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Abstract Cardiac sympathetic overactivity is a well-established contributor to the progression of
neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear.
Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and
their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now
suggests that a significant component of sympathetic overactivity and enhanced transmission may
arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase
activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address
some of the key cellular and molecular pathways that contribute to sympathetic overactivity in
hypertension and discuss their potential for therapeutic targeting.
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Abstract figure legend In healthy stellate neurons, Ca2+-dependent exocytosis facilitates the release of noradrenaline
(NA) onto cardiac myocytes, where post-synaptic β1-ARs and β2-ARs are activated. Increases in extracellular NA
acts on presynaptic α2-ARs, and presynaptic β1-ARs and β2-ARs to a small degree. Acute regulation of cAMP and
cGMP signalling is maintained by phosphodiesterases (PDEs). cAMP generation and PKA activity increases [Ca2+]i

via phosphorylation of the N-type Ca2+ Channel (ICaN; CaV2.2); endoplasmic reticulum (ER) store and mitochondrial
Ca2+ release. In diseased sympathetic neurons, Ca2+-dependent exocytosis facilitates the release of NA and adrenaline
(Adr) onto cardiac myocytes, where post-synaptic β2-AR signalling is upregulated and preferentially activated. Chronic
elevations in NA and Adr release also acts on presynaptic β-ARs. Adr preferentially stimulates the β2-AR isoform, thus
augmenting cAMP generation and PKA activity in prehypertension, in a potentiating feed-forward manner. Increased
PKA activity raises [Ca2+]i via phosphorylation of the N-type Ca2+ Channel (ICaN; CaV2.2), exacerbating the Ca2+

phenotype that may contribute to the initiation of hypertension.

Introduction

The autonomic nervous system, comprising the
parasympathetic and sympathetic branches, provides a
regulatory link between the central nervous system (CNS)
and myocardium (Herring & Paterson, 2018). The notion
of a mind–body connection has been proposed by many
scientists throughout history, but it was perhaps first
recorded in AD 30 by the Roman physician Celsus who
wrote, ‘fear and anger and any other state of mind may
often be apt to excite the pulse’ (Celsus & Spencer,
1935). Yet, the physiological mechanisms responsible
for the relationship between the heart and the brain
remained elusive until the 19th century, whereupon, it
was discovered that heart rate could be accelerated or
decelerated by stimulation of two antagonistic systems:
sympathetic or parasympathetic nerve fibres (Gaskell,
1886; Langley, 1898; Woollard, 1926; Sheehan, 1936; Hoff,
1940). The ‘autonomic nervous system’, as coined by
Langley in 1898 (Langley, 1898), is now known to play
an integral role in cardiovascular homeostasis and cardiac
responses to physical or emotional disturbances (Rozanski
et al. 1999; Steptoe & Kivimaki, 2012; Tahsili-Fahadan &
Geocadin, 2017; Herring & Paterson, 2018).

The cervicothoracic sympathetic stellate ganglion
located adjacently to T1–T4 preferentially innervates
the heart (Gaskell, 1886; Korzina et al. 2011) and,
as such, exerts the greatest control over heart rate
acceleration, contractility and conduction velocity at the

atrio-ventricular node (Shivkumar et al. 2016). Chronic
alteration in sympathetic/parasympathetic balance
(dysautonomia) is a well-established contributor to many
cardiovascular diseases (CVDs) and is strongly linked to
clinical outcome and prognosis (Brook & Julius, 2000;
Palatini & Julius, 2004; Malpas, 2010; Parati & Esler, 2012;
Mancia & Grassi, 2014). Increasing evidence suggests that
essential hypertension is underpinned and maintained by
sustained elevations in sympathetic nerve activity (SNA)
and chronic end-organ transmission (Iriuchijima, 1973;
Judy et al. 1979; Esler et al. 1986; 1988; Grassi & Esler,
1999; Johansson et al. 1999; Guyenet, 2006; Wang et al.
2006; Malpas, 2010; Parati & Esler, 2012; Shanks et al.
2013b; Esler, 2014; Oliveira-Sales et al. 2014; Grassi et al.
2015; Oliveira-Sales et al. 2016). Elevations in SNA are also
frequently seen in normotensive progeny of hypertensive
patients (Ferrara et al. 1988; Hausberg et al. 1998; Lopes
et al. 2000; Piccirillo et al. 2000; Maver et al. 2004; Hamer,
2006; Pal et al. 2011; Johncy et al. 2015), suggesting a
causative role and potential genetic basis (Judy et al. 1979;
Horikoshi et al. 1985; Adams et al. 1989) for sympathetic
overactivity in the aetiology of hypertension.

However, it is also well established that SNA is not
uniformly altered within each ganglionic site (Grassi
et al. 2015) and preclinical models have highlighted
the critical role of elevated cardiac sympathetic nerve
activity, specifically in the initiation and maintenance of
hypertension (Souza et al. 2001; Petersson et al. 2002;
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Tan et al. 2010; Shanks et al. 2013b; Larsen et al. 2016a;
Tromp et al. 2018), cardiac arrhythmia (Meredith et al.
1991) and heart failure (Kaye et al. 1995; Rundqvist et al.
1997; Watson et al. 2007; Ramchandra et al. 2009; Tu et al.
2014). Multiple levels of the neural axis comprising several
integrated feedback loops are involved in the regulation of
autonomic transmission, and may be disturbed in hyper-
tension. These include cardio-cardiac reflexes and intrinsic
cardiac nerve activity that alter end-organ transmission
within the myocardium directly, intrathoracic reflexes and
feedback mechanisms that modify sympathetic ganglionic
efferent transmission, and spinal and lower brainstem
regulation that modulate autonomic outflow (Shivkumar
et al. 2016; Hanna et al. 2017). Sustained alterations in
one or several of these feedback processes may directly
contribute to an elevation in SNA, yet it is difficult to
dissociate the primary causative events from secondary
consequential factors. Nevertheless, the dominance of
cardiac sympathetic neurons over myocyte function is
observed. This is illustrated in Fig. 1, where co-cultures
of diseased stellate neurons and myocytes from rats pre-
disposed to hypertension display enhanced myocyte cyclic
adenosine monophosphate (cAMP) generation during
neuronal stimulation compared to normal co-cultures
(Larsen et al. 2016b). Moreover, cross-culturing diseased
stellate neurons provokes healthy myocytes into a pre-
hypertensive state partially recapitulating the elevation in
cAMP observed in diseased myocytes. Critically, however,
healthy neurons cultured with diseased myocytes rescues
the aberrant myocardial cAMP response restoring cAMP
to levels seen in normal myocytes (Larsen et al. 2016b).
What are the mechanisms that underpin the sympathetic
phenotype and lead to elevated cardiac sympathetic
transmission?

In models of neurogenic hypertension, several key
sympathetic adaptations are reported, including increased
neuronal firing rate and burst frequency (Iriuchijima,
1973; Briant et al. 2015), elevated and aberrant regulation
of intracellular Ca2+ ([Ca2+]i) that facilitates exocytosis
(Li et al. 2013; Larsen et al. 2016a; Shanks et al. 2017;
Tomek et al. 2017), decreased transmitter reuptake (Esler
et al. 1981; Kimura et al. 1983; Esler et al. 1991; Rumantir
et al. 2000b; Shanks et al. 2013a), and alterations in pre-
synaptic feedback systems coupled to impaired intra-
cellular signalling cascades (Wang et al. 2006; Shanks
et al. 2013b; Bardsley et al. 2018b). In this brief review,
we present the current evidence for the molecular and
biochemical alterations that occur in stellate ganglia from
rat and human patients that have a sympathetic phenotype
and discuss their potential for therapeutic targeting.

Intrinsic excitability: control by cyclic nucleotides

The N-type Ca2+ channel is the primary neuronal
voltage-gated Ca2+ channel (Catterall, 2003, 2011) and as

such plays a critical role in determining the cytosolic Ca2+
concentration during an action potential in sympathetic
neurons (Pruneau & Bélichard, 1992; Ino et al. 2001;
Mori et al. 2002; Uhrenholt & Nedergaard, 2003; Tu
et al. 2014; Larsen et al. 2016a). Emerging evidence
suggests that N-type Ca2+ channel activity is elevated
in cardiac sympathetic ganglia in the prehypertensive
SHR (Fig. 2; Larsen et al. 2016a) and in heart failure (Tu
et al. 2014), indicating a synaptopathy that augments
intracellular Ca2+ and raises the intrinsic excitability
of these nerves (Briant et al. 2015). Voltage-gated
Ca2+ channel conductance is differentially regulated
by kinase phosphorylation (Gray et al. 1998; Schroder,
2003; Mahapatra et al. 2012; Larsen et al. 2016a) where
processes that decrease cyclic guanosine monophosphate
(cGMP)–protein kinase G (PKG) signalling, or elevate
cAMP–protein kinase A (PKA) signalling result in a
net increase in Ca2+ channel conductance (Brown &
Birnbaumer, 1988; Leiser & Fleischer, 1996; Gray et al.
1998; D’Ascenzo et al. 2002; Schroder, 2003; Mahapatra
et al. 2012; Zamponi et al. 2015; Sandoval et al. 2017).
Thus, processes that selectively modulate the strength
of cAMP or cGMP signals effectively regulate neuronal
transmission (Pruneau & Bélichard, 1992; Leiser &
Fleischer, 1996; Gray et al. 1998; Molderings et al. 2000;
Ino et al. 2001; Mori et al. 2002; Tanaka et al. 2013;
Yamada et al. 2014).

An increased cAMP–PKA/cGMP–PKG ratio exacerbates
cardiac sympathetic activity

Nitric oxide (NO) is a significant neuronal modulator of
sympatho-vagal activity (Sears et al. 1998; Wang et al.
2007). In the SHR, impaired NO generation via neuronal
nitric oxide synthase (nNOS; Wang et al. 2007; Danson
et al. 2009; Lee et al. 2009; Li et al. 2013, 2015; Lu et al.
2015) and down-regulation of soluble guanylyl cyclase
(sGC; Li et al. 2013; Bardsley et al. 2018a) lead to significant
reductions in cGMP production and PKG activity (Li et al.
2013, 2015; Larsen et al. 2016a). In the prehypertensive
rat, deficits in cGMP–PKG signalling are directly linked
to elevations in N-type Ca2+ channel Ca2+ conductance
(Larsen et al. 2016a; Fig. 3) and may contribute to the
increased firing rate and spike amplitude observed in
models of disease (Briant et al. 2014; Tu et al. 2014).
To understand the genetic basis for these observations,
we carried out a comprehensive RNA sequencing study
using ganglia from hypertensive and normotensive
rats (Bardsley et al. 2018a) and found that trans-
cripts within the cGMP–PKG pathway were significantly
under-represented in the stellate ganglia of SHR with
established hypertension. Notable transcripts included
down-regulation of protein kinase G II (Prkg2) and the
α1-sGC subunit (Gucy1a3). Genome wide association
studies (GWAS) have also revealed a critical link between

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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mutations in loci containing the gene Gucy1a3 and
clinical hypertension (Ehret et al. 2011; Zheng et al. 2015;
Wallace et al. 2016; Rippe et al. 2017; Seidel & Scholl,
2017), myocardial infarction (Erdmann et al. 2013; Wobst
et al. 2015), atherosclerosis (Segura-Puimedon et al. 2016;
Wobst et al. 2016) and coronary artery disease (CARDIo-

GRAMplusC4D Consortium et al. 2013; Nikpay et al. 2015;
Kessler et al. 2017).

Reductions in cGMP–PKG or increases in cAMP–PKA
augment Ca2+ conductance (Fig. 3) via site-specific
phosphorylation of the N-type Ca2+ channel, where
a shift towards cAMP–PKA signalling in hypertension

Figure 1. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease
A, immunofluorescence depicting a co-culture of sympathetic neurons and ventricular myocytes (reproduced
from Larsen et al. 2016b). Sympathetic neurons labelled with tyrosine hydroxylase (TH, green) densely innervate
cultured cardiomyocytes labelled with sarcomeric α-actinin (red). B, Wistar–Kyoto (WKY) or SHR sympathetic
neurons were stimulated with nicotine (Nic) and the resulting myocyte cAMP was measured as a surrogate for
sympathetic transmission, in mycoytes transduced with a cAMP Förster resonance energy transfer (FRET) sensor.
FRET sensors were maximally stimulated (max) with an adenylyl cyclase (AC) activator forskolin (25 M) and a
non-specific phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX,100 M). In healthy co-cultures
(WKYn/WKYm), neuron-evoked myocyte cAMP (17.05 ± 3.715, n = 29 cells) was significantly lower than
cAMP measured in the diseased co-culture myocytes (SHRn/SHRm; 44.02 ± 5.310, n = 36 cells; P < 0.0001).
Cross-cultures were established by plating diseased SHR neurons on top of healthy WKY myocytes (SHRn/WKYm)
or healthy WKY neurons on top of diseased SHR myocytes (WKYn/SHRm). In the first cross-culture (SHRn/WKYm),
neuronal stimulation elevated myocyte cAMP (31.37 ± 5.194, n = 42 cells) to levels that were not significantly
different from measured in the diseased (SHRn/SHRm) co-cultures (P = 0.094), demonstrating that enhanced
neuronal transmission elevates healthy-myocyte cAMP to levels observed in disease. Moreover, in the second
cross-culture (WKYn/SHRm), stimulation of WKY neurons elevated SHR myocyte cAMP (15.67 ± 1.936, n =
24 cells) to levels that were not significantly different from that measured in healthy (WKYn/WKYm) co-cultures
(P = 0.76), demonstrating that healthy neurons attenuate the elevated myocyte cAMP response observed in SHR
myocytes (modified from Larsen et al. 2016b).

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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facilitates exocytosis (Leiser & Fleischer, 1996; Gray et al.
1998; D’Ascenzo et al. 2002; Tanaka et al. 2013; Larsen
et al. 2016a). In support of the evidence for elevated
cAMP–PKA activity in hypertension, we identified a
significant down-regulation in the gene encoding the type
Iα regulatory subunit of PKA (Prkar1a) in our RNA
sequencing dataset. This subunit plays a dominant role as
an endogenous inhibitor of kinase activity (Bardsley et al.
2018a) where loss-of-function mutations in Prkar1a are
associated with a twofold greater responsiveness to cAMP
and an excess of PKA type II activity (Stratakis et al. 2001).
Knock-out mouse models of Prkar1a display impaired
axonal sorting, myelination and proliferation (Guo et al.
2013). In humans, Prkar1a mutations are characterised
by endocrine overactivity, neural dysfunction and cardiac
complications, which result in dysregulation of arterial
blood pressure homeostasis, arrhythmia and cardio-
myopathies (Stratakis, 2002; Horvath et al. 2010),
highlighting the importance of cAMP–PKA signalling in
neuronal and cardiovascular regulation. Consequently,

it appears that in cardiac sympathetic nerves from pre-
hypertensive rats, several processes that favour excitatory
cAMP–PKA signalling are up-regulated, whereas pathways
coupled to NO–cGMP are critically impaired early in
disease, thus exacerbating or underpinning the observed
Ca2+ phenotype (Li et al. 2013, 2015; Larsen et al. 2016a;
Fig. 3D).

Phosphodiesterase enzymes: the centre of balance
for cyclic nucleotides

Phosphodiesterase enzymes (PDEs) regulate ion channel
activity through selective termination of cAMP and/or
cGMP signalling (Tanaka et al. 2013; Zhao et al. 2016);
therefore, the acute spatial and temporal regulation
of cyclic nucleotide (cN) levels by PDEs is critical
for maintaining a fine balance between PKA- and/or
PKG-mediated effects (Zaccolo & Movsesian, 2007;
Stangherlin & Zaccolo, 2012). The cN signal is
acutely maintained by the PDE superfamily, comprising

Figure 2. N-type Ca2+ channel conductance is elevated in preSHR cardiac sympathetic neurons
Whole cell voltage clamp was performed on cardiac sympathetic stellate neurons to investigate whole cell Ca2+
currents. A, the current–voltage relationship. Access to the cell was obtained in normal Tyrode’s solution containing
the following (in mM): 135 NaCl, 4.5 KCl, 11 glucose, 20 HEPES, 1MgCl2, 2 CaCl2, pH 7.4. To identify the Ca2+
current, normal Tyrode solution was replaced with a Ca2+-isolating solution using Ba2+ as the charge carrier,
containing the following (in mM): 135 TEACl, 10 HEPES, 4.5 KCl, 1 MgCl2, 4 glucose, 1 NaHCO3, 2 BaCl2,
pH 7.40, either in the presence or absence of ω-conotoxin GVIA (1 μM), which selectively blocks N-Type Ca2+
channels (IC50 = 0.15 nM) (Sato et al. 1993). Ba2+ was used as the charge carrier to avoid Ca2+-dependent current
inactivation (Imredy & Yue, 1994). The internal solution contained the following (in mM): 140 CsCl, 10 HEPES,
0.1 CaCl2, 1 MgCl2, 4 MgATP, 1 EGTA, pH 7.30. All solutions had osmolarities of 300 mOsm L−1. B, the whole
cell Ca2+ current is larger in preSHR sympathetic nerves (127.5 ± 5.94 pA pF−1, n = 10) compared to WKY cells
(−108.0 ± 6.80 pA pF−1, n = 10, P = 0.045) where peak current was recorded at −10 mV. ω-Conotoxin GVIA
(1 μM), significantly reduced the N-type Ca2+ channel current to similar levels in both strains. A 75% reduction
was observed in cells cultured from WKY stellate ganglia (−26.88 ± 1.7 pA pF−1, n = 6) and an 83% reduction
was measured in neurons cultured from preSHR ganglia (−22.04 ± 1.60 pA pF−1, n = 5, ns) where peak current
remained at −10 mV. Solid lines represent the mean of the WKY (black) and preSHR (red) control data. Dashed lines
represent the mean of WKY (black) and preSHR (red) in the presence of ω-Conotoxin GVIA. Data are represented
as mean ± SEM. (A and B modified from Larsen et al. 2016a).

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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11 isoforms (Stangherlin & Zaccolo, 2012), which
confine individual and unique cAMP/cGMP signals
to distinct subcellular compartments, enabling the
regulation of multiple effector responses at any given
time (Lefkimmiatis & Zaccolo, 2014). Indeed, cAMP is
localised in close proximity to its effectors and regulators,
where PKA, PDEs and phosphatases are tethered to
A-kinase anchoring proteins forming signalosomes that
restrict the duration and magnitude of the cAMP–PKA
signal within specific subcellular domains (Musheshe

et al. 2018). Moreover, PDE isoforms are also sub-
ject to feedback inhibition and/or potentiation where
specific isoforms are sensitive to cNs themselves (Zaccolo
& Movsesian, 2007; Zhao et al. 2016), kinase activity
(Zaccolo & Movsesian, 2007; Francis et al. 2011) and/or
intracellular Ca2+/calmodulin-dependent protein kinase
signalling (Maurice, 2003; Bender, 2006; Francis et al.
2011). Sustained elevations in cAMP generation or
alterations in PDE activity underpin several cardiovascular
pathologies including cardiac hypertrophy (Zaccolo &

Figure 3. Elevated Ca2+ conductance in preSHR stellate neurons is rescued with cGMP administration
A–C, to ascertain whether cGMP signalling inhibits Ca2+ currents, whole cell voltage clamp was performed on
sympathetic neurons young normotensive WKY (A) and young prehypertensive SHR (B) in the presence of a cGMP
analogue, 8-bromo-cGMP (8b-cGMP) (Larsen et al. 2016a). Access to the cell was obtained in normal Tyrode
solution containing the following (in mM): 135 NaCl, 4.5 KCl, 11 glucose, 20 HEPES, 1 MgCl2, 2 CaCl2, pH 7.4.
To identify the Ca2+ current, the solution was replaced with a Ca2+-isolating solution using Ba2+ as the charge
carrier, containing the following (in mM): 135 TEACl, 10 Hepes, 4.5 KCl, 1 MgCl2, 4 glucose, 1 NaHCO3, 2 BaCl2,
pH 7.40, in either the presence or the absence of 8b-cGMP (100 μM). Ba2+ was used as the charge carrier to
avoid Ca2+-dependent current inactivation (Imredy & Yue, 1994). The internal solution contained the following
(in mM): 140 CsCl, 10 Hepes, 0.1 CaCl2, 1 MgCl2, 4 MgATP, 1 EGTA, pH 7.30. All solutions had osmolarities
of 300 mOsm L−1. 8b-cGMP significantly reduced the elevated preSHR Ca2+ currents (−127.5 ± 5.94 pA pF−1,
n = 10 to −105.2 ± 7.79 pA pF−1, n = 7) to levels that were no longer greater than WKY Ca2+ currents
(−108.0 ± 6.80 pA pF−1, n = 10). Moreover, 8b-cGMP had no significant effect on the WKY Ca2+ current,
where peak currents were measured at −10 mV. Continuous lines represent the mean of the WKY (black) and
preSHR (red) control data. Dashed lines represent the mean of WKY (black) and preSHR (red) in the presence
of 8b-cGMP. Data are represented as mean ± SEM. (A-C are reproduced from Larsen et al. 2016a). D, model
diagram representing N-type Ca2+ channel control by PKA and PKG, where PKA augments and PKG inhibits
channel conductance. Pathways that are decreased (blue) or increased (pink) in disease are represented. AP, action
potential; NA, noradrenaline; VGCC, voltage-gated calcium channel; AC, adenylyl cyclase.

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Movsesian, 2007; Sprenger et al. 2015; Zoccarato et al.
2015) and sympathetic overactivity in hypertension
(Larsen et al. 2016a; Liu et al. 2018) where cAMP signals
saturate the available PDEs and diffuse into neighbouring
compartments leading to aberrant effector activity (Larsen
et al. 2016a; Zhao et al. 2017).

Phosphodiesterases in the cardiac sympathetic
ganglia

We have previously reported that the activity of specific
PDEs involved in the cross-talk between cAMP and
cGMP pathways (PDE2a, PDE3) are impaired in cardiac
sympathetic nerves in prehypertension (Li et al. 2015;
Bardsley et al. 2016; Larsen et al. 2016a), and that
cGMP pathways are preferentially diminished (Larsen
et al. 2016a). However, a distinct contrast has also
been identified in the hydrolysing activity of the wider
PDE family within the sympathetic ganglia between

normotensive and prehypertensive strains (Fig. 4A). To
understand the genetic basis for these observations, we
carried out a gene ontology analysis from our RNA
sequencing dataset and found that the genetic family
representing ‘phosphoric ester hydrolase activity’ was
significantly over-represented in established hypertension
(Davis et al. 2018; Bardsley et al. 2018a), supporting pre-
clinical reports and several clinical studies (Katz et al.
2000; Bender, 2006; Nagendran et al. 2007; Zaccolo &
Movsesian, 2007; Lee et al. 2015; Maass et al. 2015;
Zoccarato et al. 2015; Boda et al. 2016; Vettel et al. 2017;
Assenza et al. 2018; Baliga et al. 2018; Bardsley et al.
2018a). It was observed that over 30 genes linked to
the PDE superfamily are differentially expressed in the
SHR stellate ganglia and that many of these mapped
to regulators of PDE activity (Bardsley et al. 2018a;
Fig. 4B), adding a further layer of complexity to the
systems involved in cN control. Moreover, changes in
transcripts do not necessarily lead to changes in protein

Figure 4. Phosphodiesterase (PDE) activity is
impaired in preSHR neurons and has a genetic
component
A and B, to investigate whether cytosolic PDE
signalling is impaired in preSHR sympathetic neurons,
a non-specific PDE inhibitor,
3-isobutyl-1-methylxanthine (IBMX; inhibits PDEs
1–7, 10–11), was administered to sympathetic
stellate neurons (1–100 μM). The resulting
intracellular cAMP was measured using real-time
Förster resonance energy transfer (FRET) in cells
transduced with the adenovirus encoding the
Epac-SH187 biosensor (Klarenbeek et al. 2015). A,
there was significantly greater IBMX-stimulated cAMP
in Wistar vs. preSHR neurons at all concentrations
measured (two-way repeated measures ANOVA; P <

0.05) supporting the evidence that there is a
differential PDE profile in preSHR vs. control stellate
neurons. At 100 μM IBMX, FRET responses were close
to sensor saturation. B, peak FRET changes are
depicted. Data are expressed as mean ± SEM. C, we
investigated whether transcriptomic changes could
be identified in SHR stellate ganglia with established
hypertension. Using RNA sequencing, it was
observed that the molecular function gene ontology
(GO) group encoding ‘phosphoric ester hydrolase
activity’ (GO:0042578) was significantly
over-represented in the SHR ganglia at 16 weeks.
Thirty-three genes were found to be differentially
expressed and many of these mapped to regulators
of PDE and kinase activity (figure reproduced from
Bardsley et al. 2018a).
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levels. For example, RNA sequencing data revealed a
decrease in Pde2a expression (Bardsley et al. 2018a),
whereas PDE2A activity and protein levels are reportedly
raised in SHR and human stellates (Li et al. 2015; Liu
et al. 2018). Furthermore, over-expression of PDE2A
in neuronal stellates recapitulates the Ca2+ phenotype
and enhanced sympathetic response seen in disease (Li
et al. 2015), illustrating complex interactions that may be
related to microdomain signalling of various isoforms of
PDE2A (Zhao et al. 2016).

Phosphodiesterases in the myocardium

Within the cardiac sympathetic axis, intrinsic electrical
pacemaker activity arising from the sinoatrial node
(SAN) dictates resting heart rate, which is increased by
sympathetic noradrenaline and activation of myocardial
Gαs-coupled β-adrenergic receptors (βARs). Elevation in
myocardial cAMP–PKA activity regulates a large number
of phospho-sensitive processes (Yaniv et al. 2015; Behar
et al. 2016) and in particular plays a key role in elevating
intracellular Ca2+ via phosphorylation of the L-type Ca2+
channel (Cav1.2, Cav1.3) (Zhao et al. 2016, 2017; Hua et al.
2012) as well as phospholamban, which increases Ca2+
reuptake by the sarcoplasmic reticulum (SR), facilitating
rapid repolarisation (Simmerman & Jones, 1998; Mattiazzi
& Kranias, 2014; Akaike et al. 2017). Conversely, mediators
that elevate cGMP–PKG, such as NO coupled to sGCs
or activation of membrane-bound particulate guanylyl
cyclase (pGC) receptors (e.g. ANP, BNP), oppose the
actions of cAMP–PKA, thus limiting intracellular Ca2+.
Sustained elevations in cAMP–PKA activity (Sprenger
et al. 2015) and/or reductions in cardiac NO–cGMP
signalling (Heaton et al. 2006; Dawson et al. 2008; Baliga
et al. 2018) that elevate [Ca2+]i (Leiser & Fleischer,
1996; Mattiazzi & Kranias, 2014; Zhao et al. 2016, 2017)
are involved in cardiac remodelling and hypertrophy
(Sprenger et al. 2015; Zoccarato et al. 2015), arrhythmia
(Kalla et al. 2016) and heart failure (Kaye et al. 1995;
Mehel et al. 2013; Florea & Cohn, 2014). In the SHR
model, atrial myocytes display a greater cAMP response
to βAR stimulation (Heaton et al. 2006), and lower basal
levels of NO–cGMP (Heaton et al. 2006). Gene transfer
approaches targeted to the SAN to up-regulate neuro-
nal nitric oxide synthase (nNOS) or its anchoring protein
CAPON (Lu et al. 2015) successfully reduce the surface
density and activity of L-type Ca2+ currents (Danson
et al. 2005) and decrease intracellular concentrations of
cAMP via the proposed activation of PDE2a (Danson
et al. 2005), highlighting a novel therapeutic potential for
targeting cNs and their effectors within the myocardium
directly. The intricacy of cN regulation, the inability to
target specific PDE isoforms that reside in precise intra-
cellular compartments, and the high-level of functional
redundancy observed in the PDE superfamily perhaps help

to explain the lack of clinical efficacy achieved by selective
PDE inhibitors. Computational protein design, protein
engineering and the application of targeted vector systems
may provide innovative solutions to these problems.

Neurohormonal and endocrine signalling: effects
on presynaptic sympathetic nerves

Impaired neurohormonal regulation plays a critical role
in the pathogenesis and progression of cardiovascular
diseases (Malpas, 2010). Plasma and tissue levels of
noradrenaline (NA), adrenaline (Adr), angiotensin II
(AngII), aldosterone and other mediators are significantly
altered in hypertension and heart failure and correlate
with the severity of disease (Catt et al. 1971; Dang
et al. 1999; Grassi & Esler, 1999; Romero & Reckelhoff,
1999; Rupp & Jäger, 2001; Schiffer et al. 2009; Riet
et al. 2015; Shinohara et al. 2015; Najafi et al. 2016).
Therapeutics aimed at opposing elevated adrenergic
and/or antagonising renin–angiotensin–aldosterone
signalling are gold-standard treatment strategies for blood
pressure maintenance (van den Meiracker et al. 1995;
Hansson et al. 1999; White et al. 2003; Flack et al. 2007;
Ram, 2010; Nussberger & Bohlender, 2013; Williams et al.
2015; Frishman, 2016; Ghazi & Drawz, 2017; Rubattu et al.
2018; Wiysonge et al. 2018). Nevertheless, their precise
mechanisms of action still remain unclear (Nussberger
et al. 1986; van den Meiracker et al. 1995; Nussberger &
Bohlender, 2013; Riet et al. 2015; Watanabe et al. 2017).

NA transmission plays a dominant role in vascular
constriction and cardiac output (Herring & Paterson,
2018), whereas sustained elevations are involved in hyper-
tension (Shanks et al. 2013b), arrhythmia (Meredith
et al. 1991) and heart failure (Kaye et al. 1995; Florea
& Cohn, 2014). In the 1980s, it was demonstrated that
the activation of presynaptic β-ARs facilitates trans-
mission within several peripheral ganglia (Lokhandwala
& Eikenburg, 1983; Majewski, 1983; Misu & Kubo, 1986;
Nedergaard & Abrahamsen, 1990; Apparsundaram &
Eikenburg, 1995), yet little is known about the physio-
logical or pathophysiological relevance of these receptors
in hypertension. Recently, we demonstrated that activation
of sympathetic stellate presynaptic β-AR receptors leads
to cAMP–PKA activation that is significantly elevated in
the prehypertensive SHR and is predominantly β2-AR
mediated (Bardsley et al. 2018b) (Fig. 5). This increase
in cAMP–PKA signalling augments high K+-evoked
Ca2+ liberation in neurons from prehypertensive rats,
reflecting ion channel involvement (Bardsley et al.
2018b). These findings suggest a feed-forward potentiating
mechanism exists for catecholaminergic regulation of
cardiac sympathetic transmission, which exacerbates the
cAMP/cGMP imbalance in disease (Fig. 6). To give these
observations contextual relevance, we also confirmed the
presence of β-ARs in human stellate ganglia, highlighting
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an alternative site of action for the efficacy achieved
with sustained clinical β-blocker therapy (Ram, 2010;
Frishman, 2016; Wiysonge et al. 2018).

The renin–angiotensin system (RAS) is critically
involved in blood pressure regulation and fluid volume
homeostasis (Hall, 1986; Herring & Paterson, 2018) and
alterations in RAS signalling are strongly associated with
the aetiology of cardiovascular disease (Dang et al. 1999;
Weir & Dzau, 1999; Rupp & Jäger, 2001; Crowley et al.
2006; Riet et al. 2015). AngII is a bioactive product
of RAS that is synthesised through sequential cleavage
of angiotensinogen and angiotensin I by the enzymes
renin and angiotensin converting enzyme (ACE) (Weir
& Dzau, 1999). Classically, AngII synthesis was thought
to predominantly result from the activity of renal-derived
renin, but emerging evidence has highlighted a critical
role for ‘intracrine’ or intracellular RAS synthesis (Re &
Bryan, 1984; Re, 2003) within several organ and tissue
sites including the brain, heart and vasculature (Phillips
et al. 1993). AngII and RAS peptide reactivity within
the brain is primarily observed in areas involved in

sympathetic outflow and blood pressure control, including
the paraventricular nucleus of the hypothalamus (Li et al.
2012; Biancardi et al. 2014) nucleus tractus solitarius (Li
et al. 2012; Shan et al. 2013; Biancardi et al. 2014), rostro-
ventral lateral medulla (Li et al. 2012; Biancardi et al. 2014)
and subfornical organ (Hendel & Collister, 2005; Cao et al.
2012; Li et al. 2012), where the effects of AngII are primarily
transduced via activation its cognate Gq-coupled receptor
AT1R (Sakai et al. 2004; Tan et al. 2004; Zhu et al. 2004;
Sakai & Sigmund, 2005; Wang et al. 2012; Shan et al. 2013;
Biancardi et al. 2014; Young & Davisson, 2015).

Evidence suggests that AngII signalling is enhanced
in the CNS in hypertension (Chai et al. 1993; Gironacci
et al. 2004; Schiffer et al. 2009; Young & Davisson, 2015;
Santos et al. 2018), heart failure (Wang et al. 2012) and
post-myocardial infarction (Tan et al. 2004). AngII also
has a direct stimulatory effect on peripheral sympathetic
neurons themselves (Cox et al. 2000; DiBona, 2000; Ma
et al. 2001; Fernandez et al. 2003; Talaia et al. 2006;
Wang et al. 2012; Berg, 2013). Critically, mice lacking
the AngII receptor AT1R within catecholaminergic

Figure 5. β-AR signalling is elevated in preSHR
neurons
A, we identified the presence of β-adrenergic
receptors (β-ARs) on tyrosine hydroxylase (TH) positive
cardiac sympathetic neurons. B, activation of
presynaptic β-ARs with isoprenaline (10 nM) led to a
significantly larger cAMP generation in preSHR (56%;
n = 12) vs. Wistar neurons (7%; n = 12; 2-way
ANOVA; P < 0.001), which was measured using
real-time cAMP in cells expressing the Epac-SH187

biosensor (A and B are reproduced from Bardsley et al.
2018b). C, we also identified the presence of AT1Rs
on TH positive neurons. D, we investigated whether
AT1R could elevate B1-AR-evoked cAMP. Dobutamine
(DOB) alone elevated cAMP in preSHR neurons
(reproduced from Bardsley et al. 2018b). Moreover,
AngII augments DOB-evoked cAMP generation in
Wistar neurons (n = 5, 6; P = 0.0073) and SHR
neurons (n = 10, 8; P = 0.0005). We also measured a
strain-dependent effect following administration of
DOB only (P = 0.0015) and in the presence of DOB
with AngII (P = 0.0283). Data are represented as mean
± SEM.
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neurons develop fewer pathological effects following
chronic AngII infusions. This includes attenuated
sympathetic activation, reduced hypertensive responses
and amelioration of ventricular hypertrophy (Jancovski
et al. 2013). Collectively, this demonstrates the potential
importance of neuronal AngII–AT1R activation in the
aetiology of sympathetic overactivity and neurogenic
hypertension.

The close relationship between elevated AngII and
sympathetic overactivity in cardiovascular disease is
intriguing (Hilgers et al. 1993; Cox et al. 2000; Goldsmith,
2004; Berg, 2013) and has raised questions surrounding
membrane level receptor–receptor interactions and
cross-talk between AngII and adrenergic signalling
cascades (Grant & McGrath, 1988; Barki-Harrington et al.
2003; Tilley, 2011; Saulière et al. 2012; Bellot et al. 2015;
Liu et al. 2017; Tóth et al. 2018). Specifically, AT1R-α2c
adrenergic receptor (AT1R-α2c-AR) heterodimers have
been observed, where activation by NA promotes atypical
enhanced cAMP–PKA signalling by converting an α2c-AR
autoinhibitory signal to excitatory positive feedback
signalling (Bellot et al. 2015). Moreover, activation of the
AT1Rα2c-AR heterodimer facilitates NA hypersecretion
and sympathetic overactivity in sympathetic neurons
in vivo (Bellot et al. 2015). Heterodimer formation has
also been found to occur between AT1R-β2-AR (Barki-
Harrington et al. 2003; Tóth et al. 2017), which enhances
the membrane stability of β2-AR and prolongs cAMP
signalling. These results support our observations
that AngII augments presynaptic β-AR-evoked cAMP
(Fig. 5) and suggests a potential synergistic role for
NA–AngII-mediated effects in provoking sympathetic
overactivity in hypertension and cardiovascular
pathophysiology (Barki-Harrington et al. 2003; Lourdes
González-Hernández et al. 2010; Christensen et al. 2011;
Berg, 2013; Bellot et al. 2015; Liu et al. 2017; Tóth et al.
2018).

Alterations in cardiac sympathetic transmitter release

Two simultaneous observations led to the concept of
Adr as a pathological entity in the progression of hyper-
tension. First, it was observed that Adr infusions underpin
sustained increases in blood pressure post-infusion
(Majewski et al. 1981; Brown & Macquin, 1982; Brown &
Dollery, 1984); and secondly, that plasma Adr is elevated in
hypertensive patients (Franco-Morselli et al. 1977; Brown
& Macquin, 1981). Brown & Macquin (1981) proposed the
‘adrenaline hypothesis’ of essential hypertension (Brown
& Dollery, 1984), which highlights a dominant role for Adr
in facilitating NA release through actions at presynaptic
β-ARs (Abboud et al. 1964; Floras et al. 1988, 1990).
The source of Adr, however, was not fully resolved with
reports suggesting chronic neuronal uptake and enhanced
release of circulating Adr derived from the adrenals as

the primary site (Brown & Macquin, 1981; Majewski,
1983; Horikoshi et al. 1985; Blankestijn et al. 1988; Misu
et al. 1988; Floras, 1992; Gudmundsdottir et al. 2008).
Evidence has pointed to the possible synthesis of Adr in
sympathetic nerves in patients with hypertension and
stress disorder (Esler et al. 2008), but the in situ synthesis
of Adr and a role for cardiac sympathetic Adr in the
aetiology of hypertension are far from well-established.

Our RNA sequencing dataset provided a comprehensive
profile of neurotransmitters and their respective
synthesising enzymes in rat stellate ganglia (Bardsley et al.
2018a). Alongside the presence of classical transmitters
and sympathetic markers, we also observed the transcript
encoding phenylethanolamine N-methyltransferase
(PNMT), the enzyme involved in the conversion of NA
to Adr (Bardsley et al. 2018a). Protein concentrations of
PNMT were detectable in rat and human stellate ganglia.
To ascertain whether the presence of PNMT results
in physiological concentrations and release of Adr, we
electrically stimulated stellate ganglia from normotensive
and hypertensive rats. Levels of both NA and Adr were
elevated in the perfusate collected from prehypertensive
SHR ganglia, whereas only NA could be detected in
perfusate from healthy rat ganglia, and Adr was not
observed (Fig. 6; Bardsley et al. 2018b). In support of this
observation, a 20-year follow-up of the Oslo study on
normotensive, prehypertensive and male patients with
established hypertension has identified arterial Adr as
an independent predictor of blood pressure elevation
(Gudmundsdottir et al. 2008), re-raising the question of
the importance of Adr in the pathophysiology of hyper-
tension (Rumantir et al. 2000a). It is now evident that
Adr synthesis occurs directly within cardiac sympathetic
nerves in diseases associated with sympathetic over-
activity (Esler et al. 2008), and that this neurotransmitter
switching takes place before elevations in arterial
blood pressure are observed (Bardsley et al. 2018b). In
addition to the observed elevation in β-AR-mediated
cAMP–PKA–Ca2+ signalling in prehypertensive rat
stellate ganglia, these data support the notion of a
causal role for Adr in the pathophysiology of neurogenic
hypertension.

Targeting sympathetic overactivity: where are
we now?

Hypertension is central in determining cardiovascular
risk and is a strong predictive indicator of morbidity
and mortality; however, there still remains an unmet
clinical need for disease-modifying and prophylactic
interventions. Cardiac sympathetic hyperactivity is a
key feature of human hypertension that is also seen in
animal models of cardiovascular disease (Esler, 2010;
Larsen et al. 2016a), yet interventions that target this
sympathetic phenotype are problematic to develop, due

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



J Physiol 598.14 Neurocardiac regulation 2967

to the anatomical location of the cardiac sympathetic
ganglia (Kwon et al. 2018) and the challenge in unravelling
the underlying pathophysiological mechanisms. Surgical
techniques such as sympathectomy per se, provide
symptomatic relief and lead to fewer cardiovascular
co-morbidities in hypertension (Morrissey et al. 1953) and
reduce the incidence of ventricular arrhythmia (Ajijola
et al. 2014; Irie et al. 2017), yet these techniques are not
without risk (Ajijola et al. 2014). Current pharmacological
approaches including β-blockers and AngII inhibitors
are mainstay therapeutic strategies for early hypertension
and many other cardiovascular diseases associated
with dysautonomia (Wiysonge et al. 2017). However,
their efficacy may also be explained via reductions in
peripheral sympatho-transmission. Approaches that aim
to modulate sympathetic overactivity may have both a
therapeutic and a physiological advantage over surgical
techniques. Optimal neuromodulation of sympathetic
tone will counteract hypertension-induced cardiovascular
damage whilst retaining a level of sympathetic reserve
that will still enable cardiac performance during physical

exertion. Gene transfer therapies that modulate cyclic
nucleotide activity have had some success in improving
neuronal activity, and a new era of genetic and protein
modification techniques might be predicted to underpin
the primary areas of advancement in this field. Moreover,
the application of bioinformatics and the integration of
machine-learning techniques with primary research may
provide novel approaches for assisting diagnoses and
prediction (LaFreniere et al. 2016; Kublanov et al. 2017;
Savage, 2017; Poplin et al. 2018) as well as providing clarity
regarding the complex interactions between pathways
and their associated cellular and molecular processes
(Cunningham, 2017; Wang et al. 2017; Xie et al. 2017;
Cholley et al. 2018; Costello & Martin, 2018; Pavillon et al.
2018), as a way to facilitate precise therapeutic targeting.

Conclusion

Sympathetic overactivity is a well-established contributor
to hypertension and CVD. Increased intracellular Ca2+
augments neurotransmission early in disease before

Figure 6. Adrenaline is released from preSHR
neurons
A, the catecholamine synthesis pathway, highlights
the role of Phenylethanolamine-N-methyltransferase
(PNMT) in the conversion from noradrenaline (NA) to
Adrenaline (Adr). B and C, tyrosine hydroxylase (TH)
and PNMT were measured in adult rat (B) and human
(C) stellate ganglia (reproduced from Bardsley et al.
2018b). D, using high pressure liquid chromatography
with electrochemical detection (HPLC-EC), we
measured significantly higher total NA in Wistar
(43.3 ± 2.173 pg; n = 8) compared with preSHR
neurons (29.82 ± 6.366 pg; n = 4; P = 0.0294). In
the same samples, we also measured a significantly
greater total content of Adr in preSHR (14.14 ±
5.399 pg) compared with that measured in Wistar
ganglia (3.937 ± 0.820 pg, P = 0.0019). E, electrical
field stimulation of whole rat stellate ganglia led to
the release of NA that was significantly higher in
samples obtained from preSHR (4.32 ± 1.523 pg) vs.
Wistar ganglia (1.477 ± 0.316 pg; P = 0.0396). The
concentrations of neurally mediated Adr release were
also significantly higher in preSHR (4.424 ± 1.391 pg,
n = 4) compared with Wistar stellates (0.3201 ±
0.0325 pg; n = 8; P = 0.0028) (figure reproduced
from Bardsley et al. 2018b).
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increases in blood pressure develop. This Ca2+ phenotype
is underpinned by an impaired cAMP/cGMP balance that
is weighted in favour of cAMP–PKA-dependent activity.
Evidence suggests that this alteration in cN signalling
results from changes in presynaptic receptor expression
and signalling pathways, as well as critical changes in PDE
activity. Pharmacological, surgical and genetic techniques
aimed at reducing sympathetic tone or raising vagal trans-
mission have had reasonable levels of success reducing
hypertension and improving cardiac function (Morrissey
et al. 1953; Heaton et al. 2007; Sabbah et al. 2011; Rathi
et al. 2013; Ajijola et al. 2014; Sverrisdottir et al. 2014;
Shivkumar et al. 2016; Irie et al. 2017); nevertheless, no
prophylactic strategies have yet successfully entered the
clinical arena, emphasising a critical need for translational
advancements in this field.
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Maver J, Štrucl M & Accetto R (2004). Autonomic nervous
system activity in normotensive subjects with a family
history of hypertension. Clin Auton Res 14, 369–375.

Mehel H, Emons J, Vettel C, Wittköpper K, Seppelt D,
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