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Despite the fact that management of EC is moving towards four TCGA-based molecular
classifications, a pronounced variation in immune response among these molecular
subtypes limits its clinical use. We aimed to investigate the determinant biomarker of ICI
response in endometrial cancer (EC). We characterized transcriptome signatures
associated with tumor immune microenvironment in EC. Two immune infiltration
signatures were identified from the TCGA database (n = 520). The high- and low-
infiltration clusters were compared for differences in patient clinical characteristics,
genomic features, and immune cell transcription signatures for ICI prediction. A Lasso
Cox regression model was applied to construct a prognostic gene signature. Time-
dependent receiver operating characteristic curve, Kaplan–Meier curve, nomogram, and
decision curve analyses were used to assess the prediction capacity. The efficacy of
potential biomarker was validated by the Karolinska endometrial cancer cohort (n = 260).
Immune signature profiling suggested that T follicular helper–like cells (Tfh) may be an
important and favorable factor for EC; high Tfh infiltration showed potential for clinical use
in the anti-PD-1 treatment. A Tfh Infiltration Risk Model (TIRM) established using eight
genes was validated, and it outperformed the Immune Infiltration Risk Model. The TIRM
had a stable prognostic value in combination with clinical risk factors and could be
considered as a valuable tool in a clinical prediction model. We identified CRABP1 as an
individual poor prognostic factor in EC. The Tfh-based classification distinguishes immune
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characteristics and predicts ICI efficacy. A nomogram based on Tfh-related risk score
accurately predicted the prognosis of patients with EC, demonstrating superior
performance to TCGA-based classification.
Keywords: genital neoplasms, female, immunotherapy, tumor microenvironment, tumor biomarkers,
computational biology
INTRODUCTION

Although a majority of patients with endometrial cancer (EC) are
diagnosed at an early stage with a favorable 5-year survival rate of
82%, patients with advanced disease have a poor prognosis with a
5-year survival rate of approximately 20% (1). The current
standard first-line treatment is the combination of platinum
and paclitaxel; however, optimal treatment for the second-line
setting is limited (2). Therefore, the management of advanced or
recurrent EC remains challenging. Immune checkpoint blockade
with anti-programmed cell death (PD)-1 and anti-PD ligand-1
(PD-L1) monoclonal antibodies has emerged as a promising
treatment strategy for several cancer types, including EC (3).

Several studies have supported the definite role of immune
checkpoint inhibitors (ICIs) against PD-1 in the management of
EC. The KEYNOTE-158 phase II trial with pembrolizumab
monotherapy reported that 49 EC patients with mismatch
repair deficiency (dMMR) or high microsatellite instability
(MSI-H) had an objective response rate (ORR) of 57.1%,
including 8 patients showing complete response (4). A phase II
trial (KEYNOTE-146) evaluated the combination of
pembrolizumab and lenvatinib (a kinase targeting VEGFR1-3)
in 108 patients with previously treated advanced EC (5). Among
the overall population with an ORR of 38% at 24 weeks, patients
with MSI-H tumors had a high ORR of 63.6%. Recently, a phase
I/II GARNET trial evaluated the safety and efficacy of
dostarlimab following the failure of platinum-based treatment
in the largest cohort of advanced EC (n = 245) to date (6). An
ORR of 42.3% was observed in the dMMR group (7). The ORR in
the proficient MMR (pMMR) group was 36.2% and 13.4% in the
KEYNOTE-146 and GARNET study, respectively (5, 6). These
results highlight the need for more efficient biomarkers than
MSI/dMMR to identify patients responsive to ICIs.

The Cancer Genomic Atlas (TCGA)-based molecular
classification has established a reproducible and informative
framework for survival prediction and drug development (8,
9). Two subgroups of EC, ultra-mutated POLE and MSI-H, were
thought to be predictive biomarkers of ICI efficacy because of the
exceptionally high mutational burden (10). However, a
significant variation in the immune response was observed
across and within the four molecular subtypes (11), suggesting
that the molecular classification alone may be insufficient to
assist patient selection for checkpoint immunotherapy. High
tumor-infiltrating lymphocytes (TILhigh) were proposed as a
novel classification for identifying immunotherapy candidates
(11, 12). Furthermore, a subset of EC with the microsatellite
stable biomarker (MSS) showed high PD-L1 expression and
CD8+ lymphocyte infiltration, and this subset can be treated
org 2
with ICIs (13). Accordingly, an increased understanding of the
immune landscape of tumor microenvironment can help identify
patients who can benefit from immunotherapy and result in
patient stratification in future clinical studies.

The present study aimed to comprehensively evaluate the
tumor immune microenvironment (TIME) in EC using the
TCGA cohort. We estimated the role of immunoscore
(representing the infiltration of immune cells in tumor tissue)
in the prediction of immune response and survival. Furthermore,
we estimated the association of different immune cell types and
survival and identified T follicular helper–like cells (Tfh) as the
only favorable immune cell type in EC. Next, a Tfh-based
classification was developed and characterized by multi-omics
analysis. We validated a Tfh-related gene signature and
developed a nomogram integrating the Tfh-related risk score
and clinicopathological factors. CRABP1 was identified as an
independent poor prognostic factor in EC that could serve as a
potential therapeutic target in EC.
MATERIALS AND METHODS

Data Source
Both clinical and gene expression data were obtained through the
TCGA Uterine corpus endometrial carcinoma (UCEC) cohort
from the NCI Genomic Data Commons (GDC) archive (14). We
investigated transcriptional data in Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) values, and the
gene expression units for downstream analyses were transformed
with log2([FPKM] + 1). Samples without gene expression data,
clinical information, or survival time (0 ≤ days) were excluded
from analyses, resulting in a final sample size of 520 patients. The
somatic mutation data of 520 EC patients were downloaded from
the TCGA database in which the mutations had been called by
VarScan2. For the copy number variation (CNV) profile, we
downloaded the level 3 CNV dataset of EC patients in the SNP6.0
microarray from the TCGA database. We also employed the R
package “TCGAbiolinks” (15) to retrieve the microsatellite
instability (MSI) status (MSI-H, intermediate, MSI-L, and
MSS) of the patients from the GDC data portal. We obtained
an Immune-related gene set from the Tumor IMmune
Estimation Resource (TIMER) database for subsequent
analyses (Table S1) (16, 17). Immune-related signatures,
including the interferon gamma (IFNg) gene, cytolytic immune
activity (CYT), and immune checkpoints, were obtained from
previous publications (Table S2) (18–20).
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Immune-Related Scores and Clustering
The fraction of stromal and immune cells was inferred with the
Estimation of STromal and Immune cells in MAlignant Tumors
using Expression data (ESTIMATE) algorithm (21). Immune and
stromal cells were then classified into high- and low-score groups
according to the median value of immune and stromal scores. To
further explore the association between these scores and EC,
relevant analysis correlated with overall survival (OS) and
clinical grade, and the stage of patients were performed.
Subsequently, we estimated the abundance of immune
signatures in each sample and quantified the immune
infiltration degree by a single-sample gene set enrichment
analysis (ssGSEA) algorithm, which was performed in R package
GSVA (22). The 30 immune signatures, including TIME cell
subsets and checkpoints from previous studies (23, 24), are
shown in Table S3. The R package “ConsensusClusterPlus” (25)
was used to construct a consistency matrix to classify the samples
by clustering to generate subtypes. The “K-means” algorithm with
Euclidean distance was used to perform clustering analysis with
500 iterations.

Genomic Data Analysis
Tumor mutational burden (TMB) was defined as the total
number of unique genes per Mb with non-synonymous
somatic mutations in each sample. For TMB features, after
merging the MAF data of TCGA-UCEC, we extracted 5,000
most frequently germline mutated genes, and the identification
of significantly mutated genes was obtained from robust driver
gene studies (26). The TMB score formula for each sample was
calculated as follows (27):

Total number of truncating mutations*1.5 + Total number of
non-truncating mutations*1.0.

Truncating mutation category contains frame-shift deletion
or insertion, nonsense, and splice-site mutations, while non-
truncating mutation category contains in-frame deletion or
insertion, missense, and nonstop mutations (Table S4). We
analyzed the CNV profile with GISTIC2.0 software (28) and
the parameters are set as follows:

-ta 0.1 -armpeel 1 -brlen 0.7 -cap 1.5 -conf 0.9 -td 0.1
-genegistic 1 -gcm extreme -js 4 -maxseg 2000 -qvt 0.25 -rx 0
-savegene 1.

The SNP and CNV data were then analyzed and visualized
using the “oncplot” function with the R package “maftools” (29).
According to one of the most influential molecular classification
of EC proposed by TCGA (8), 520 patients were grouped into
four subtypes: POLE (ultramutated), MSI (hypermutated), copy-
number low (endometrioid), and copy-number high
(serous-like).

Development of the Prognostic Gene
Expression Signature
We divided 60% of the 520 EC samples randomly into a training
group to construct a prognostic signature. The remaining 40% of
samples were defined as a validation group for accessing to the
prognostic signature performance. There were no statistically
significant differences in any clinical feature between the training
Frontiers in Immunology | www.frontiersin.org 3
group and validation group, indicating that the samples were
successfully split randomly (Table S5).

After correlating the expression levels of the DEGs with the
survival time, a univariate Cox proportional regression analysis
was performed to screen for DEGs related to survival. The
significant survival-related gene set was subjected to penalized
multivariate Cox proportional hazards survival modeling by an
algorithm for variable selection based on L1-penalized Lasso (L1-
Least Absolute Shrinkage and Selection Operator) estimation
(30). The construction of the survival modeling process was
repeated 1,000 times, and the resulting models were subsequently
combined through cross-validation during these iterations.
Consequently, a risk model was constructed and the risk score
formula for each patient was established by comparing each of
the selected genes by their estimated regression coefficients from
the Lasso regression analysis as discussed in previous studies (31,
32). Patients were separated into high- and low-risk groups
according to the median value of risk score. A time-dependent
receiver operating characteristic (ROC) curve analysis was
conducted to measure the prognostic performance.

Differences Between High- and Low-
Infiltration Groups
Several differences in various characteristics between the high-
and low-infiltration groups were carefully studied. First, clinical
characteristics such as age, BMI, race, histological type, clinical
stage, grade, survival status, and TCGA classification of the two
groups were compared through the Chi-square or Fisher exact
test. The prognosis, immune cell type, and functional enrichment
between the two groups were performed and analyzed. Then, the
differential gene expression analysis of the two groups was
performed through the R package “limma” at the cutoff of
FDR < 0.05 and absolute log2FC > 0.3. The status of clustered
datasets was plotted using the “ComplexHeatmap” (33) R
package. In order to explore the significantly enriched
pathways and view the function of these differentially
expressed genes (DEGs), Gene Ontology (GO) biological
processes terms and Reactome pathway analysis were
performed by Gene Set Enrichment Analysis (GSEA 4.1.0) (34,
35) or implemented by (36) Metascape and simplifyEnrichment
package in R (37). Additionally, by taking the intersection of
DEGs with the immune-related gene set, the DEGs related to
immunity were obtained.

High and Low Significant Infiltration Group
in Specific Immune Cell
The hierarchical clustering algorithm clustered a total of 30
immune cells. The connection relationship among these cells
was established through correlation, and their relationship with
OS was calculated. Next, the univariate Cox proportional
regression analysis was performed to identify immune cells
that are significantly associated with prognosis. Subsequently,
the dichotomization threshold of the significant immune cell
infiltration within the high and low groups was determined by
the median value of the significant immune cell infiltration. By
performing differential expression analysis on the two groups,
January 2022 | Volume 12 | Article 788959
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DEGs related to immunity were finally identified. Based on this
information, a specific immune cell Infiltration Risk Model was
constructed for prognosis and survival.

Prognostic Evaluation of Risk Model
To assess the prognostic risk factors, we established prognostic
nomograms based on the specific immune cell Infiltration Risk
Model to predict the 1-, 3-, or 5-year OS of EC. Nomograms
incorporating the risk model, age, histological type, stage, and
grade were constructed to predict OS based on the Cox
proportional hazards model. To confirm the clinical benefits
associated with the use of our nomogram, decision curve analysis
(DCA) was performed.

Immunohistochemistry
In order to investigate the prognostic value of CRABP1
immunohistochemistry, a previously characterized cohort of
266 patients with endometrial cancer was investigated (38). In
short, all patients were operated at the Karolinska University
Hospital between 2012 and 2015. Formalin-fixed paraffin
embedded (FFPE) material were identified through the
archives of the Department of Clinical Pathology and Cytology
at Karolinska University Hospital. Clinical data were retrieved
from digital patient records and were available for all patients.
As previously described, a tissue microarray (TMA)
was constructed.

The TMAs were stained for CRABP1 using a monoclonal
mouse antibody (Clone C-1 from ThermoFisher Scientific,
Waltham, CA, USA). The antibody dilution was evaluated on
anonymized cases of breast cancer and endometrial cancer, and
very limited variation in the immunoreactivity was seen across
the tumor tissue. After reviewing the controls, an antibody
dilution of 1:1,000 was used. Antigen retrieval was performed
for 20 min in 95°C citrate-based buffer. The primary antibody
was incubated overnight in 4°C and visualized using the
VECTASTAIN Elite ABC-HRP Kit (Vector Laboratories,
Burlingame, CA). After an initial review of the cases by two
clinical pathologists, the staining intensity was arbitrarily
categorized as 0 = none, 1 = weak, 2 = moderate, 3 = strong
and determined by consensus. The majority of staining was
cytoplasmic, but in cases with stronger immunoreactivity,
nuclear staining could be seen in a subgroup of the tumor cells.

Other Immunotherapy Cohorts
Used in This Study
For the training cohort, transcriptomic and corresponding
clinical data of 47 patients diagnosed with metastatic
melanoma and treated with anti-CTLA-4 (cytotoxic T-
lymphocyte- associated protein 4) or anti-PD-1 (programmed
cell death protein 1) blockade were obtained (39). We
inferred the possibility of anti-CTLA-4 and anti-PD-1 response
immunotherapy in the subgroups using the “Submap” algorithm
(40). We used the “IMvigor210CoreBiologies” package to
retrieve 348 transcriptomic and corresponding clinical data
from the IMvigor210 cohort with metastatic urothelial cancer
treated with an anti-PD-L1 agent (Atezolizumab) (41).
Additionally, 101 transcriptomic and corresponding clinical
Frontiers in Immunology | www.frontiersin.org 4
data of patients diagnosed with metastatic melanoma and
treated with anti-PD-1 agent (Nivolumab) were used as a
validation cohort (16).

Statistical Analysis
Student’s t-tests were used for comparisons between two
continuous and normally distributed variables. Variables that
were not normally distributed were analyzed by Mann–Whitney
U tests or Wilcoxon rank-sum tests. For comparison of three
groups or more, one-way analysis of variance (ANOVA) and
Kruskal–Wallis test were performed for parametric and non-
parametric methods, respectively (42). Log-rank test Kaplan–
Meier curve and Cox regression for survival analyses were
conducted using the R packages “survminer” and “survival.”
Additionally, R package “glmnet” was used to perform L1-
penalized Lasso regression, ROC curve, nomogram, and DCA
analyses using the R packages “pec,” “pROC” and “pROC”,
“regplot”, and R function “stdca.R,” respectively (43–45). R
version 4.0.3 (R Foundation for Statistical Computing, Vienna,
Austria) was used to execute all statistical tests and plots.
RESULTS

Construction of an Overall
Immune Signature
To predict the infiltration of non-tumor cells, the immune and
stromal scores were calculated by analyzing gene expression
signatures associated with immune and stromal cells. To
associate the immune and stromal scores with patient survival
and tumor grade, we classified the 520 EC samples into upper
and lower halves (high and low) based on their median scores.
The Kaplan–Meier survival curves (Figure S1A) showed a
significant difference in OS between immune score high and
low groups, but no significant difference was observed when
compared to the stromal score or tumor purity score (Figures
S1B, C). The immune scores decreased with increasing grade as
expected, whereas no difference was observed in relation to stage
(Figures S1D, E).

Development of an Immune Infiltration
Risk Model
We applied ssGSEA analysis of the 520 EC tumors to quantify
the signatures associated with the activity of different immune
cell types. Based on 30 ssGSEA scores in each sample (Table S6),
unsupervised clustering of the EC immune cell signatures clearly
divided the 520 tumors into two groups with clustering stability
decreasing for k = 2–10 (Figure 1A; Figure S2). As a result, a
total of 191 patients were classified in the high infiltration group
and 347 in the low infiltration group.

To determine whether there is any significant clinical
difference between high- and low-immune infiltration tumors,
we compared the clinical and genomic characteristics of the
groups. As expected, the high-immune infiltration group had
lower tumor purity (Figure S3A) and better OS (log-rank test,
p = 0.019) (Figure S3B). We observed that the low-immune
January 2022 | Volume 12 | Article 788959
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FIGURE 1 | Construction of total immune signatures and Immune Infiltration Risk Model (IIRM). (A) SsGSEA results of 520 EC specimens, organized by total
immune cell infiltration levels and immune scores. Unsupervised consensus clustering grouped gene sets into two major categories based on total immune cell
infiltrations. Clinicopathological characteristics of the 520 EC patients are shown in the annotation, and different colors represent the characteristics and
subtypes. The statistical differences in variables between two clusters were compared using the Fisher’s exact test. *p < 0.05, **p < 0.01, ***p < 0.001. (B)
Volcano plots of the distribution of the DEGs between high- and low-immune infiltration groups. Red and blue represent upregulated and downregulated genes,
respectively. Genes with |log2FC| > 0.3 are annotated in the plot. (C) Venn diagram depicts the overlap of the genes involved in immune genes and DEGs of
total immune infiltration. (D) The 295 significant GO terms clustering in the DEGs between high- and low-immune infiltration groups. There are word cloud
annotations on the right side of the heatmap that summarize the features with keywords in each GO cluster. The color shade reflects the similarity of the
pathway enrichment, while different dimensions represent the size of the enrichment. (E) Forest plot of the univariate analyses for seven significant immune-
related DEGs of total immune infiltration with overall survival (p < 0.01). (F) ROC curve of the prognostic values of IIRM training group in 1-, 3-, and 5-year OS
with AUC = 0.622, 0.618, and 0.649, respectively. (G) ROC curve of the prognostic values of IIRM validation group in 1-, 3-, and 5-year OS with AUC = 0.614,
0.621, and 0.608, respectively. ns, non significant.
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infiltration group contained more death cases and was
significantly associated with survival status (Fisher’s exact test,
p = 0.028), high grade (Fisher’s exact test, p = 0.029), low TMB
(Fisher’s exact test, p = 0.029), and low immune score (Fisher’s
exact test, p < 0.001), but it was not associated with TCGA
classification, MSI, stage, histological type, race, BMI, and age
(Fisher’s exact test, p > 0.05) (Figure 1A), while in the high-
immune infiltration group, ssGSEA analysis of the immune cell
composition showed that most immune cell types were more
prevalent (p < 0.05), with the exception of Tcm and Th2 cells
(enriched in the low-immune infiltration group), but no
significant difference of eosinophils and NK cells. Unlike the
low-immune infiltration group, the patients exhibited favorable
prognosis, low grade, and high TMB (Figure 1A). The total
immune infiltration grouping reflects some molecular and
genomic characteristics of the tumor in a certain extent,
regardless of the flaws in some clinical features. Since previous
publications have emphasized the key role of MSI, genomic
alternation in EC (8, 46), our total immune grouping only
demonstrates partial significance, so it is essential to test the
validity of this model hereinafter.

After identifying DEGs (FDR < 0.05, |log2FC > 0.3|) between
high- and low-immunity groups, a volcano plot showed that the
high-immunity group was defined by differentially overexpressed
genes, where 583 were significantly overexpressed, and 91 were
downregulated (Figure 1B). Additional pathway enrichment
analysis was performed for the two groups. The most enriched
GO biological processes emphasized signatures related to
immune activation and regulation, where lymphocyte
activation and immune effector process placed the top of the
enrichment (Figure 1D and Figure S3C). Therefore, we
overlapped the DEGs with the immune gene list (TIMER) and
obtained 156 immune-related DEGs (Figure 1C), which were
considered to be the most critical genes involved in immune
activities. As a result, seven out of 156 DEGs were identified as
individually significant favorable prognostic factors using a
univariate Cox proportional regression analysis (p < 0.01),
which are CD1C, LTA, CXCR3, LTB, LCK, CD3D, and
CD3E (Figure 1E).

Next, the EC samples were randomly divided into a training
cohort and validation cohort. From 1,000 iterations of Lasso-
penalized multivariate modeling, we obtained four candidate
favorable genes (CD1C, LTA, LTB, and CD3D) to construct the
IIRM (Figures S4A, B). The AUC of the IRIM in the 1-, 3-, and
5-year OS predictions was 0.622, 0.618, and 0.649 in the training
cohort and 0.614, 0.621, and 0.608 in the validation cohort,
respectively (Figures 1F, G). Patients were subsequently divided
into high- and low-risk groups according to the median value of
risk score. The Kaplan–Meier survival estimates showed no
significant difference in the training cohort (log-rank test, p =
0.389) but the high-risk group had a worse prognosis in the
validation cohort (log-rank test, p = 0.042) (Figures S4C, D).
Collectively, our study, by clustering EC patients based on total
immune infiltrations, reveals unsatisfactory risk stratification,
and suggests the complexity of the role of immune cells in the
EC microenvironment.
Frontiers in Immunology | www.frontiersin.org 6
Identification of Key Immune Cell Types
and Refinement of IIRM
Since the AUC of IIRM did not perform very well, we next
investigated the correlation between the 30 immune cell
signatures (used in the hierarchical clustering algorithm) and
patient survival. The results indicated that all immune signatures
(including iDC, Neutrophils, NK CD56dim cells, T cells, Tfh,
TIL, and Type_II_IFN_response) were significantly associated
with improved outcomes (Figure 2A). After univariate and
multivariate Cox regression analysis, Tfh was the only immune
cell signature that remained significantly associated with OS
(Table S7 and Figure 2B). Consensus clustering analysis of the
Tfh signature classified 337 tumors to the low-Tfh infiltration
group while 183 belonged to the high-Tfh infiltration group with
clustering stability decreasing for k = 2–10 (Figure S5). As
expected, the high-Tfh infiltration group had better prognosis
(log-rank test, p = 0.004) (Figure 2C).

We found that Tfh-based classification was significantly
associated with immune infiltration, TCGA classification, MSI,
immune score, TMB score (Fisher’s exact test, p < 0.001), grade
(Fisher’s exact test, p = 0.035), and survival status (Fisher’s exact
test, p = 0.011); however, it was not associated with stage,
histological type, race, BMI, and age (Fisher’s exact test, p >
0.05) (Figure 2D; Figure S6). When comparing the high-Tfh
infiltration group with the low-Tfh infiltration group, we found
significant covariance with 23 other immune features (Figure
S7A), similar to the pattern seen in tumors with high overall
immunity (Figure 1A). The Tfh score showed high correlations
(Spearman rank correlation, r = 0.62, p < 0.001) with the TIL
score (Figure S7B), which is consistent with the study of
Talhouk et al. demonstrating that TIL classification is a
biomarker for ICIs (11).

Genomic Variation Features of EC With
Tfh-Based Classification
Next, the indicative genomic characteristics of the samples: MSI,
TMB, CNV, and TCGA classification were used to evaluate the
efficacy of Tfh clustering in EC. We can clearly observe that the
high-Tfh infiltration group gathered more MSI (hypermutated)
and POLE (ultra-mutated) cases than the low-Tfh infiltration
group (Figures 3A, B), which have been proven as indicators of
favorable clinical relevance (8, 47, 48).

To clarify the differences between two subgroups at the
genomic level in detail, we found that the mutation events
were significantly greater in the high-Tfh infiltration group,
including insertion (INS), deletion (DEL), and single-
nucleotide polymorphism (SNP) (Wilcoxon rank-sum test, p <
0.001) (Figures S8A–C; Figure 3C). In terms of CNV, the
landscapes of the two subgroups are shown in Figure S8D.
High CNV was significantly associated with low Tfh infiltration
in EC and vice versa as shown in Figure 3D (Wilcoxon rank-sum
test, p < 0.001). We can infer from the oncoprint plot that most
of the genes had similar gene mutational and CNV profiles
between the two subgroups, where PTEN was altered in 72% of
all cases (Figure 3E). Additionally, genome instability appeared
to have an apparent relationship with the level of Tfh infiltration,
January 2022 | Volume 12 | Article 788959
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where more gene variations, MSI, and most specifically, POLE
mutations can be found to be enriched in the high-Tfh
infiltration group (Figure 3E), as shown in Figures 3A, B.
From the statistical point of view of the number of mutated
genes in the samples, the proportion of gene alternations in the
high Tfh-infiltrated group was significantly greater than in the
Tfh-infiltrated group (P < 0.01) (Figure S8E). These results
suggested that Tfh infiltration may have a distinct impact on
the biology of tumors in genomic features (Figure S8F).
Tfh Infiltration Predicts Efficacy of
Checkpoint Immunotherapy in EC
To investigate the differences in biological processes between the
two subgroups, gene set enrichment analysis (GSEA) revealed
that high Tfh infiltration was mainly associated with antigen
receptor-mediated signaling pathway (ES = 0.73, NES = 2.64,
FDR = 0), T-cell activation (ES = 0.73, NES = 2.62, FDR = 0),
regulation of lymphocyte activation (ES = 0.72, NES = 2.64,
FDR = 0), immune response regulating signaling pathway
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(ES = 0.70, NES = 2.61, FDR = 0), and response to tumor
necrosis factor (ES = 0.62, NES = 2.60, FDR = 0) (Figure 4A),
indicating that Tfh may represent important players to
be considered for linking highly efficient checkpoint
immunotherapy in EC. Consistently, we found that IFNg,
which is predominantly produced by T helper (TH) CD4 and
CD8 cytotoxic T lymphocyte (CTL) effector T cells during
antigen-specific immunity, was significantly upregulated in the
high-Tfh infiltration group (Wilcoxon rank-sum test, p < 0.001)
(Figure 4B). Additionally, cytolytic immune activity (CYT) was
significantly positively associated with Tfh (Wilcoxon rank-sum
test, p < 0.001) (Figure 4C); it appears that a high mutation
burden may generate abundant neoantigens, leading to enhanced
antitumor immunity and a high CYT score in EC.

Additionally, the expression of most chemokines and
chemokine receptors in the high-Tfh infiltration group was
significantly greater than that in the low-Tfh infiltration group
(Figures S9A, B) (Wilcoxon rank-sum test, p < 0.05), suggesting
that the diverse Tfh infiltration may result in differences in
immunotherapy effects to a certain extent. Next, we estimated
A

C

B

D

FIGURE 2 | Tfh is a significant favorable cell for OS in EC. (A) Cellular interaction circus plot of the immune cell types. The size of each circle indicates the survival
impact of each immune cell type and is inversely proportional to the p-value when using the log-rank test formula. Cell clusters are represented in yellow, blue, red,
brown, and gray for clusters A, B, C, D, and E, respectively. The line thickness represents the estimated value of the Spearman correlation coefficient for each cell
type (p < 0.0001). A positive and negative correlation is represented in green and purple, respectively. Favorable immune cells for overall survival are indicated in
turquoise. (B) Forest plot of the multivariate analyses of seven significant immune cells with overall survival (**p < 0.01). (C) Kaplan–Meier curve of overall survival
rates in EC patients with high-Tfh and low-Tfh signature (p = 0.004). (D) Tfh gene signatures of 520 EC specimens, organized by Tfh infiltration levels. Unsupervised
consensus clustering grouped gene sets into two major categories based on Tfh infiltrations. Clinicopathological characteristics of the 520 EC patients are shown in
the annotation, and different colors represent the characteristics and subtypes. The statistical differences in variables between two clusters were compared using the
Fisher’s exact test. *p < 0.05, **p < 0.01, ***p < 0.001.
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the expression levels of eight critical inhibitory immune
checkpoints, namely, CTLA4, PDCD1 (PD-L1), BTLA, IDO1,
IDO2, CD274 (PD-1), PDCD1LG2 (PD-L2), and LAG3. As
expected, inhibitory immune checkpoints were overexpressed
in the high-Tfh infiltration group (Wilcoxon rank-sum test, p <
0.001) (Figure 4D). The Tfh scores show strong correlations
with the expression of these checkpoints (i.e., CTLA4, PD-1 and
PD-L1, Spearman rank correlation, p < 0.001, and r = 0.57, 0.33,
and 0.62, respectively) (Figures S10A–D). Hence, we address the
thought that targeting CTLA-4, PD-1, or PD-L1 will critically
influence the function of Tfh cells in patients that receive these
checkpoint immunotherapies.

We further performed a subclass mapping approach to
compare the expression profile of the two Tfh subtypes with
another published dataset involving 47 melanoma patients
treated with CTLA-4 and PD-1 (39). We were able to observe
Frontiers in Immunology | www.frontiersin.org 8
that the high-Tfh infiltration group was more likely to be
responsive to anti-PD-1 treatment than the low-Tfh infiltration
group (Bonferroni corrected, p <0.008); however, there was no
significant difference in response to the anti-CTLA-4 treatment
(Figure 4E). Additionally, to investigate the response to anti-PD-
L1 therapy, we used a cohort (IMvigor210) of 348 patients
diagnosed with metastatic urothelial cancer who underwent
Atezolizumab treatment to compare the Tfh score (41). We
found that the complete response (CR)/partial response (PR)
patients had a higher Tfh score than the progressive disease
(PD)/stable disease (SD) patients, but these differences were not
statistically significant (Wilcoxon rank-sum test, p > 0.05)
(Figure 4F). After ssGSEA analysis of Tfh signatures, the
proportion of CR/PR in the high infiltration group was a bit
higher than that in the low infiltration group (Fisher’s exact test,
p = 0.257) (Figure S10E). As a validation cohort (16), 101
A B

C

E

D

FIGURE 3 | Tfh infiltration subtypes and related genomic features. (A, B) The fraction of MSI status, TCGA classification, shown in high- and low-Tfh infiltration groups.
(C, D) Distribution of the mutation counts (log2 scale) (C) and CNV frequency (D) in high- and low-Tfh infiltration groups. Middle line: median; box edges: 25th and 75th
percentiles, whiskers: most extreme points. ***p < 0.001, Wilcoxon rank-sum test. (E) The genomic profiles of 520 EC patients. Top: mutation counts of the mutated
genes in each patient. Bottom: The 520 patients and immune and genomic subtypes. Right: Gene variant types and their frequencies are shown by a bar plot.
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metastatic melanoma patients treated with anti-PD-1 agent
(Nivolumab) were examined to verify the favorable response to
anti-PD-1 immunotherapy in the high-Tfh infiltration group.
Consequently, the high Tfh score predicted a desirable clinical
response to anti-PD-1 blockade (Wilcoxon rank-sum test, p <
0.01) (Figure 4G), and the proportion of CR/PR in the high
infiltration group was significantly higher than that in the low
infiltration group (Fisher’s exact test, p < 0.001) (Figure S10F).
Thus, we considered the potential clinical usefulness of Tfh
stratification in the anti-PD-1 treatment in EC.

Evaluation of the Prognosis and Clinical
Benefits of TIRM
To further explore the differences in gene expression levels
between the two subgroups, a total of 561 downregulated DEGs
and 850 upregulated were identified (FDR < 0.05, |log2FC > 0.3|)
(Figure S11A), where 241 genes were immune related
Frontiers in Immunology | www.frontiersin.org 9
(Figure 5A). A total of 12 of these genes were significantly
associated with survival (p < 0.01) (Figure 5B). After 1,000
iterations of a Lasso-penalized multivariate model, an eight-
gene-based risk model called Tfh Infiltration Risk Model
(TIRM) was built, including LTA, CRABP1, PTX3, PCSK1,
PLXNB3, LTB, ADCYAP1R1, and NR3C1 (Figures S11B, C).
The ROC curve indicated better prognostic performances of the
AUC (1-, 3-, and 5-year OS predictions were 0.811, 0.781 and
0.793 in the training cohort and 0.640, 0.725, and 0.780 in the
validation cohort, respectively; Figures 5C, D) than the IIRM. The
samples in training and validation cohorts were subsequently
separated into high- and low-risk groups according to the
median risk scores. Assessments of the Kaplan–Meier estimates
showed that high-risk patients had a significantly worse OS than
the low-risk patients in both cohorts (log-rank test, p < 0.001 and
p = 0.014, respectively) (Figures 5E, F). Next, we projected this risk
model to all 520 EC patients; the AUC values were all greater than
A B

E

F G

D

C

FIGURE 4 | Differential immunotherapeutic response in Tfh subtypes. (A) GSEA of the top five significant Gene Ontology biological processes based on the
enrichment scores. FDR < 0.01. (B, C) Distribution of the IFNg score (B) and CYT score (C) in high- and low-Tfh infiltration groups. Middle line: median; box edges:
25th and 75th percentiles, whiskers: most extreme points. ***p < 0.001, Wilcoxon rank-sum test. (D) Distribution of the gene expressions (y-axis) of eight immune
inhibitory checkpoints in high- and low-Tfh infiltration groups. Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points. ***p <
0.001, Wilcoxon rank-sum test. (E) Submap analysis of the published dataset with immunotherapy response data indicates that the Tfh high infiltration group could
be more sensitive to the anti‐PD‐1 therapy (Bonferroni‐corrected p = 0.008). (F, G) Distribution of the Tfh score of anti-PD-L1 therapy status (F) and anti-PD-L1
therapy status (G) in high- and low-Tfh infiltration groups. Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points. **p < 0.01,
Wilcoxon rank-sum test. ns, non significant.
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FIGURE 5 | Analyses of the DEGs and development of the TIRM based on immune-related DEGs of Tfh infiltration. (A) Venn diagram depicts the overlap of the
genes involved in immune genes and DEGs of Tfh infiltration. (B) Forest plot of the univariate analyses for seven significant immune-related DEGs of Tfh infiltration
with overall survival (p < 0.01). (C) ROC curve of the prognostic values of TIRM training group in 1-, 3-, and 5-year OS with AUC = 0.811, 0.781, and 0.793,
respectively. (D) ROC curve of the prognostic values of TIRM validation group in 1-, 3-, and 5-year OS with AUC = 0.640, 0.725, and 0.780, respectively. (E, F)
Kaplan–Meier curve of the overall survival for patients in the Tfh-based high-risk and low-risk subgroups in the training group (E) and validation group (F) (p < 0.001
and p = 0.014, respectively). (G) A newly constructed nomogram including clinical characteristics of age, histological type, stage, grade, and risk score of Tfh in the
nomogram. Each of these factors generates points according to the axes drawn upward. The total score of these components for each patient is located on the
“total score” axis, which corresponds to the 1-, 3-, and 5-year OS probabilities plotted on the lower two axes. ***p < 0.001. (H, I) Net DCA curves show the net
benefits of the nomogram at 5-year (H) and 3-year (I) OS, and the y-axis measures the net benefit. The nomogram has a higher net benefit compared to risk score,
TCGA classification, and combined (histological type + stage + grade) and simple strategies such as follow-up of all patients (purple line) or no patients (horizontal
black line) across the full range of threshold probabilities.
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70% (1-, 3-, and 5-year OS predictions were 0.741, 0.759, and
0.786, respectively) (Figure S11D) and high-risk score patients
had the worse prognosis (log-rank test, p < 0.001) (Figure S11E),
suggesting a promising prognostic predictive ability in EC.

The indicative clinical characteristics of the samples,
including the age, histological type, stage, and grade were used
to evaluate the efficiency and stability of TIRM. Nomograms
combining these variables as well as Tfh risk scores were
generated, then the 1-, 3-, and 5-year survival probabilities
were projected to the final sum of the scores (Figure 5G). The
calibration plots of the nomogram agreed with the predictions of
1-, 3-year, and 5-year OS (Figures S11F–H). Subsequently, DCA
for the nomogram and Tfh risk score prediction model is shown
in Figure 5H; it can be observed that our risk model and
nomogram (age + histological type + stage + grade + Tfh risk
score) performed better than clinical variables (histological
type + stage + grade) and TCGA classification in both 3- and
5-year OS (Figures 5H, I). In 1-year OS prediction, the net
benefits were not calculable in independent variables, including
clinical variables and TCGA classification (Figure S11I).

Identification of Prognostic Biomarkers
Based on TIRM
Among the eight significant genes, LTB, LTA, and ADCYAP1R1
were associated with a favorable prognosis, while the remaining
genes, PLXNB3, CRABP1, NR3C1, PTX3, and PCSK1, were
considered to be the risk factors (Figure 6A). Particularly, the
high Tfh infiltration markers were more enriched in the low-risk
group (Fisher’s exact test, p = 0.006), which is consistent with the
observation that high Tfh was significantly associated with better
prognosis (Figures 2C, D). Since the TIRM seemed to have a
significant prognostic impact in EC, we performed further analysis
of the eight involved genes. We identified that LTA, LTB, and
ADCYAP1R1 expressions were significantly positively associated
with Tfh infiltration in favorable genes (Wilcoxon rank-sum test,
p = 0.006), but not associated with clinical stage of LTB (Kruskal–
Wallis test, p > 0.05) and tumor grade of LTA (Kruskal–Wallis test,
p> 0.05) (Figure S12). In contrast, for thefive risk factors, we found
that the expression level of PLXNB3, PTX3, and CRABP1 were
negatively correlated with increased Tfh infiltration (Wilcoxon
rank-sum test, p < 0.05), but not with NR3C1 and PCSK1
(Figure 6B and Figure S12A), among which only CRABP1 was
significantly associated with both high stage (Stage IV) and grade
(G3) (Figures 6C, D; Figures S12B, C) (Kruskal–Wallis test, p <
0.01). Taken together, CRABP1, among the considered parameters,
was the most important risk factor among these eight genes.
Furthermore, we analyzed the correlations between the CRABP1
expression and Tfh score. As shown in Figure S13A, Tfh was
significantly and negatively associated with CRABP1 expression in
EC (Spearman rank correlation, r = 0.15, p = 0.001).

Given that in biological and therapeutic systems, upregulated
genes are more likely to be tampered with than downregulated
genes, we decided to focus our validation study on CRABP1. To
verify the prognostic impact ofCRABP1, the potential biomarker, a
Karolinska cohort of 260 EC patients with full clinical data was
retrieved for validation.We found significant associations between
Frontiers in Immunology | www.frontiersin.org 11
CRABP1 immunoreactivity and poor prognosis (Fisher’s exact test,
p=0.006 for grade and p=0.008 for survival status) (Figures 6E, F);
however, we did not observe any significant difference in tumor
stage (Fisher’s exact test, p = 0.205, Figure S13B). Furthermore, we
verified the expression level of CRABP1 in Karolinska cohort by
Immunohistochemistry. Patients with strongCRABP1 staining had
the worst OS rate compared to those with none, weak, and
intermediate staining (log-rank test, p = 0.001, Figure 6G). The
CRABP1 immunoreactivity in negative, weak, and moderate
scoring at 100×, 200×, and 400× magnifications are shown
in Figure 6H.

These results strongly suggest that CRABP1 could be an
important prognostic biomarker for EC and the absence of
immunoreactivity may indicate favorable treatment effect.
DISCUSSION

In this study, high immune infiltration was associated with
favorable prognosis, which was consistent with previous results,
which showedEC tumorswithhighTIL had improved survival (49,
50). However, the immune infiltration-related gene signature did
notpredict survival ineither trainingorvalidationcohort.Although
high immune infiltration was significantly associated with high
abundance of TIL, the classification of immune infiltration did not
correlatewithMSI-high andTMB.Our results suggest that immune
infiltration classification might be not ideal for the development of
prognostic or predictive signatures for immunotherapy in EC.
Tumor-associated immune infiltration is a complex event
involving heterogeneous immune cell populations. CD8+
cytotoxic T cells, helper T1 cells, and Tfh cells are generally
correlated with favorable survival and responsiveness of ICIs,
while abundant Treg and M2-like macrophages in tumor
microenvironment favor poor prognosis (51). Hence, measuring
immune infiltration as a whole activity of TIME might not reflect
the different immune cell composition and their distinct impact on
the immune contexture.

The current consensus indicates that the Tfh–B cell axis in the
tertiary lymphoid structures (TLS) within tumors plays an
important role in anti-tumorigenic effects (52). ICI treatment
may restore both humoral immune responses and cytotoxic T
cell activity against tumor neoantigens mediated by Tfh by
elevating interleukin-21 (IL-21) secretion to B cells and CD8+
T cells, respectively (53). High Tfh infiltration in EC tumors
correlated with higher IFN-gamma score and CYT activity as
well as PD-1/PD-L1 expression, indicating an exhausted T state
by chronic antigen exposure (54). Correspondingly, higher TMB
and more frequent MSI-H were observed in tumors with high
Tfh infiltration, supporting that high mutational load may
increase the number of immunogenic neoantigens.
Furthermore, high Tfh infiltration was associated with anti-
PD-L1 responsiveness in two independent melanoma cohorts
(16, 39). These results provide rationale for exploring the utility
of Tfh infiltration to select patients eligible for ICI-based therapy.

MSI-H and high TMB levels are biomarkers that support
anti-PD-1 immunotherapy in patients with EC (4, 46). However,
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FIGURE 6 | Relationship between the significant genes in the TIRM and the clinical variables. (A) The abundances of eight significant immune-related genes
(involved in TIRM) in high- and low-risk groups of 520 EC patients. Statistical differences in Tfh infiltration between the two high- and low-risk groups were compared
using Fisher’s exact test. The log-rank p-values for the univariate Cox regression analysis are shown on the right side of the heatmap, indicated by the color gradient.
**p < 0.01. (B–D) Distribution of the CRABP1 expression in Tfh infiltration subtypes (high and low) (B), stage (stage I, stage II, stage III, and stage IV) (C), and grade
(G1, G2, and G3) (D). Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points. *p < 0.05, **p < 0.01, ***p < 0.001, Wilcoxon rank-
sum test and Kruskal–Wallis test. (E, F) The correlation between the grade (E) and survival status (F) and CRABP1 IHC staining in 260 EC tissues (p = 0.006 and
p = 0.008, respectively, Fisher’s exact test). (G) Kaplan–Meier curve of the overall survival for 260 EC patients with none, weak, intermediate, and strong CRABP1
IHC staining (p < 0.001). (H) The CRABP1 immunoreactivity in none, weak, intermediate, and strong scoring at 100×, 200×, and 400× magnifications. ns, non
significant.
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MSS or pMMR does not necessarily preclude the use of ICI
therapies. A phase II trial (KEYNOTE-146) and a confirmatory
phase III trial (KEYNOTE-775/Study 309) evaluating the
combination treatment of pembrolizumab and lenvatinib
reported an ORR of 36% and 30% in patients with pMMR EC
progressive on platinum-based chemotherapy, respectively (5).
Of note, the ORR of lenvatinib alone in pretreated patients with
advanced EC was only 14.3% (55). Dostarlimab (a PD-1
monoclonal antibody) administration alone showed an ORR of
13.4% in patients with pMMR tumors (56). These results raised a
critical question: how to identify eligible patients in both p53wt
(copy number low) and p53abn (copy number high) subgroups,
which are thought to have neither MSI-H nor high TMB.
Abundance of TIL may provide a guidance in these patients.
In a study using multiplex IHC to estimate TIL in 460 EC
tumors, all 5 TIL subsets (CD8+, CD4+, Treg, B cells, and plasma
cells) were quantified and clustered into 2 major patterns: TIL-
high and TIL-low (11). Although TIL-high tumors were
common in POLE mutation and dMMR subtypes, a significant
number of p53abn and p53wt tumors also presented with TIL-
high pattern. Similarly, in our study, high Tfh infiltration was
more prevalent in POLE mutation and dMMR subtypes, but also
seen in a minority of tumors with copy number low or copy
number high. Additionally, we observed the strong relationship
between Tfh score and TIL abundance in EC. There may be merit
in prospectively investigating whether TIL, especially Tfh in the
TLS within tumor, could be the immune biomarker for
identifying candidates for ICI therapy regardless of MSI status.

The presence of TIL has been linked with improved prognosis
in various cancer types such as breast cancer and non-small cell
lung cancer (NSCLC) (57, 58). The role of TIL in predicting
prognosis of EC is somewhat controversial. Previous studies
reported TIL as an independent prognostic factor in EC (49, 59).
However, TIL did not show independent prognostic significance in
multivariable adjustment for variables including the ProMiSE
subtype (11). The conflicting findings may be due to the
complexity of TIL studies, including differences in measuring
and analysis, and stromal or intratumor compartment or both.
Moreover, it is necessary to distinguish between the different
subpopulations of lymphocytes for their differing roles in
modulating cancer progression (51). Through analysis of the
TCGA UCEC cohort, we identified Tfh cells as the only immune
cell type associated with improved EC survival. Accordingly, Tfh
cells have been shown to predict increased survival inNSCLC, colon
cancer, and breast cancer (23, 60). To our knowledge, this is the first
study to highlight the potential prognostic role of Tfh in EC.

While the histology type, grade, and pathological stage remain
paramount for determining the prognosis, molecular classification
of EC with TCGA-based classifiers such as ProMisE provided a
validated genomic signature to assist clinicians for prognosis
estimation (61). According to the Tfh-based classification, we
developed and validated an immune-based prognostic signature
in EC. We further developed a nomogram combining
clinicopathological factors with Tfh risk scores as an
individualized tool for assessment of OS in EC. The DCA
demonstrated that the combined nomogram was superior to
Frontiers in Immunology | www.frontiersin.org 13
clinicopathological factors or TCGA classification alone.
Therefore, incorporating immune-based signature into the
traditional clinicopathological features may provide more precise
prognostic information.

High CNV was associated with low Tfh infiltration in EC, and
vice versa. These findings were consistent with previous studies
demonstrating that high CNV correlated with high proliferation
signature and low immune signature across several cancer types
(62, 63). Therefore, high CNV might serve as a negative
predictive biomarker for immunotherapy in EC.

CRABP1 functions as a specific binding protein for retinoids
to stimulate differentiation but inhibit proliferation. The role of
CRABP1 in tumorigenesis is relatively unknown, with reports of
both up- and downregulation in different cancer types (64–68).
The expression and prognostic significance of CRABP1 has not
been previously studied in EC. Our results validated the
association between the strong expression of CRABP1 and
poor prognosis, which suggests CRABP1 as a prognostic
biomarker of EC. Although CRABP1 has been shown to
promote cancer progression independent of the retinoid acid
binding activity (67), the mechanisms underlying the
aggressiveness of CRABP1 in EC remain to be determined.

Although bioinformatics approaches for analyzing bulk RNA
sequencing data from the TCGA database have been well
established, this study shares some limitations with previous
bioinformatics studies. We applied well-validated ssGSEA
algorithm to identify immune cell types. However, we did not
validate the prognostic value of Tfh using in-house tumor tissues.
Given that we used the TMA cores but not whole sections, we were
unable to comprehensively assess the extent of Tfh cells mainly in
the TLS. Second, the true predictive effect of the Tfh-based gene
signature needs to be estimated in a prospective study. Finally, the
TCGA UCEC cohort was collected prior to the wide use of
immunotherapy. Therefore, these data may not reflect patients
receiving immunotherapy. The utility of this immune-based
prognostic signature has to be estimated in future cohorts.

In summary, our study identifies the critical role of Tfh in EC. Tfh
infiltration-based classification could serve as a predictive biomarker
for PD-1 therapy. Through this immune-related classification, we
identified and validated an eight-gene prognostic signature. We also
developed a risk nomogram, including our Tfh risk scores and
clinicopathological factors, and validated that its prognostic utility
was superior to that of clinicopathological factors alone or TCGA-
based classification. Additionally, we identified and validated the
protumorigenic role of CRABP1, which merits further investigation.
Overall, our results provide new insights into the TIME of EC along
with a strong rationale for individualized assessment and prognosis
using Tfh classification.
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Supplementary Figure 1 | (A–C) Kaplan-Meier curve of overall survival rates in
EC patients with high- and low-immune (A) and stromal (B) and tumor purity (C)
scores (p = 0.038, 0.39 and 0.428, respectively). (C, D) Distribution of the Immune
score in groups with tumor stage (stage I, stage II, stage III, and stage IV) (C) and
grade (G1, G2, G3) (D) Middle line: median; box edges: 25th and 75th percentiles,
whiskers: most extreme points. *p < 0.05, Kruskal–Wallis test.

Supplementary Figure 2 | Consensus matrices of identified clusters in 520 EC
patients with immune signatures (k = 2-10) as well as the cumulative distribution
function (CDF) reflect the optimal cluster number.

Supplementary Figure 3 | (A) Distribution of the tumor purity in groups with high-
and low- immune infiltration. Middle line: median; box edges: 25th and 75th
percentiles, whiskers: most extreme points. ***p < 0.001, Wilcoxon rank-sum test.
(B) Kaplan-Meier curve of overall survival rates in EC patients with high- and low-
infiltration. (p = 0.019). Log-rank test. (C) Biological processes and Reactome
pathways regulated in the DEGs between high- and low- immune infiltration groups.
X axis indicates the most enriched gene sets (-log10(P-value)).
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Supplementary Figure 4 | (A) Partial likelihood deviance under each log
(lambda) was drawn in a LASSO Cox regression model. (B) The trajectory of each
independent gene, the horizontal axis represents the log value of each lambda,
and the vertical axis represents the coefficient values. (C, D) Kaplan-Meier curve
of the overall survival for patients in the immune-based high-risk and low-risk
subgroups in the training group (C) and validation group (D) (p = 0.389 and
p = 0.042, respectively).

Supplementary Figure 5 | Consensus matrices of identified clusters in 520 EC
patients with Tfh signatures (k = 2-10) as well as the cumulative distribution function
(CDF) reflect the optimal cluster number.

Supplementary Figure 6 | The fraction of age, BMI, race, histological type,
stage, grade, survival status, total immune infiltration, and TMB score, showing in
high- and low- Tfh infiltration groups.

Supplementary Figure 7 | (A) Distribution of the immune cell scores in groups
with high- and low- Tfh infiltration. Middle line: median; box edges: 25th and 75th
percentiles, whiskers: most extreme points. ***p < 0.001, Wilcoxon rank-sum test.
(B) The correlation between TIL score and Tfh score (Spearman rank correlation).

Supplementary Figure 8 | (A–C) Distribution of the INS counts (log2 scale)
(A) DEL counts (log2 scale) (B) and SNP counts (log2 scale) (C) in groups with high-
and low- Tfh infiltration. Middle line: median; box edges: 25th and 75th percentiles,
whiskers: most extreme points. ***p < 0.001, Wilcoxon rank-sum test. (D)
Cumulative CNV regions for high- and low- Tfh infiltration groups. Amplifications are
represented in red color, and deletions are represented in blue color. (E) The top ten
mutated genes between high- and low- Tfh infiltration. (F) The Tfh score, TMB
score, and CNV frequency of each subtype.

Supplementary Figure 9 | (A, B) Distribution of the chemokine expressions (A)
and chemokine receptor expressions (B) in groups with high- and low- Tfh
infiltration. Middle line: median; box edges: 25th and 75th percentiles, whiskers:
most extreme points. * p < 0.05; ** p < 0.01, *** p < 0.001, Wilcoxon rank-sum test.

Supplementary Figure 10 | (A) The correlations between Tfh score and eight
immune inhibitory checkpoint expressions. * p < 0.05; *** p < 0.001. Spearman rank
correlation. (B–D) The correlations between Tfh score and CTLA4 (B), PD-1 (C),
and PD-L1 (D) gene expressions. (Spearman rank correlation). (E, F) The fraction of
the response status of anti-PD-L1 treatment (E) and anti-PD-1 treatment (F)
showing in high- and low- Tfh infiltration groups.

Supplementary Figure 11 | (A) Volcano plots of the distribution of the DEGs
between high- and low- Tfh infiltration groups. The red, and blue color represents
upregulated and down-regulated genes, respectively. Genes with |log2FC| > 0.3 are
annotated in the plot. (B) Partial likelihood deviance under each log (lambda) was
drawn in a LASSO Cox regression model. (C) The trajectory of each independent
gene, the horizontal axis represents the log value of each lambda, and the vertical
axis represents the coefficient values. (D) ROC curve of the prognostic values of
TIRM in all patients in1-, 3- and 5-year OS with AUC = 0.741, 0.759 and 0.786,
respectively. (E) Kaplan-Meier curve of the overall survival for patients in the Tfh-
based high-risk and low-risk subgroups in all patients (p < 0.001). (F–H) Calibration
curves for nomogram in 5-year, 3-year, and 1-year, respectively. (I) Net DCA curves
shows the net benefits of the nomogram at 1-year OS, the y-axis measures the net
benefit. The nomogram has a higher net benefit compared to risk score and simple
strategies such as follow-up of all patients (purple line) or no patients (horizontal
black line) across the full range of threshold probabilities.

Supplementary Figure 12 | (A–C) Distribution of the ADCYAP1R1, LTA, LTB,
NR3C1, PCSK1, PLXNB3, and PTX3 expression in Tfh infiltration subtypes (high
and low) (A), stage (stage I, stage II, stage III, and stage IV) (B), and grade (G1, G2,
G3) (C). Middle line: median; box edges: 25th and 75th percentiles, whiskers: most
extreme points. *p < 0.05, **p < 0.01, ***p < 0.001, Wilcoxon rank-sum test and
Kruskal–Wallis test.

Supplementary Figure 13 | (A) The correlation between CRABP1 expression
and Tfh score (Spearman rank correlation). (B) Comparison of the stage and the
CRABP1 IHC scores in 260 EC tissues (p = 0.205). Fisher’s exact test.
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