-mers, were applied in
lncRNA identification. In addition, lncRNA shows a distinct
difference from mRNA in terms of sequence conservation,
which can be measured from multiple sequence align-
ments (Corona-Gomez et al. 2020). In brief, the exons of
lncRNAs are far less conserved than the exons of mRNAs
(Ulitsky 2016; Hon et al. 2017). Thus, sequence conserva-
tion is widely used in lncRNA identification as well.
With the increase of researches on lncRNA, a number of

tools for lncRNA identification have been developed re-
cently. Most classification solutions are based on machine
learning using well-characterized mRNA/lncRNA data
sets. Logistic regression and support vector machines are
popular training algorithms, while deep learning and ran-
dom forests based on the decision tree models are fre-
quently applied as well. Data from GENCODE and
RefSeq are often used as the golden standard for training
sets (Sun et al. 2013b; Li et al. 2014; Hu et al. 2017; Kang
et al. 2017; Wucher et al. 2017). There is no doubt that hu-
man and mouse are the two most studied species. Public
databases have accumulated huge omics data fromhuman
and mouse individuals, including genome sequences,
RNA-seq data, ChIP-seq data, multigenome alignments,
etc. More importantly, many of these data were manually
validated and fairly reliable (Harrow et al. 2014; Lagarde
et al. 2016; The UniProt Consortium 2017). Therefore,
these data are most commonly used to build prediction
models within vertebrates. Some other model species,
such as zebrafish and Arabidopsis, are also considered as
training species. Among the dozens of lncRNA–mRNA
classification software tools developed until now, tools
such as CNCI (Sun et al. 2013b) and CPAT (Wang et al.
2013) are applicable to multiple species, while other tools
using species-specific prebuilt models are only applicable
to certain species.
Different methods inevitably lead to more or less incon-

sistent results, whichmakes selection a confusing problem.
Although some reviews have explained in detail the princi-
ples and algorithms for lncRNA identification (Guo et al.
2016; Housman and Ulitsky 2016), and some comparisons
have been made at the time of the release of software

tools, we still lack a comprehensive assessment of all of
these methods. This paper aims to provide such a compar-
ison as a guidance to selecting appropriate tools for re-
search. RNAcode (Washietl et al. 2011), PhyloCSF (Lin
et al. 2011), COME (Hu et al. 2017), and iSeeRNA (Sun
et al. 2013a) are prediction tools based on sequence con-
servation. According to the comparisons made at the time
of publication, the last two tools were superior to the first
two not only in accuracy but also in usability. Since we
aim to give practical recommendations for users, only
COME and iSeeRNA were evaluated as representatives
of these sequence-conservation-based tools. In this study,
we compared 14 popular software packages using three
high-standard databases/data sets, including two gold-
en-standard data sets that are frequently used for model
training and one transcriptome assembled from more
than 7000 RNA-seq samples. Then the robustness of the
software packages was tested on the transfrags or other
imperfect transcripts through simulation data. We also
compared their performance on data from different bio-
logical species and explored the joint use of these tools.
The transcripts assembled from two real RNA-seq data
were used to compare their performance under various
data quality. The time efficiency was discussed last.

RESULTS

For representative and reliable evaluations, we carefully
selected 14 popular or newly published software packages
covering most of the statistical models and analysis algo-
rithms commonly used in lncRNA recognition (Table 1;
Kong et al. 2007; Mistry et al. 2013; Sun et al. 2013a,b,
2015; Wang et al. 2013; Li et al. 2014; Zhao et al. 2016a;
Hu et al. 2017; Kang et al. 2017; Schneider et al. 2017;
Singh et al. 2017; Wucher et al. 2017; Negri et al. 2019).
A total of 41 analyticmodels (seeMaterials andMethods)

basedon the14 lncRNA recognition softwarewere evaluat-
ed using various data sets, including high-quality data and
data with sequencing errors (Table 2). For most software
tools, lncRNA recognition can be based entirely on se-
quence, except for COME, iSeeRNA, lncRScan-SVM, and
lncScore, which require genome annotation files in GTF
format. By using different quality transcripts from multiple
species, this benchmark testing is designed to provide so-
lutions for a variety of application scenarios. As the results
showed, it makes sense to adopt a prior model combina-
tion based on a specific application scenario.

Best performance on golden-standard data

The golden-standard data sets (golden_human and gold-
en_mouse) were applied to obtain the best performance
for most software tools except PLncPRO and RNAplonc,
which were specifically trained for plants. Unfortunately,
just as the golden-standard data, the mRNAs and
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lncRNAs of the training data for CNCI, PLEK, and CPAT are
from RefSeq and GENCODE, respectively, while the train-
ing data of lncScore, lncRScan-SVM, and COME are from
GENCODE as well. The intersection of testing data and
training data will undoubtedly give these tools additional
benefits, we must be aware of this when evaluating tool
performance.

Potentials in prediction

For human data, there are four prediction models with
AUC values greater than 0.99, and nine models with

AUC values between 0.95 and 0.99 in representative mod-
el sets (Supplemental Fig. S1; Supplemental Table S1).
The corresponding numbers for mouse data are 3 and 10
(Supplemental Fig. S2; Supplemental Table S1). The per-
formance of the tools on the two species is comparable
since the difference of AUC values is very small (≤0.02)
for most classifiers except PLEK, whose AUC value ranks
second in human or 24th in mouse (Supplemental Table
S1). In general, CPC and FEELnc_all_cl are the two best
models for both human and mouse data, while
RNAplonc_guess and CNCI_ve are the two worst in both
data sets (Fig. 1A; Supplemental Figs. S1 and S2). The

TABLE 1. Software for lncRNA identification

Software
packages Input Algorithm Features Online analysis Binary/source Supported species

CPC Sequence SVM ORF, consv http://cpc.cbi.pku
.edu.cn/programs/
run_cpc.jsp

http://cpc.cbi.pku.edu.cn All species

CPC2 Sequence SVM Fickett, ORF, pI http://cpc2.cbi.pku
.edu.cn/

http://cpc2.cbi.pku.edu.cn/ All species

CNCI Sequence SVM MLCDS NA http://www.bioinfo.org/
software/cnci

All species

CPAT Sequence/
(GM and R)

LR ORF, Fickett,
hexamers

http://lilab.research
.bcm.edu/cpat/

https://sourceforge.net/
projects/rna-cpat/files/

All species

FEELnc Sequence RF ORF; k-mer NA https://github.com/
tderrien/FEELnc

All species

Hmmscan Sequence Cut-off SS https://www.ebi.ac
.uk/Tools/hmmer/
search/hmmscan

http://hmmer.org/
download.html

All species

longdist Sequence SVM np of ORF; ORF NA https://github.com/
hugowschneider/
longdist.py

All species

PLEK Sequence SVM k-mer NA https://sourceforge.net/
projects/plek/files/

All species

PLncPRO Sequence RF ORF; consv NA http://ccbb.jnu.ac.in/
plncpro

All species

RNAplonc Sequence REPTree k-mer; ORF;
sequence

NA https://github.com/
TatianneNegri/
RNAplonc

All species

COME GM BRF GC%,
conservation,
SS

NA https://github.com/lulab/
COME

Human, mouse, fly,
worm, and
Arabidopsis

iSeeRNA GM LR ORF, di-mer, tri-
mer, consv

http://sunlab.cpy
.cuhk.edu.hk/
iSeeRNA/
webserver.html

https://sunlab.cpy.cuhk
.edu.hk/iSeeRNA/
download.html

Human, mouse

lncRScan-
SVM

GM SVM ORF, tri-mer,
exon, consv

NA https://sourceforge.net/
projects/lncrscansvm/
files/

Human, mouse

lncScore Sequence
and GM

LR ORF, exon,
MCSS

NA https://github.com/
WGLab/lncScore

Human, mouse

Input: GM (gene model, mostly GTF file), R (reference genome); Algorithm: SVM (support vector machine), LR (logistic regression), RF (random forest),
REPTree (Reduced Error Pruning Tree), BRF (balanced random forest); Features: consv (sequence conservation), SS (secondary structures), np (nucleotide pat-
terns), MCSS (maximum coding subsequence), MLCDS (the most-like Coding domain Sequence), Fickett (Fickett TESTCODE score), pI (isoelectric point),
socf (Sequence-order correlation factors).
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poor performance of RNAplonc_guess can be ascribed to
its training data from plants.
The ROC curve of CNCI showed a slower rise, indicating

that CNCI has a false positive rate higher than other tools
when the classification threshold is strict (Supplemental
Figs. S4, S5). Such a result implies that it is impracticable
for CNCI to achieve higher Specificity (SPE) by setting
tighter thresholds and sacrificing Sensitivity (SEN). Surpris-
ingly, longdist’s performance is far worse than the official
description (Supplemental Figs. S7, S8). Therefore, it was
excluded from this comparison and some subsequent
analyses.
As gene-structure-dependent methods, COME,

lncRScan-SVM, lncScore and iSeeRNA, are capable of uti-
lizing additional annotation information for prediction,
they were expected to make better prediction. However,
these four tools did not show obvious superiority over oth-
ers (Fig. 1A; Supplemental Figs. S1, S2).
FEELnc can train prediction models in two different

modes (“cl” and “sf”). While both mRNAs and lncRNAs
have to be supplied for model training in the cl mode,
the sf mode can generate lncRNAs from shuffled mRNAs.
As the result of our testing, the cl mode performed reason-
ably much better than the sf mode (Supplemental Figs.
S10, S11). This fact indicates that for some sequence fea-
tures, the shuffled mRNAs are not comparable to the real
lncRNAs.

Prediction accuracy

The performance of a software tool depends not only on its
algorithm, but also on the thresholds used in analysis.
Considering the fact that default values are most often
adopted by users, the performance of prediction tools at
their default thresholds was compared. In general, default
values are set to achieve the highest accuracy (ACC), which
is determined by all positive and negative cases with equal
weights. Although CNCI_ve ranked the second lowest ac-
cording to the AUC values on the two test data, its ACC

and Matthews correlation coefficient (MCC) values rank
in the middle (Fig. 1A,B; Supplemental Tables S1, S2).
This suggests that CNCI_ve has carefully chosen a thresh-
old to achieve better results in practice. On the contrary,
ACC/MCC of CPC was far worse than its AUC in human
data. Considering its outstanding SPE and positive predic-
tive value (PPV), we can conclude that CPC sacrificed its
SEN and negative predictive value (NPV).
On the human data, ACC/MCC did not differ signifi-

cantly between COME_all and PLEK, and the both models
were superior to other models (α=0.05. Fig. 1B; Supple-
mental Fig. S16; Supplemental Table S3). On the mouse
data, FEELnc_all_cl had ACC/MCC significantly better
than other models except CPC (α=0.05. Fig. 1B; Supple-
mental Fig. S16; Supplemental Table S3). Although the
best classifiers in the two data sets were different, the
rank patterns of theses models are similar.
Based on higher accuracy predictions (ACC>70%) on

the human and mouse data, FEELnc_ff_cl and FEEL-
nc_all_cl had better SEN and NPV, and CPC showed
better SPE and PPV (Supplemental Fig. S16; Supplemental
Table S2).

Transcripts assembled from a large number
of samples

MiTranscriptome (mitrans) is a well-assembled human tran-
scriptome database containing a large number of mRNA
and lncRNA records (Iyer et al. 2015). Although most of
these lncRNA sequences have not been experimentally
validated, their reliability was ensured by strict thresholds
used in the assembly of transcript sequences, and the ac-
curacy of classification was promised by excluding tran-
scripts of uncertain coding potential (TUCP). Since it has
not been taken as a training set by any of the models in
this study, mitrans is an ideal data set for testing. Of all
the software tools in this study, CPAT and hmmscan were
used for the construction of the mitrans database, but dif-
ferent thresholds were applied to the two software in our

TABLE 2. Data used for evaluation

Section Data sets/species lncRNA (version) mRNA (version)

Best performance on golden-standard data Golden_human GENCODE (25) RefSeq (108)
Golden_mouse GENCODE (11) RefSeq (106)

Transcripts assembled from a large number
of samples

Mitrans Mitranscriptome Mitranscriptome

Erroneous transcripts Human Simulated from golden_human
Mouse Simulated from golden_mouse

Performance on different species Different species (as many
as 33)

Ensembl (92), NONCODE (5.0),
Ensembl_plant(39)

RefSeq (87)

Transcripts assembled from real sequencing
dataa

Rainbow trout SRR1104583/SRR1104584/SRR1104585
Seahorse SRR3289254/SRR3289255

aSRA accession for real sequencing data is provided.
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models. For most of the models being tested, it is pretty
fair to use mitrans in general. Some models performed
poorly with mitrans (ACC<70%), and these low ACCmod-
els (LACCMs) might be excluded from some of the com-
parisons below.

Comparing with golden_human, the AUC of mitrans de-
creased in all models including hmmscan which is not
based on machine-learning (Fig. 1A; Supplemental Figs.
S1, S3; Supplemental Table S1). This fact reflected the dif-
ference in the inclusion criteria between the two databas-
es. COME had the smallest AUC drop and ranked first in
both data sets. Although CPC2 also declined in terms of
AUC, its ranking increased by seven, indicating that its ro-
bustness is superior to other tools. PLEK and lncRScan-

SVM have the largest drop in AUC,
which means they may have the prob-
lem of overfitting.
For mitrans data, lncScore and

CPAT_mouse were the best models,
which had ACC significantly better
than any other model (α=0.05) (Fig.
1B; Supplemental Fig. S16; Supple-
mental Tables S2 and S3). COME_all,
CPAT_human, COME_seq, FEELnc_
all_cl and hmmscan came in second,
and their ACC exceeded 0.9, which
were significantly better than the other
models except FEELnc_ms_cl and
FEELnc_hm_cl. Compared with gold-
en_human, mitrans led to declines
of ACC in all models. If LACCMs
were not considered, FEELnc_hm_sf,
FEELnc_zf_sf and lncScore had the
smallest ACC drop, reflecting the fact
that these tools are more robust for
transcripts assembled from high-
throughput sequencing data.
Excluding LACCMs, four models

(CPAT_fly, FEELnc_ff_cl, FEELnc_ff_sf
and FEELnc_all_cl) had the best SEN
and NPV (Fig. 1B; Supplemental Fig.
S16; Supplemental Table S2). The
three FEELnc-basedmodels evenper-
formed better in mitrans than in gold-
en_human. Considering that the
average SEN/NPV of these models
were comparable between in mitrans
and in golden_human, the four mod-
els were very robust to the imperfect
transcripts (Supplemental Table S4).
These transcripts are not as good as
those manually curated, but they are
much more reliable than the tran-
scripts assembled in conventional
RNA-seq analysis.

CPC, hmmscan_both, PLncPRO_dico and lncScore
showed high SPE and PPV, where hmmscan_both had
the best SPE, and CPC had the best PPV (Fig. 1B;
Supplemental Fig. S16; Supplemental Table S2). For all
models except LACCMs, despite the decreases of the
SPE and PPV, the test with mitrans resulted in a rank similar
to that with golden_human.

Erroneous transcripts

In RNA-seq data analysis, many of the challenges come
fromerroneously assembled transcripts that cannot be cor-
rected at the state of the art. In some cases, slightly misas-
sembled transcripts have little adverse effect on

A

B

FIGURE 1. The performance of representative models on golden_human, golden_mouse,
and mitrans. The representative models are a subset of the models that have been tested
(see Materials and Methods). (A) AUC value of ROC curve for each model on golden_human
(purple), golden_mouse (blue), and mitrans (brown). (B) Sensitivity (red), Specificity (green),
and Matthews correlation coefficient (MCC, blue) values for each model on the testing data.
Sensitivity indicates the proportion of true classified positive samples (lncRNAs) on the total
input positive samples (in percentage). Specificity indicates the proportion of true classified
negative samples (mRNAs) on the total input negative samples (in percentage). MCC indicates
the overall performance ranges from −100 to 100 (in percentage), where 100 implies a perfect
prediction, 0 implies a random prediction, and −100 implies a totally wrong prediction.
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subsequent data analysis. To test the robustness of the
models on erroneous transcripts, we used known transcript
sequences as templates to generate simulated sequenc-
ing data and assembled them through a popular pipeline
(see Materials and Methods). The models were assessed
by comparing the classification between the new transcript
and its corresponding template. If the model gives the
same classification, the prediction is considered “good”
regardless of the true classification. The corresponding re-
lationships between these assembled transcripts and the
original transcripts were classified by gffcompare and
each was assigned a single-character class code (Pertea
and Pertea 2020), among which we named “=,” “c,” and
“j” as “CRE,” “CRC,” and “CRJ” in order. In detail, CRE
means a transcript newly assembled shares all introns
with its template transcript, while the edge of the first
and the last exon may be different; CRC means that a tem-
plate entirely contains its assembled counterpart, which is
known as transfrag; CRJ means that a transcript shares at
least one splicing site with its template, indicating a wrong
assembly in our analysis. The three types of correspon-
dences were studied further to determine the consistency
of the prediction (Fig. 2A).
GTF can greatly affect the number of different types of

transcripts assembled. If there is no GTF guidance, more
CRC, less CRE, and a comparable number of CRJ tran-
scripts were generated (Supplemental Fig. S17). To test
the robustness, we mainly discussed the performance on
transcripts assembled without GTF guidance.
As expected, most models performed better for CRE

transcripts according to MCC in our test (Fig. 2B). As the
depth increased, the models worked better for CRC tran-
scripts, but such a correlation was not observed for CRE
or CRJ transcripts.
While most of themodels performedwell and are similar

for CRE transcripts, CPAT_human, CPAT_mouse,
COME_all, and hmmscan_A were slightly better (Supple-
mental Figs. S18 and S19; Supplemental Table S5). The
two models using FEELnc_wm had poor SEN and MCC.
Generally, CRJ transcripts assembled from sequencing

data are considered to be potential alternative splicing
transcripts, but we can see that they were actually misas-
sembled in our study because all templates were known
in the simulation (Trapnell et al. 2010). The models be-
haved very differently on these transcripts (Fig. 2D; Supple-
mental Fig. S20; Supplemental Table S5). CPChad thebest
MCC when testing with mouse data; CPC, CPAT_fly, and
CPAT_mouse presented good SEN; CPC, hmmscan_A,
and hmmscan_both showed good SPE. However, very
few intersections showed in the results from human data
in which FEELnc_all_cl was best in MCC; FEELnc_all_cl
and CNCI_ve showed good SEN; hmmscan_A, CPC, and
FEELnc_all_cl presented good SPE.
When classifying CRC transcripts with human data,

CPAT_zebrafish and CPC2 had good SEN, and

hmmscan_A, hmmscan_both and CPC had good SPE
(Fig. 2C). For mouse data, FEELnc_wm_sf, FEELnc_wm_cl,
and CPAT_mouse showed better SEN, while COME_all,
COME_seq, hmmscan_A, and hmmscan_both showed
better SPE (Supplemental Fig. S21; Supplemental Table
S5). Furthermore, almost all tools had SPEs worse than
SENs, especially in less sequencing depth. This fact indi-
cates that the tools tend to predict incomplete sequences
as lncRNAs. However, COME, hmmscan_A, and
hmmscan_both were the exceptions, because they are
less dependent on the integrity of CDS for prediction of
transcript coding ability. K-mer based PLEK is another
tool that is independent ofCDSand surprisingly performed
poorly.
In general, the performance of eachmodel varied signif-

icantly across different types of erroneous transcripts.
Although no single model showed excellent stability in
all situations, each of COME_all, CPC, CNCI_ve, and
COME_seq has a sum of ranks less than 300, that is, on av-
erage, the performance ranks in the top 10. Considering
the extensive existence of assembly errors and sequence
diversity across different species (Supplemental Table
S6), these models are commendable.

Joint prediction

Joint prediction strategies are often used to improve the
reliability of lncRNA predictions (Qiu et al. 2016; Wang
et al. 2016, 2019; Chen et al. 2017; Rolland et al. 2019).
Obviously, applying more thresholds from different mod-
els can improve the SPE and the PPV in prediction, but it
also leads to an increasing of false negative predictions,
and thus a decrease in overall ACC/MCC.
A rough principle and a vote principle were used in our

analysis (see Materials and Methods). When the rough
principle was applied, ACC and MCC decreased as the in-
creasing number of the models used for analysis. For the
voting method, ACC and MCC increased slightly before
reaching a plateau, on which the mean was equal to or
slightly higher than the best single model (Fig. 3A;
Supplemental Figs. S22 and S23). When all 41 analytic
models were used in the joint prediction, ACC and MCC
decreased significantly for both strategies; obviously the
comprehensive result was hindered by some worse mod-
els, such as those based on londist. This result suggests
that when doing a joint prediction, choosing a proper set
of models is essential for better performance.
By significantly sacrificing other indicators, the rough

principle could increase SPE and PPV to nearly 100% in
some cases (Fig. 3B; Supplemental Fig. S28; Supplemen-
tal Table S7). For instance, r3_h23 (joint prediction in
rough principle using three models: CPAT_human, CPC,
and PLEK) and r15_m23_i23 (rough-principle joint predic-
tion of 15 models: CNCI_ve, COME_all, CPAT_human,
CPAT_mouse, CPC2, CPC, FEELnc_all_cl, FEELnc_all_sf,
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hmmscan_A, iSeeRNA, lncRScan-SVM, lncScore, PLEK,
PLncPRO_dico, and RNAplonc_guess) showed poor SEN
and exhibited SPE or PPV slightly higher than those in
CPC. Specifically, when applied to mitrans data,
r15_m23_i23 achieved 4% improvement in SPE by allow-
ing SEN nearly 30% lower than that of CPC.

The key point of the voting method is to weigh lncRNA
and mRNA equally and to weigh all models equally as
well. Assuming that the prediction errors are random and
independent, the voting method can promote the predic-
tions by following the decision of the majority. The voting
method did significantly improve the prediction in our

A B

C

D

FIGURE 2. The performance of the representative models on the transcripts assembled from the simulated data. Based on the golden-standard
sequence sets (golden_human and golden_mouse), simulated Illumina-sequencing data sets were generated by Polyester with five sequencing
depths: 30× (which means that, on average, 30 reads were simulated from each transcript), 100×, 300×, 600×, and 1200×. (A) The relationship
between assembled transcripts and its templates. The CRE transcript shares an identical intron chain with its template; the CRC transcript is cov-
ered by its template; and the CRJ transcript shares at least one splicing site with its template. (B) Box plots for theMCCof all testingmodels on the
simulated data of different sequencing depths. (C ) Performance of representative models on human CRC transcripts. (D) Performance of repre-
sentative models on human CRJ transcripts.
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test, where v5_m6 (voting-principle joint prediction of five
models: CPC2, CPC, FEELnc_all_cl, hmmscan_A, and
PLEK), v5_m5 (voting models: CPAT_human, CPC, FEEL-
nc_all_cl, hmmscan_A, and PLEK), and v5_i56 (votingmod-
els: CNCI_ve, CPAT_human, CPC, hmmscan_A, and PLEK)
had a better MCC and ACC than any single model (P≤
0.05; see Fig. 3B; Supplemental Fig. S28; Supplemental
Tables S7, S8). When using golden_human and golden_-
mouse data sets, the improvements of the voting method
were very limited, and for the mitrans data, the voting
method could get obviously better results. Because of
the neutrality of the voting strategy, the best SPE obtained
by the voting method was worse than the best one by the
rough method, and was only close to the best of the single
models (Supplemental Fig. S28; Supplemental Table S7).
To see whether the increase of models in a combination

brings better outcomes, the performance of a nine-model
combination, a 15-model combination, and a 41-model
combination were compared (Supplemental Figs. S22–
S27). The nine-model combination worked best, the 15-
model combination was slightly worse, and the 41-model
combination was the worst, with all metrics falling, except

that the SPE was slightly better in the rough method. The
voting strategy in the nine-model combination statistically
outperformed any single model in mitrans data
(Supplemental Table S8), but did not show an advantage
on the golden_human and golden_mouse data sets
(Supplemental Fig. S29; Supplemental Table S7).
Every possible combination of the nine models selected

for joint predictionwas comparedwith the single tools with
one or more best metrics (Fig 3B; Supplemental Fig. S28;
Supplemental Table S7). v_3_h56 (voting models: CPC,
FEELnc_all_cl, and PLEK), v_5_m6 (CPC2, CPC, FEEL-
nc_all_cl, hmmscan_A, and PLEK), and v_5_i56 (CNCI_ve,
CPAT_human, CPC, hmmscan_A, and PLEK) performed
best in golden_human, golden_mouse and mitrans, re-
spectively. However, v_3_h56 and v_5_m6 behaved ordi-
narily in mitrans, where lncScore as a single prediction
tool worked even better than v_3_h56 statistically. Such re-
sults might imply impracticality to find a superior combina-
tion working best for all data sets.
In order to find the models that play more important

roles, we inspected the frequency of the models in 17
well performed joint predictions, the top 10% according

A B

FIGURE 3. Summary of joint predictions. (A) TheMCCof joint predictions with different number of models on the golden_human data. The com-
binationmethods (“rough” and “voting”) were described in the “Materials andMethods” section. (B) Comparison of optimal joint predictions and
optimal single models on three data sets (golden_human, golden_mouse, and mitrans). The optimal model is defined as one joint/single predic-
tion performedbest in terms of anymetric of Sensitivity, Specificity, positive predictive value (PPV), negative predictive value (NPV), Accuracy, and
MCC on any data set. The names of joint prediction follow this rule: (combination method, v for vote and r for rough)_(the number of models was
used in combination)_(descriptions, where characters represent data sets: h for golden_human, m for golden_mouse, and i for mitrans; numbers
1–6 represent Sensitivity, Specificity, PPV, NPV, Accuracy, andMCC, respectively). For example, r_15_m23_i23means 15models were combined
in the joint prediction following the rough rule, and this prediction showed the best Specificity and PPV on golden_mouse data as well as on
mitrans data. Particularly, r_2_h_m_i is the abbreviation of r_2_h14_m1456_i14, which was a two-model joint prediction that has best
Sensitivity and NPV on golden_human; Sensitivity, NPV, Accuracy, and MCC on golden_mouse; Sensitivity and NPV on mitrans. The complete
list of models used in combination was recorded in Supplemental Table S15.
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to MCC. For predictions using the vote principle, CPC and
hmmscan_A are the two most frequent models among
three testing data sets (Supplemental Fig. S30); they play
roles in at least 15 of the 17 well-performed predictions.
Hmmscan_A and FEELnc_all_cl are the most frequent
models for predictions using the rough method, with
frequencies no more than 11. Interestingly, CPC,
hmmscan_A, and FEELnc_all_cl were not the best three
models on the threedata sets (see the section “Best perfor-
mance on golden-standard data”). We also investigated
the occurrence of concurrent set—a set of models coexist-
ing in multiple joint predictions. No concurrent models
were found in more than seven joint predictions using the
rough principle on any of the three data sets. In predictions
using the vote principle, CPC-hmmscan_A is the most fre-
quent two-model concurrent set across three data sets
(Supplemental Fig. S31), while each of CPC−hmmscan_A
−PLEK and CPC−FEELnc_all_cl−hmmscan_A has 10 or
more occurrences with two data sets (Supplemental Fig.
S32).

In summary, the principle for joint prediction showed
dramatic impacts on results. Nearly all metrics benefited
from the vote method, while only SPE and PPV benefited
from the rough method. Meanwhile, the reliability of re-
sults heavily depends on how many models and which
models are used for prediction. Although no model com-
bination is found to be superior in all data sets, the two
models, CPC and hmmscan_A, exist or even coexist in
many well-performed combinations.

Performance on different species

Considering the variability of the lncRNA sequence, the bi-
ological source of training sets, and the potential bias of
training algorithm, amodel might show discrepancy across
different organisms and outperform others on the data of
some species. Such preferences were investigated using
SEN and SPE, which are robust on unbalanced data, and
some test samples in this section are unbalanced.

Because CNCI is a standard tool used to screen tran-
scripts for theNONCODEdatabase, it outperformed other
models in NONCODE data as expected (Fig. 4; Supple-
mental Table S9). For the lncRNAs in RefSeq (RefSeq-
SEN), models behaved drastically differently (Supplemen-
tal Fig. S33), with CPAT and FEELnc performing best.
Longdist had a relatively high SEN and an extremely low
SPE, showinga strong tendency togive lncRNApredictions
(Supplemental Table S16).

The accuracy of a prediction is highly dependent on the
relationship between the species for training and for pre-
diction. Generally, the results of most models followed a
relationship rule, that is, the closer the relationship, the
more accurate the prediction (Supplemental Figs. S34–
S36). In this test, most species (as many as 23) were mam-
mals. Generally, the models performed inconsistently

across these mammalian species, although they are
thought to be genetically close (Fig. 4; Supplemental
Table S9). However, when predicting with the mRNAs
from RefSeq, a relatively high species consistency was ob-
served in these models, among which CPC performed
best, hmmscan_both and CPAT_human were the second.
In addition, FEELnc_all_cl and CNCI_ve showed the best
SEN when testing with three databases: Ensembl,
NONCODE, and RefSeq. As a summary, FEELnc_all_cl,
CPC, and hmmscan_A were the best three models in
mammalian.

FEELnc_all_cl performed best for birds (represented by
Gallus gallus), followed by hmmscan_both, CPAT_mouse,
and CNCI_ve (Supplemental Figs. S34–S36; Supplemental
Table S16). The best software for reptiles (represented by
Anolis carolinensis) were hmmscan, CPC, and CPAT. For
fishes, CPC2, CPC, and CPAT_mouse worked relatively
well. The two worm-based models of FEELnc_wm worked
best for worms as expected, but performed poorly in other
species. FEELnc_ff_cl and CPAT_fly, the two models
trained with the fly data set, performed best for fly reason-
ably. Particularly, FEELnc_all_cl was close to the best
model for the fly and worms.

Among the four plants tested, Zea mays is a monocot,
while Solanum tuberosum, Brassica napus, and Arabidop-
sis thaliana are eudicots. FEELnc_ab performed well for
Arabidopsis thaliana, but just average for other plants,
and poorly for Zea mays, the only monocot (Supplemental
Figs. S34–S36; Supplemental Table S16). CPAT_fly and
CPAT_mouse were good in SEN, and FEELnc_ab_cl
showed good SPE. In general, CPAT_fly, FEELnc_all_cl,
CPAT_mouse, and CPC2 were relatively well-performing
models. Unexpectedly, CNCI_pl, the plants model of
CNCI, worked relatively poorly.

In summary, FEELnc_all_cl, CPC, and CPAT_mouse
showed relatively broad adaptabilities, although no single
model could perform well in a variety of species.

Transcripts assembled from real sequencing data

Since the real classifications of transcripts that assembled
from real data were unknown, the metrics for evaluation
used in former sections were not available here. Despite
that most transcripts were predicted as lncRNA in rainbow
trout or mRNA in seahorse, generally the prediction ten-
dencies of most models remained the same in the two
data sets (Fig. 5A). PLncPRO-based models were likely to
predict transcripts as mRNA, while models PLEK, CPC2,
and hmmscan_B tended to predict transcripts as lncRNA.
Various FEELnc-basedmodels showed different predictive
biases. While the two models of FEELnc_wm were most
likely to predict transcripts as lncRNA, FEELnc_hm_sf and
FEELnc_ms_sf were the two models most likely to give
mRNA predictions in all models. The FEELnc models
trained in the “cl” mode produced more lncRNA
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predictions than those in the “sf”mode, indicating that the
species and the quality of training sets had a significant im-
pact on the prediction of FEELnc.
Mostmodels showed a high level of similarity in the pair-

wise agreement analysis between models (Supplemental
Figs. S37 and S38). When applied to the rainbow trout
data set, FEELnc_hm_sf and FEELnc_ms_sf differed great-
ly from other models. For the seahorse data set,
FEELnc_wm_sf and FEELnc_wm_cl showed more differ-
ences with other models, and their performance was simi-
lar to hmmscan_B, which tended to predict transcripts as
lncRNA.

The relationship between ACC and the number of con-
sensus models indicated that, in general, the more models
supported, the more reliable the prediction (Fig. 5B).
Hence, we treated the predictions supported by only
one model as not credible. From the rainbow trout data
(Fig. 5C), FEELnc_all_sf produced the most such predic-
tions, most of which were lncRNA. Hmmscan_A and
PLEK hold the second-most unique predictions. With the
seahorse data (Fig. 5C), PLEK made the most unique pre-
dictions. Hmmscan_A and PLncPRO_dico ranked second.
On both data sets, CPAT_mouse and FEELnc_all_cl output
the least unique predictions. While we cannot say that the

FIGURE 4. Performance on multiple species (in percentage). The tree on the left depicts the taxonomy of the species involved, regardless of the
evolutionary distance. The sampling procedure for core species (labeled with ∗) and peripheral species is described in the “Materials and
Methods” section. For each species, this plot displays the optimal model with regard to the four metrics: Sensitivity on Ensembl, NONCODE,
RefSeq, and Specificity on RefSeq. The best prediction for multiple-model software is shown.
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tools producing fewer unique predictions are better, it is
understandable that the tools with more unique predic-
tions are worse.

Time efficiency

We recorded the time for each model to classify 5000 tran-
scripts in golden_human, golden_mouse, andmitrans (see
Materials andMethods; Fig. 5D; Supplemental Table S10).
PLncPRO, CNCI, CPC, and hmmscan were the most time-
consuming software and required more than 20,000 sec,
especially PLncPRO, which took 150,873 sec to complete
the classification task. As a computationally intensive task
and an indispensable key step in prediction, BLAST align-
ment greatly slowed down CPC and PLncPRO. For CNCI,
the MLCDS/MCSS finding step based on dynamic pro-
gramming may limit its speed. Fortunately, CPC, CNCI,
and PLncPRO can be used in parallel computing, which
may shorten waiting time greatly.

The average time of FEELnc was 3599.89 sec, which in-
cluded the training step that had already been done for the
other models. Hence, FEELnc would be more effective if
the prebuilt models were available. In a classic whole-tran-
scriptomic analysis, more than 100,000 transcripts will be
classified. Therefore, only the efficient tools should be
considered. Hmmscan can complete this work in 100
CPU hours, and the software slower than hmmscan should
support multithreads to be practical.

DISCUSSION

Open reading frame (ORF) is a widely used feature that is
highly dependent on the integrity of sequence and is sen-
sitive to indels. Hexamer usage bias (or ANT in CNCI) is an-
other important feature for sequence analysis. While CPAT
treats the in-frame hexamer as a classification feature,
CNCI and lncScore use hexamer to extract MLCDS/
MCSS, which can serve to some extent as ORFs for frag-
ment sequences. The utilization of sequence conservation

A B

FIGURE 5. Performance on real data and time efficiency. (A) Prediction bias. This figure shows the counts of positive (red) and negative (blue)
results predicted by each model in addition to the longdist-based models. (B) The relationship between Accuracy and the count of models
that give consensus predictions. Representative models were used in this analysis. (C ) The counts of positive and negative disagreed-predictions
on rainbow trout (left) and seahorse (right), respectively. The transcripts that were reported positive by one model while negative by other rep-
resentative models were regarded as positive disagreed-predictions and vice versa. (D) Average time consumption of each software tool for pre-
dicting 5000 transcripts on golden_human, golden_mouse, and mitrans. The error bar shows the 95% confidence interval of Gaussian
distribution.
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can promote prediction performance and bring other lim-
itations. CPC and RNAcode obtain sequence conservation
through a time-consuming alignment step (Washietl et al.
2011), while iSeeRNA, lncRNAScan, and COME assess se-
quence conservation through the phastCons score, which
is based on a specific version of the genome and therefore
loses versatility (Siepel et al. 2005). In particular, PLEK at-
tempts to solve the prediction problem for incomplete
transcripts by choosing only k-mer frequencies (1-mer to
5-mer) as features and obtained relatively good results.
For human, mouse, or other well-established model or-

ganisms with high-quality transcripts in manually curated
public databases (Lagarde et al. 2016), most software
worked well and achieved ACC over 90% under appropri-
ate models (see tests on the golden data). However, tran-
scripts assembled from high-throughput sequencing data
are usually incomplete and erroneous. In such a case,
COME, which performed well on mitrans and simulation
data, is a good choice, followed by CNCI, lncScore, and
FEELnc_all_cl.
The lack of high-quality training data sets is a common

problem for non-model organisms; sometimes we have
to predict with the models trained by other well-studied
species. Considering the incompleteness of the transcript
structure of non-model organisms under the state-of-the-
art assembly technology, we recommend FEELnc_all_cl,
CPAT_mouse, and CNCI_ve, where CNCI_ve performed
better for transfrags, and FEELnc_all_cl and CPAT_mouse
performed better for most species. Unfortunately, there
were no perfect tools in our tests that can perform well in

various states. Firstly, it is challenging to find a set of gener-
ic features, the efficiency of which varies from species to
species in prediction (Ventola et al. 2017). Secondly, the
performance of tools varied even in closely related species
in our tests, indicating a higher heterogeneity in the
lncRNA collections. Obviously, more work is necessary to
develop a series of generic criteria for collecting sequences
as standard lncRNA sets.
A number of studies have applied joint prediction for

large-scale lncRNA identification (Zhang et al. 2014; Qiu
et al. 2016; Wang et al. 2016, 2019; Chen et al. 2017;
Rolland et al. 2019). Based on our results, researchers
need to carefully select a combination of models, only
well-performed models should be considered for joint
analysis, and it is not wise to simply use all available mod-
els. In fact, benefits were very limited when the number of
tools exceeded three. Although no perfect combination
was found in our tests, it is feasible to achieve better per-
formance by joint prediction. According to the principles
of ensemble learning, excellent models trained with diver-
gent features, such as HMMER with CPC (Zhang et al.
2014), or HMMER with CPAT (Wang et al. 2013), are
good combinations. Since the overall optimal model was
not found, we summarized our findings and made sugges-
tions for different analysis scenarios (Table 3). These sug-
gestions were based on the rank of the models
according to their SEN and SPE values (Supplemental
Table S16).
Some deep-learning-based tools, for example, lncRNA-

net, lncADeep, and lncFinder, were tested for lncRNA

TABLE 3. Suggestions for choosing models in different situations

Category Detail category Suggested software/models/tactics

Species General suggestion Choose the models of which the species were genetically close between the data for
training and the data for testing, but the optimal model cannot always be obtained.
Use COME and lncScore for supported species. Follow the result given by the section
of different species.

Mammal FEELnc_all_cl, CPC, and hmmscan_A
Bird FEELnc_all_cl, hmmscan_both, and CPAT_mouse
Reptile hmmscan_A, CPC, and CPAT_mouse
Fish CPC2, CPAT_zebrafish, and CPC
Plant CPAT_fly, FEELnc_all_cl, and CPAT_mouse
Others FEELnc_all_cl, CPC, and CPAT_mouse

Data qualitya High Focus on other metrics such as species and speed
Low COME, hmmscan, PLncPRO, and CPAT

Number of
records

Small number (e.g., less
than 5000)

FEELnc is not recommended for lack of pretrained models.

Large number (e.g., more
than 5000)

Parallel running was recommended for PLncPRO, CNCI, CPC, and hmmscan.

Joint
prediction

Vote Overall accuracy of prediction can be promoted by vote prediction. Select no more than
four suitable models.

Rough Apply this tactic when specificity is more important than sensitivity and overall accuracy.

aTranscripts of high quality: the completeness of which is in a good situation (e.g., transcripts curated manually or assembled from specialized sequencing
like PacBio or CAGE-seq. Transcripts of low quality: transcripts are incomplete or error-assembled (e.g., transcripts assembled from RNA-seq for routine dif-
ferential expression analysis.
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identification (Amin et al. 2019). Since the data sets used in
these tests were from GENCODE, the same source of the
lncRNAs in our golden data, the SEN values (i.e., the “re-
call” values used by Amin et al.) can be directly compared
to those inour test. ThehighestSENobtainedby lncADeep
ranks veryhigh in our test, but theACCby lncADeep is poor
overall. While the performance of lncRNAnet reduces with
transcript length, some models in our test have similar be-
haviors, for example, the FEELnc-based models trained
with data fromArabidopsisorworm, and all longdist-based
models (Supplemental Figs. S39 and S40). However, we
cannot come to a conclusion for correlation in our cases
because the sequence length distribution is not the only
potential cause that may have impacts on the models’ per-
formance. For instance, although PLEK did not perform as
well as golden_human on the mitrans data set, which has a
longer average sequence length (Supplemental Fig. S41),
its prediction accuracy showed length independence with-
in both data sets (Fig. 1B; Supplemental Figs. S39 andS40).
This shows that the length correlation is not universal, and it
may be associated with specific software tools, or may be
related to other factors, especially the differences in data
set quality.

Longdist-based models showed very low SPE and much
higher SEN on our golden data sets. This fact implies that
longdist have wrongly classified most mRNAs as lncRNAs.
Considering longdist performed very well on the mRNA
data (the file “pct.fa”) provided by itself (Supplemental
Table S11), we transformed our test data to the format
pct.fa to exclude potential technical issues: Capitalize all
sequence letters and keep 60 letters per line. However,
the results showed no difference. So it is likely that longdist
has a problem of overfitting.

Because of the diversity of species and transcript quality,
it is very common that a software tool performs differently
under various situations. The prediction model of PLEK
was trained with human data and performed very poorly
on golden_mouse comparing to golden_human. The un-
derlying cause might be the k-mer, which is used as the
classification feature by PLEK and its distribution varies
across species (Chor et al. 2009; Han and Cho 2019).
CNCI_pl was originally trained with plants data; however,
it performed relatively poorly on our plants data.
Interestingly, although CPAT_mouse was trained with
mouse data, it worked well on a broad range of species.
It is not easy to find the reason behind these behaviors;
what we are trying to do is to unveil the advantages and
limitations of available tools and to provide a reference
for researchers to choose proper tools.

Because a broad range of species were involved in this
research, the quality of data from different sources may
vary drastically and lead to bias in analysis, we tried to
keep the congruity in quality, source, and other aspects
of the data for different species whenwe chose the sources
of data sets for testing. So, the testing data sets were

downloaded from databases covering a broad spectrum
of species. That is why some high-quality databases were
not used in this analysis, for example, the two databases
specifically for plants, CANTATAdb and GreeNC (Paytuvi
Gallart et al. 2016; Szczesniak et al. 2016). With the accu-
mulation of high-quality lncRNA data, it can be expected
that the software performance can be more accurately de-
tected for a certain class of species in the future.

With the discovery of the bifunctional RNAs that can
serve as lncRNA and can encode small peptides as well
(Nam et al. 2016; Williamson et al. 2017; van Heesch
et al. 2019), the boundary of lncRNA and mRNA becomes
fuzzy. One source of bifunctional RNA is the lncRNA-en-
coding peptides. A ribosome profiling analysis showed
the proportion of lncRNAs interacting with ribosomes is
39.17% in human and 48.16% in mouse (Zeng et al.
2018). Since the original definition of lncRNA mainly relies
on coding ability, whether we should refer to “translatable
lncRNA” as bifunctional RNAormRNAdepends onwheth-
er the sequence can actually serve as lncRNA or not.
Another source of bifunctional RNA is the mRNA playing
functional roles as lncRNA. Jin-Wu Nam has listed 15
mRNAs that can participate in translation, transcription,
and scaffolding (Nam et al. 2016). To the best of our knowl-
edge, there is still a lack of a large-scale analysis to esti-
mate the number of bifunctional RNAs with definite
coding ability and noncoding functions. But one thing is
certain, the lack of coding ability does not appear to be
the essential characteristic of lncRNA. Instead, a more in-
trinsic standard seems to be the functional capability be-
fore being translated. Since the functional elements of
lncRNA have not been fully uncovered, even the function
of most lncRNAs has not been verified, more exploration
is needed to obtain better characteristics of lncRNA, espe-
cially bifunctional RNA.

MATERIALS AND METHODS

Software

Prediction models

A total of 14 software packages were evaluated. Because of the
limitation of the strategy used in software development, four soft-
ware tools (COME, iSeeRNA, lncRScan-SVM, and lncScore) in this
study can only make within-species predictions (Table 1); that is,
the training data and the testing data should come from the
same organism species. The other 10 tools can perform cross-
species predictions. In order to make predictions, different data
sets and training strategies were applied to train software tools,
resulting in 41 different prediction models. A model name starts
with the software name, and is optionally followed by a character
string for some other information, typically the species or the
source of the training data and distinct technical handling details
in prediction (Table 4).
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TABLE 4. Models for lncRNA identification

Name of model Software Attribute of model Group

CPC CPC - J & R
CPC2 CPC2 - J & R

CNCI_ve CNCI Vertebratea J & R

CNCI_pl CNCI Planta -
CPAT_human CPAT Humana J & R

CPAT_mouse CPAT Mousea R

CPAT_zebrafish CPAT Zebrafisha -
CPAT_fly CPAT Fruit flya -

FEELnc_hm_cl FEELnc Human; clb -

FEELnc_hm_sf FEELnc Human; sfb -
FEELnc_ms_cl FEELnc Mouse; clb -

FEELnc_ms_sf FEELnc Mouse; sfb -

FEELnc_zf_cl FEELnc Zebrafish; clb -
FEELnc_zf_sf FEELnc Zebrafish; sfb -

FEELnc_ff_cl FEELnc Fruit fly; clb -

FEELnc_ff_sf FEELnc Fruit fly; sfb -

FEELnc_wm_cl FEELnc Worm; clb -
FEELnc_wm_sf FEELnc Worm; sfb -

FEELnc_ab_cl FEELnc Arabidopsis; clb -

FEELnc_ab_sf FEELnc Arabidopsis; sfb -
FEELnc_all_cl FEELnc Combined six species data; clb J & R

FEELnc_all_sf FEELnc Combined six species data; sfb R

hmmscan_A hmmscan Pfam-Ac J & R
hmmscan_B hmmscan Pfam-Bc -

hmmscan_both hmmscan Pfam-A and Pfam-Bc -

longdist_GRCh37 longdist Human37a -
longdist_GRCh37_GRCm38 longdist Human37_mousea -

longdist_GRCh38 longdist Human38a -

longdist_GRCh38_GRCm38 longdist Human38_mousea -
longdist_GRCm38 longdist Mousea -

longdist_GRCm38_GRCz10 longdist Mouse_zebrafisha -

PLEK PLEK - J & R
PLncPRO_mono PLncPRO Monocotsa -

PLncPRO_dico PLncPRO Dicotsa J & R

RNAplonc_cut RNAplonc Remove results missing labeld -
RNAplonc_guess RNAplonc Label the missing label as lncRNAd J & R

COME_seq COME∗ Multiple sequence-derived features onlye -

COME_all COME∗ Sequence-derived features, expression features, and histone featurese R
iSeeRNA iSeeRNA∗ - R

lncRScan-SVM lncRScan-SVM∗ - R

lncScore lncScore∗ - R

Software marked with “∗” can only work with limited species. Attribute of model: The key attribute to distinguish models for one software.
aThe species of the training data.
bThe species of training data and the way the training data is used. Specifically, “cl” is for that both coding and noncoding sequences are real transcripts,
while “sf” is for that noncoding sequences are shuffled from coding sequences.
cWhich database is used.
dThe way to process the result.
eThe feature used for training.
Group: Models are grouped to perform different comparisons in our research. “J” implies that the model was used in joint prediction, while “R” stands for
representative models.
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Hmmscan, a subprogram of the HMMER software package
(Mistry et al. 2013), was tested with reference to Iyer’s work (Iyer
et al. 2015). Among all 14 tested tools, hmmscan is the only
one not based on machine learning. In application, each tran-
script was translated into six protein sequences based on all po-
tential reading frames and searched against the Pfam database
using hmmscan. The classification was based on arbitrary cut-
offs. More specifically, transcripts having one or moremRNA-spe-
cific domains (e <0.0001) are negative (mRNA), otherwise posi-
tive (lncRNA). The name “hmmscan_A” was used for the
analytic model with Pfam-A as the only database. Similarly,
“hmmscan_B” was based on the Pfam-B database and
“hmmscan_both” was based on these two databases. HMMER
(version 3.1b2), Pfam-A (version 30) and Pfam-B (version 27.0)
were used in this study.

Occasionally some predictions by RNAplonc do not have a clas-
sification tag. We have made it clear by communicating with the
author: The software txCdsPredict is packaged in RNAplonc to ex-
tract ORFs from sequences. When an ORF is not given by
txCdsPredict, RNAplonc will skip the transcript due to a lack of in-
formation for prediction (pers. comm.). Considering the fact that
lncRNAs usually have very short ORFs or do not have ORFs, it is
perhaps appropriate to regard these transcripts as lncRNAs.
Hence, these nonlabeled results were processed in two ways in
our test: (i) simply discarded (RNAplonc_cut); and (ii) labeled
lncRNA (RNAplonc_guess).

In our test, FEELnc is the only one software tool published with-
out any prebuilt model. Hence, we trained 14 models for FEELnc
with the seven sets of data published in the original paper of
CPC2. There are two training data sets used in the original paper
for FEELnc; however, a simple comparison showed that the mod-
els trained by those data are weaker than ours, so we did not use
them in this study. FEELnc has two strategies to use a training data
set. In short, the first is to use both the coding sequences and the
noncoding sequences provided by the user, and the other is to
use only the coding sequences while the noncoding sequences
are generated by the shuffling method of FEELnc itself.

Representative models

One or two analytical models that performed best on the gold
standard data set were selected as the representative models
for each software package except longdist due to its poor perfor-
mance; the total of representative models is 15 (Table 4). For the
purpose of conciseness, some plots only showed representative
models, although all available models were tested throughout
our study.

Every possible combination of models will be tested in joint
prediction. Because the number of combinations increases dras-
tically with the number of models, the representative model set
is still too big for such a test. Therefore, nine models were select-
ed as a core set, and only those capable of cross-species predic-
tion were considered.

Data sets

LncRNA identification requires sequence data in FASTA or GTF
format. Most sequence data in this study were downloaded

directly from public databases; other data were assembled using
data generated from in silico simulation or actual sequencing.

The general procedures for sequence processing

Most of the data were downloaded frompublic databases, includ-
ing GENCODE, RefSeq, Ensembl, NONCODE, etc.
(Supplemental Table S12). All sequences were pooled together
after a quality control procedure, which simply discarded any se-
quence shorter than 200 bp or containing characters other than
“ATCG.” The test data were sampled from the sequence pool
in different ways (Supplemental Fig. S43).

FromGENCODE, we downloaded all FASTA files and GTF files
labeled “Long noncoding RNA.” A transform called LiftOver
(Hinrichs et al. 2006) was then run to convert the GTF files from
human genome version hg38 to version hg19 tomeet the require-
ments of hg19-based tools (e.g., COME, iSeeRNA). For the sake
of data quality, a record from RefSeq was used only when its name
starts with “NM” and the source field is labeled with
“BestRefSeq” in the GTF file.

Golden-standard sequences

Based on the richness and reliability of the data, human and
mouse sequences from GENCODE and RefSeq were used as
the golden standard for evaluating tool performance. For each
species, the positive data set consists of 5000 sequences random-
ly sampled from GENCODE, while the 5000 negative sequences
were sampled from RefSeq. The golden-standard data sets for hu-
man andmousewere named golden_human and golden_mouse,
respectively.

Transcripts assembled from a large number of samples

The positive data are 5000 lncRNA sequences and the negative
data are 5000 mRNA sequences, both of which were randomly
sampled from the downloaded MiTranscriptome (mitrans) data.

Sequences of different species

In order to investigate the performance of the tools on different
species, we collected mRNA sequences prefixed with “NM”

from RefSeq, as well as noncoding RNA sequences from
RefSeq, Ensembl, and NONCODE (Supplemental Table S13).
There are 33 species with 50 or more entries in Ensembl,
Ensembl_plants, and RefSeq. According to the phylogenetic rela-
tionships, they fall into two categories: 18 representative core
species and 15 peripheral species. The taxonomy of species
was based on NCBI’s Taxonomy database, and the phylogenetic
tree was plotted by ete3, a handy web tool (http://etetoolkit.org/
treeview/) (Huerta-Cepas et al. 2016). From each database, we
randomly selected up to 2000 sequences for each core species
and 500 for each peripheral species. If the sequences in a data-
base were insufficient for sampling, the entire collection was
used.

Simulated data

Based on the golden-standard sequence sets (golden_human
and golden_mouse), simulated Illumina sequencing data sets
were generated by Polyester with five sequencing depths: 30×
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(which means that average 30 reads were simulated from each
transcript), 100×, 300×, 600×, and 1200× (Frazee et al. 2015).
The simulated data were then assembled into transcripts in two
ways via an HISAT2 and StringTie: with or without genome anno-
tation files (GTFs) (Pertea et al. 2016). The performance of tools on
the assembled sequences was compared to those on the golden-
standard sequences.

Real RNA-seq data

Real sequencing data of two non-model fishes (seahorse and rain-
bow trout) were used for testing. A poor sequencing was repre-
sented by the rainbow trout data set, which was a single-end
sequencing with a lower mapping rate (Supplemental Table
S14). In contrast, the seahorse data set was pair-end sequenced
with a higher mapping rate, representing a high-quality sequenc-
ing. The real RNA-seq data for rainbow trout and seahorse were
downloaded from the SRA website and subsequently assembled
to transcript sequences following the same procedure as for the
simulated data. Tens of thousands of sequences were randomly
sampled for succedent testing.

Joint prediction

Mitrans and the golden data were used to investigate the effects
of joint predictions. Joint prediction was achieved by combining
predictions from different models. Briefly, a set of models were
separately applied to a sample sequence to obtain a list of predic-
tions that determined the classification of the transcript sequence
by voting or using a rough principle.

In the vote scheme, a given transcript is classified as mRNA or
lncRNA, whichever is more supported by predictions. In particu-
lar, lncRNA is in preference to mRNA in case of a tie. If operated
according to a rough principle, as long as it is classified as mRNA
by any model, the transcript is mRNA, otherwise, it is lncRNA.

From the 15 representative models, nine well-performed ones
were chosen as a coremodel set for joint prediction (Table 4), and
any possible combination of the nine models was investigated. In
addition, the joint prediction was also tested using all the repre-
sentative models or all 41 models.

A joint prediction can be named using an expression starting
with a letter (“v” for vote and “r” for rough), an underscore char-
acter, and the number of models used in this prediction, then fol-
lowed by one or more best-performance results, each of which
consists of an underscore, a letter for data set (“h” for golden_hu-
man, “m” for golden_mouse, and “I” for mitrans), and one or
more digits for the best metrics resulting from this joint prediction
(1–6 represent SEN, SPE, PPV, NPV, ACC, and MCC, respective-
ly). For example, “r_2_h14_m1456_i14” is a two-model joint pre-
diction using the rough rule, and it resulted in the best SEN and
NPV on golden_human, best SEN/NPV/ACC/MCC on golden_-
mouse, and best SEN/NPV on mitrans. In particular, this name
can be abbreviated as “r_2_h_m_i” because it does not cause
ambiguity.

Metrics for performance evaluation

The performance of prediction models was evaluated using six in-
dicators: (i) sensitivity (SEN). The fraction of true positive predic-

tions on all positive test samples; (ii) specificity (SPE), the
fraction of true negative predictions on all negative test samples;
(iii) positive predictive value (PPV), the fraction of true positive pre-
dictions on all positive predictions; (iv) negative predictive value
(NPV), the fraction of true negative predictions on all negative
predictions; (v) accuracy (ACC), the fraction of total true predic-
tions on all test samples; and (vi) Matthews correlation coefficient
(MCC) (Matthews 1975), an indicator used in machine learning as
a measure of the quality of prediction, MCC is more robust to un-
balanced test samples comparing with ACC. All computational
formulas are listed below.

SEN = TP
TP+ FN

SPE = TN
TN+ FP

PPV = TP
TP+ FP

NPV = TN
TN+ FN

ACC = TP+ TN
TP+ TN+ FP+ FN

MCC = TP× TN− FP× FN
���������������������������������������������

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
√

Abbreviations in these equations are FN for false negative, FP for
false positive, TN for true negative, and TP for true positive. The
relationships among metrics are also illustrated in Figure 6.
In balanced samples, SEN and NPV performed similarly, as did

SPE and PPV. Hence, only one indicator of each pair was dis-
cussed in most subsequent analyses. Two other measurements,
the receiver operating characteristic (ROC) curve and the area un-
der the curve (AUC) value, were also occasionally used. Typically,
a classifier can form a probability value or other number, which
will be compared with a given threshold to determine the classi-
fication. Therefore, most of the indices, including ACC, SEN, and
SPE, are actually calculated at certain thresholds. However, the
ROC curve and its corresponding AUC value may reflect the

FIGURE 6. Metrics used to evaluate prediction results (except MCC).
The value is calculated by dividing the predicted count in the shadowy
box by the predicted count in the whole rectangle (or square) with a
colored border.
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expected generalization ability of a classifier at different thresh-
olds or under general circumstances.

Venn diagram was drawn through an R package, VennDiagram.
Some in-house scripts have been written for analysis and are avail-
able to be provided in a query. Programs ran with R (version 3.3.0)
and Python (version 2.7.9) under a Linux environment (CentOS 7).

Time efficiency

Time consumptions were measured by the “user CPU time,” an
indicator reported by the Linux system’s “time” command. The
golden-standard data sets and mitrans data were used to access
the time efficiencies of the tools.

Statistics

The McNemar test was used for assessment of discrepancy be-
tween two prediction models.

H0: There is no significant difference in the prediction accuracy
between the two models being compared.

H1: There is a significant difference in the prediction accuracy
between the two models being compared.

The Bonferroni method and the false discovery rate (FDR) were
used for correction of the P-values in multiple tests (α=0.05).
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