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Abstract: Neuroblastoma, the most common extracranial solid tumor of childhood, has widely
variable outcomes dependent on the specific biology of the tumor. In this review, current biologic
principles that are used to stratify risk and guide treatment algorithms are discussed. The role for
surgical resection in neuroblastoma is also reviewed, including the indications and timing of surgery
within the greater treatment plan.
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1. Introduction

Neuroblastoma is the most common extracranial solid tumor of childhood and represents a
neoplastic expansion of neural crest cells in the developing sympathetic nervous system. The primary
tumor originates anywhere along the sympathetic chain but most frequently arises from the adrenal
gland. The prognosis for neuroblastoma varies widely, from tumors that spontaneously regress and
require no intervention to those that present widely metastatic and resistant to therapy with resulting
high mortality. This disparate prognosis is largely dependent on tumor biology, and extensive research
has been completed identifying tumor characteristics that associate with aggressive tumor behavior
and poor prognosis. Specifically, the expected tumor biology can be predicted by tumor histology and
molecular markers, both of which are strongly associated with patient age.

2. Tumor Histology

Neuroblastoma tumor cells show varying degrees of differentiation that help predict patient
prognosis. While neuroblastoma primarily contains immature cells, some have a component of fully
mature ganglion cells that are typically found in a ganglioneuroma. A tumor with both elements
of mature and immature cells is called a ganglioneuroblastoma. Tumors have been classified in
detail according to this degree of differentiation by the International Neuroblastoma Pathology
Committee [1–3] (Figure 1). Favorable and unfavorable histologic subtypes are based upon the
level of Schwannian stroma present in the tumor, then further subclassified based upon the
mitosis-karyorrhexis index (MKI) and patient age.
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Figure 1. International Neuroblastoma Pathology Classification [3] (Reprinted with permission from 
Peuchmaur M. et al: Cancer 98(10): 2274–2281. © 2003 American Cancer Society. All rights reserved.). 
FH: favorable histology; UH: unfavorable histology. GNBn—ganglioneuroblastoma, nodular; MKC—
mitotic and karyorrhectic cells; MKI—mitosis-karyorrhexis index; **: 2% = 100 of 5000 cells, 4% = 200 
of 5000 cells. 

3. Molecular Markers 

In addition to tumor histology, several genetic and chromosomal markers are strongly 
associated with tumor biology. The MYCN gene is perhaps the most important genetic marker of 
neuroblastoma aggressiveness. MYCN is an oncogene whose amplification is strongly associated 
with unfavorable clinical outcomes [4,5]. Another important prognostic marker in neuroblastoma is 
tumor cell ploidy. Neuroblastomas with triploidy or hyperdiploidy have been shown to have better 
outcomes than diploidy [5]. 

Segmental chromosomal anomalies with prognostic significance have also been identified for 
neuroblastoma. The most common are gain of 17q, loss of 1p, and loss of 11q, all of which are 
associated with a poorer prognosis [6,7]. Recent studies on familial neuroblastoma, which is rare, 
have also identified ALK and PHOX2B gene mutations. These mutations are found as germline 
mutations in patients with familial neuroblastoma but may also exist as somatic mutations in 
sporadic cases of neuroblastoma [8,9]. ALK aberrations in particular are now being factored into the 
new study protocols for treating high risk neuroblastoma. Finally, the presence of telomere-
lengthening mechanisms appears to be associated with poorer prognosis as well as older patient age. 
Neuroblastoma telomere-lengthening can occur either via overexpression of the TERT gene, which 
encodes telomerase, or via mutation or deletion of the ATRX gene to activate the alternative 
lengthening of telomeres (ALT) pathway [10,11]. 

4. Current Risk Stratification 

The International Neuroblastoma Risk Group (INRG) staging system stratifies patients based 
upon patient characteristics (namely age), disease presentation, and markers of tumor biology [12]. 
Unlike its predecessor the International Neuroblastoma Staging System (INSS), the INRG system is 
based entirely upon pretreatment tumor characteristics. A significant limitation of the INSS was that 
the stage for localized tumors depended on the extent of resection and lymph node sampling, which 
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from Peuchmaur M. et al.: Cancer 98(10): 2274–2281. © 2003 American Cancer Society. All rights
reserved.). FH: favorable histology; UH: unfavorable histology. GNBn—ganglioneuroblastoma,
nodular; MKC—mitotic and karyorrhectic cells; MKI—mitosis-karyorrhexis index; **: 2% = 100 of 5000
cells, 4% = 200 of 5000 cells.

3. Molecular Markers

In addition to tumor histology, several genetic and chromosomal markers are strongly associated
with tumor biology. The MYCN gene is perhaps the most important genetic marker of neuroblastoma
aggressiveness. MYCN is an oncogene whose amplification is strongly associated with unfavorable
clinical outcomes [4,5]. Another important prognostic marker in neuroblastoma is tumor cell
ploidy. Neuroblastomas with triploidy or hyperdiploidy have been shown to have better outcomes
than diploidy [5].

Segmental chromosomal anomalies with prognostic significance have also been identified for
neuroblastoma. The most common are gain of 17q, loss of 1p, and loss of 11q, all of which are associated
with a poorer prognosis [6,7]. Recent studies on familial neuroblastoma, which is rare, have also
identified ALK and PHOX2B gene mutations. These mutations are found as germline mutations in
patients with familial neuroblastoma but may also exist as somatic mutations in sporadic cases of
neuroblastoma [8,9]. ALK aberrations in particular are now being factored into the new study protocols
for treating high risk neuroblastoma. Finally, the presence of telomere-lengthening mechanisms
appears to be associated with poorer prognosis as well as older patient age. Neuroblastoma
telomere-lengthening can occur either via overexpression of the TERT gene, which encodes telomerase,
or via mutation or deletion of the ATRX gene to activate the alternative lengthening of telomeres
(ALT) pathway [10,11].

4. Current Risk Stratification

The International Neuroblastoma Risk Group (INRG) staging system stratifies patients based
upon patient characteristics (namely age), disease presentation, and markers of tumor biology [12].
Unlike its predecessor the International Neuroblastoma Staging System (INSS), the INRG system is
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based entirely upon pretreatment tumor characteristics. A significant limitation of the INSS was that
the stage for localized tumors depended on the extent of resection and lymph node sampling, which

(1) required that surgical resection be completed in order for staging to occur and
(2) likely varied significantly amongst both surgeons and centers in terms of their judgment, skill,

and aggressiveness towards complete resection and lymph node sampling.

On the other hand, the INRG staging system is independent of the completion or extent of surgical
resection and lymph node sampling.

The risk groups of the INRG system are determined from the INRG stage, patient age, histology,
MYCN gene amplification status, DNA ploidy status, and segmental chromosomal anomalies (11q
aberration) (Figure 2). INRG stage (L1, L2, M, or MS) is determined radiologically based on the presence
or absence of image-defined risk factors (IDRF) and metastatic disease [13] (Figure 3). IDRF essentially
estimate the feasibility and safety of upfront surgical resection, with L1 tumors often amenable to
resection and L2 tumors only rarely resectable at diagnosis (Figure 4). Encasement of a vessel is defined
as greater than 50% of the circumference of the vessel being in contact with the tumor. A vein is also
considered to be encased when it is flattened with no visible lumen present [14].
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These risk factors (INRG stage, age, histology, and MYCN, 11q aberration, and ploidy status)
in total are used to stratify patients into the following pre-treatment risk groups: very low, low,
intermediate, and high (Figure 2). The importance of MYCN gene amplification status and patient age
should be emphasized—all patients with MYCN amplification are classified as high risk, and older age
(18 months being used as the cutoff) is strongly associated with worse outcomes.

5. Treatment by Risk Group

The risk groups determined from the INRG staging system are used to determine the optimal
management strategy, with a focus on minimizing or avoiding treatment in low risk patients while
intensifying treatment in high risk patients to improve survival. For the very low risk tumors,
observation only is encouraged, as spontaneous regression is the norm. The current observation
protocol, based upon a study by Nuchtern and colleagues [15], includes small (greatest tumor diameter
<5 cm), non-infiltrative (INRG stage L1) tumors in children <12 months of age who are followed with
serial ultrasounds and catecholamine studies. A 50% increase in either tumor volume or catecholamine
levels triggers a move from observation to surgical resection. While the initial study included only
adrenal tumors, the potential for spontaneous regression is thought to be at least as high if not higher
for non-adrenal tumors [16]. Thus a Children’s Oncology Group (COG) study is currently under
way to evaluate the feasibility of expanding the criteria for observation without surgery to include
non-adrenal tumors.
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For some low risk tumors (such as an INRG stage L1 tumor not meeting size requirements for
observation), upfront surgical resection can be completed, with no or only minimal post-operative
systemic therapy based upon the determined tumor biology. For other low risk and intermediate risk
tumors (generally INRG stage L2 tumors without MYCN gene amplification), biopsy is performed,
after which chemotherapy is initiated with or without surgical resection to follow. In general
there has been a move towards less aggressive systemic and surgical therapy, given the safety
of significantly reduced chemotherapy regimens [17] and the finding that unresected, residual,
or recurrent neuroblastoma with favorable biology is likely to spontaneously regress and has little to
no impact on survival [18,19].

Satisfactory treatment, through chemotherapy with or without surgery, is therefore considered to
be a >50% reduction in tumor volume, or in some tumors with higher risk biology, a >90% reduction
in tumor volume. An exception to this paradigm is INRG stage L2 tumors in children <18 months,
in whom observation is encouraged for stable disease, moving to chemotherapy with or without
surgery only when there is a >25% increase in tumor volume.

For high risk tumors, the first step in management is initiation of induction chemotherapy
after obtaining tissue diagnosis. Induction chemotherapy regimens have some variation between
centers but in general consist of about 6 cycles of a combination of platinum, alkylating,
and topoisomerase-inhibitor agents. In addition, 131I-metaiodobenzylguanidine (131I-MIBG) is being
utilized as initial therapy for some MIBG-avid neuroblastomas [20], and the ALK inhibitor crizotinib is
being used for tumors with ALK aberrations (either ALK tyrosine kinase mutation or ALK mutation) [21].
A COG study is currently evaluating these new treatment options in greater detail—children with
MIBG-avid high risk neuroblastoma are randomized to receive 131I-MIBG in addition to standard
therapy, while children with MIBG-nonavid high risk neuroblastoma are non-randomly assigned to
receive crizotinib in addition to standard therapy if ALK aberrations are identified.

During this period of induction chemotherapy, patients also undergo stem cell collection for
later autologous stem cell transplantation. Surgical resection is undertaken near the end of induction
chemotherapy, often after the 4th (typically), 5th, or 6th cycle. The goal of surgery is >90% resection,
but en bloc resection of other organs (nephrectomy, pancreaticoduodenal resection, etc.) is to be
avoided, and the aggressiveness of resection must be carefully weighed against the significant risks of
morbidity and mortality.

Conflicting evidence exists regarding the importance of the extent of surgical resection for these
high risk tumors. One study of INSS stage 4 patients >18 months old showed no significant difference
in local control or survival between those who had resection of their primary tumor compared to those
who did not [22]. On the other hand, other studies have shown improved outcomes with complete or
near-complete resection of high risk tumors [23–26]. It is generally agreed upon from these studies that
attempts should be made for >90% surgical resection while still minimizing the risk of any significant
morbidity that would limit further systemic therapy.

Following surgical resection of high-risk tumors, any remaining induction chemotherapy is
completed. The consolidation phase of treatment then begins, which is meant to eliminate remaining
disease and consists of high dose chemotherapy followed by autologous stem cell transplantation
(single or tandem) and radiation therapy. Finally, the post-consolidation or maintenance phase
of therapy for high risk neuroblastoma begins, which is meant to prevent relapse and consists of
isotretinoin in combination with anti-ganglioside 2 (GD2) antibody.

Finally, the special case of INRG stage MS disease (similar to the former INSS stage 4S) includes
patients <18 months of age with L1 or L2 primary tumors, no unfavorable histologic or genetic features
on biopsy, and metastases limited to the skin, liver, and bone marrow (no more than 10% involvement).
In these patients, observation is recommended, with chemotherapy and/or surgical intervention
reserved only for symptomatic patients.
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6. Surgical Approach

For neuroblastomas requiring initiation of chemotherapy, tissue diagnosis has traditionally been
obtained via an open biopsy. However, a minimally invasive approach (laparoscopy or thoracoscopy)
is also widely used now. In addition, image-guided core needle biopsy is increasingly being
used to provide a diagnosis and appears to provide similarly adequate results with potentially
fewer complications [27–29].

Likewise, while open surgical resection has been the traditional approach, a minimally invasive
surgical approach is now being used more frequently for neuroblastoma resection. For patients without
IDRF, laparoscopic or thoracoscopic resection appears to provide a similarly adequate oncologic
resection with potentially less blood loss, along with the typical benefits of less pain and quicker
recovery [30–34]. For patients with IDRF, the feasibility of a minimally invasive approach is less clear.
Open operations are still generally preferred, given the extensive tedious dissection required and the
potential for rapid blood loss that would require prompt vascular control.

7. Conclusions

Much progress has been made in the prediction of neuroblastoma prognosis based upon
tumor biology. This knowledge of tumor biology allows highly tailored therapy for children with
neuroblastoma, from observation only to aggressive multimodal systemic therapy and surgery.
This approach, along with additional discoveries to come, can focus intense therapy on children
who need it while avoiding unnecessary treatment in those who do not in order to maximize outcome
while simultaneously minimizing unnecessary morbidity.
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