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Abstract

Cell–cell interactions (CCIs) are essential for multicellular organisms to coordinate biological processes and functions. One classical
type of CCI interaction is between secreted ligands and cell surface receptors, i.e. ligand-receptor (LR) interactions. With the recent
development of single-cell technologies, a large amount of single-cell ribonucleic acid (RNA) sequencing (scRNA-Seq) data has become
widely available. This data availability motivated the single-cell-resolution study of CCIs, particularly LR-based CCIs. Dozens of
computational methods and tools have been developed to predict CCIs by identifying LR-based CCIs. Many of these tools have been
theoretically reviewed. However, there is little study on current LR-based CCI prediction tools regarding their performance and running
results on public scRNA-Seq datasets. In this work, to fill this gap, we tested and compared nine of the most recent computational
tools for LR-based CCI prediction. We used 15 well-studied scRNA-Seq samples that correspond to approximately 100K single cells
under different experimental conditions for testing and comparison. Besides briefing the methodology used in these nine tools, we
summarized the similarities and differences of these tools in terms of both LR prediction and CCI inference between cell types. We
provided insight into using these tools to make meaningful discoveries in understanding cell communications.

Keywords: ligand-receptor interaction, cell–cell interaction, single-cell RNA sequencing, computational prediction tools

Introduction
Cell–cell interactions (CCIs) are essential for multicellu-
lar organisms to develop tissue structure and regulate
individual cell processes [1–4]. They also contribute to
maintaining intercellular relationships and coordinating
diverse biological processes, such as development,
differentiation and inflammation [5–7]. A CCI occurs
when one cell called the sender cell transmits informa-
tion via signaling molecules to another cell called the
receiver cell [8]. Various signaling molecules, such as
ions, metabolites, integrins, receptors, junction proteins,
structural proteins, ligands and secreted proteins of
the extracellular matrix, are involved in CCIs [9, 10].
A typical signaling cascade begins with a single key
event, such as ligand-receptor (LR) interactions, which

trigger the activation of downstream signaling pathways.
Finally, it affects the activities of transcription factors
(TFs) and their target gene expression [11–13]. CCIs
mediated by LR interactions have been the most common
scenario for the computational study of CCIs in recent
years [9].

With the recent advancement of single-cell technolo-
gies [14], a large amount of single-cell ribonucleic acid
(RNA)-sequencing (scRNA-Seq) data has become publicly
available [15–21]. scRNA-Seq has enabled new and
potentially unexpected biological discoveries compared
to traditional profiling methods. These include revealing
complex and rare cell populations, uncovering regulatory
relationships between genes and tracking the trajectories
of distinct cell lineages in development [19, 20, 22].
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Compared to the traditional assays that directly measure
protein–protein interactions (PPI), the transcriptomic
measurements at single-cell resolution greatly facilitate
the computational study of CCIs [23]. With the LR inter-
action information, scRNA-Seq has demonstrated its
effectiveness in exploring CCIs at single-cell resolution.

Many computational tools have been developed
to identify CCIs through scRNA-Seq data integration
under specific cellular and physiological conditions
[24]. These CCI prediction tools, in general, follow a
common pipeline, including cell-type classification, LR
interaction inference, CCI network construction and
CCI visualization. However, each tool has its specific
emphasis and algorithmic details. Existing comparative
studies of CCI tools mainly report their advantages and
disadvantages based on the theoretical analysis [24].
There is a lack of running assessments to understand
the performance and effectiveness of the most recent
CCI inference tools in real application scenarios. This
work attempts to compare and illustrate applications
of LR-based CCI inference tools to public scRNA-Seq
datasets using the recently developed nine tools [5, 8,
12, 24–29]. In the following, we first provide an overview
of these tools. We next describe the LR resources used
by different tools and the benchmark LR interaction
database used for the later tool evaluation. We then
introduce the three benchmark scRNA-Seq datasets
involving transcriptional profiling of 95 145 single cells.
Finally, we discuss the systematic evaluation of nine
tools in LR interaction prediction and CCI network
construction.

Computational tools for LR-based CCI
inference
We compiled nine tools that can predict LR-based CCIs
based on scRNA-Seq gene expression measurements,
including CellPhoneDB, iTALK, Network Analysis Toolkit
for Multicellular Interactions (NATMI), PyMINEr, Nich-
eNet, SingleCellSignalR, CellChat, ICELLNET and scMLnet
[5, 8, 12, 24–29]. Note that there are more than nine tools
published on this subject. We finalized our list of nine
tools for comparison because these tools were published
in the last 4 years and can run smoothly without further
debugging (Table 1). We also limit our comparison to
tools not designed for spatial transcriptomics data anal-
ysis because spatial measurements of gene expression
levels are not always accessible as regular scRNA-Seq
data [30, 31]. All these nine tools were developed using
either R or python. Almost all the tools, except PyMINEr,
require a curated LR interaction database in addition to
raw or normalized Unique Molecular Identifiers (UMIs)
counts as input. UMI is a type of molecular barcoding
which provides error correction and increased accuracy
during sequencing. Among these tools, CellPhoneDB,
iTALK, NATMI, PyMINEr and scMLnet also need the
cell-type annotation as input. Others perform cell-
type annotation by embedding certain cell-clustering
procedures, such as Seurat or K-means in their pipelines,

and then assuming cluster-corresponding cell types [32].
All of these tools output the predicted LR interaction
pairs between cell types. Such LR pairs can then be
used to construct CCI networks, suggesting the potential
communication between cells. In addition, all of them
can provide visualization of CCIs. The nine tools are
briefly described as follows.

iTALK
iTALK [25] was developed as a tool for identifying and
illustrating CCIs. iTALK was motivated by understanding
the crosstalk between tumor cells and other cells in a
tumor microenvironment. iTALK manually curated a
database that contains 2648 unique LR pairs. Accord-
ing to the functions of the ligands, iTALK classifies
the interacting pairs into four categories, including
cytokine/chemokine, immune checkpoint, growth factor
and others. With the cell-gene expression matrix and
predefined cell types as input, iTALK identifies CCIs as
differentially expressed LR pairs. The identification of
differential expression is made by integrating existing
tools, such as DESeq, scde and Monocle [33–35]. iTALK
provides various ways to visualize the CCIs, including
network, circular and errorbar plots.

PyMINEr
PyMINEr [28] is an open-source program that can
perform multi-facet analysis of gene expression data,
such as clustering for cell-type identification, differential
expression identification and pathway analyses. Its
LR-based CCI inference was illustrated by predicting
autocrine and paracrine signaling networks. PyMINEr
first identifies differentially expressed genes between
cell types as cell-type-enriched genes. Two separate lists
of cell-type-enriched genes that have the potential to
function as ligands and receptors in cell communication
are then generated according to their Gene Ontology
(GO) annotation and subcellular localization analysis.
An LR pair can be defined if the cell-type-enriched genes
are in the two lists and can have physical interaction
at the protein level according to the PPI information in
StringDB. Such obtained LR pairs are then integrated into
the pathway analysis to identify autocrine and paracrine
signaling between all cell types. PyMINEr was applied
to human pancreatic islet scRNA-Seq datasets, and it
was able to identify the bone morphogenic protein-WNT
signaling responsible for cystic fibrosis pancreatic acinar
cell loss. PyMINEr output an HTML webpage to display
all the analysis results, including network graph and
circular plot of CCI networks.

NicheNet
NicheNet [12] attempts to elucidate the functional under-
standing of CCIs by inferring the functional effect of lig-
ands in the sender cells on the expression of genes in the
receiver cells. To do that, NicheNet integrates LR interac-
tion, signal transduction and gene regulatory interaction
information. The LR interactions were compiled from
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KEGG, Reactome, the IUPHAR/BPS Guide to pharmacol-
ogy and PPI databases [10, 36–38]. The signaling and PPI
information was obtained from multiple pathways and
PPI databases such as ConsensusPathDB, Omnipath and
PathwayCommons [39–47]. The gene regulatory interac-
tions were compiled from multiple resources, including
TRANSFAC, JASPAR, MSigDB and so on [48–60]. Individ-
ual interactions were organized as weighted networks
where LR and signaling networks were combined as a
weighted ligand-signaling network, and gene regulatory
interactions were converted to a weighted gene regula-
tory network. A weighted sum of the individual networks
was then performed to integrate different data sources.
Network operations, such as PageRank and matrix mul-
tiplication, were applied to this integrated network to
derive a prior model of ligand-target regulatory potential.
After combining the expression profiles of interacting
cells, NicheNet can prioritize the regulatory potential of
ligands on the target genes. When applied to the HNSCC
tumor single-cell data, NicheNet identified TGFB3 as the
most probable ligand that regulates the epithelial-to-
mesenchymal transition program in a group of malig-
nant cells. The signaling paths from TGFB3 to its target
genes were also inferred. NicheNet, when applied to
study the CCIs among immune cells using the mouse
immune cells, identified antiviral-relevant ligands such
as Il27, Ifng and Il12a.

SingleCellSignalR
SingleCellSignalR [27] curated a LR interaction database,
LRdb, from multiple resources such as FANTOM5 [61],
HPRD [62], Reactome [63] and HPMR [64]. LRdb requires a
potential LR pair with its respective GO annotations being
ligand or receptor and involved in the Reactome Pathway
database [65, 66]. LRdb contains 3251 reliable LR pairs.
The LR interactions are determined by a regularized
product score that is majorly derived from the product
of the expression levels of the associated ligand and
receptor. A scoring threshold is estimated using multiple
benchmark datasets, including a metastatic melanoma
dataset, two peripheral blood monoclonal cell datasets,
a pan T-cell dataset, a head and neck squamous cell
carcinoma dataset. The usage of SingleCellSignalR was
demonstrated by the identified LR interactions between
cells in a mouse interfollicular epidermis dataset.

CellPhoneDB
Unlike the previous studies, such as iTALK, singleCellSig-
nalR and NicheNet, CellPhoneDB v2.0 considers multiple
subunit architecture for both ligands and receptors [5].
CellPhoneDB also curated a LR database, which contains
multiple LR subunits. Significant LR interaction pairs
are defined based on the likelihood estimation of their
respective cell-type enrichment. The number of signif-
icant LR interaction pairs is used to prioritize the CCIs
specific to two given cell types. The CCI-based networks
can be constructed to assess cellular crosstalk between

different cell types. The cell subsampling method is used
to reduce memory usage and runtime.

NATMI
NATMI [29] compiled coonectomeDB2020 that contains
2293 manually curated LR pairs. NATMI considers a lig-
and or receptor as expressed if it is expressed in at least
20% of the cells of a given cell type. NATMI then defines
an edge weight corresponding to a LR pair using three
metrics differing in summarizing the expression levels
of a ligand or receptor in cells of the same cell type.
For example, one metric is the mean-expression weight,
which is defined as the product of the ligand’s mean
expression and the receptor’s mean expression in the
cells of the cell type under consideration. Based on the
edge weights between LR pairs, NATMI constructs a cell
connectivity summary network that summarizes CCIs.
The criteria can be specified by users, for example, simply
counting the number of LR pairs whose weights pass
user-defined thresholds. NATMI was applied to the Tab-
ula Muris atlas that contains single cells from 20 organs
in mice [27]. Autocrine, intra-organ and inter-organ sig-
naling were identified among 117 cell types in the Tab-
ula Muris dataset. Cellular communities and differential
networks were also predicted. NATMI provides a function
to visualize the extracted LR pairs and their edge weights.

CellChat
Like CellPhoneDB, CellChat [8] also incorporates mul-
tiple ligand/receptor subunits. It further extends their
consideration to additional cofactors such as soluble
agonists, antagonists and stimulatory and inhibitory
membrane-bound co-receptors. Based on manual cura-
tion, CellChatDB was constructed with over 2K LR inter-
actions, each of which is associated with a literature-
supported signaling pathway. CCI prediction between a
given pair of cell groups is based on a probability calcu-
lated by integrating the PPI network and the differential
expressed ligands/receptors in the involved cell types.
Based on the predicted CCIs, CellChat also performs
network analysis on the intercellular CCI networks
to identify the dominant roles of different cell types
and CCI patterns. CellChat demonstrated its functions
using several scRNA-Seq datasets, e.g. the single-cell
mouse skin datasets covering embryonic development
and adult wound healing stages. With the adult wound
healing data, CellChat identified TGF\beta signaling
from myeloid cells to fibroblasts, which is consistent
with myeloid cells’ role in literature. CellChat’s pattern
recognition module also revealed connections between
cells and signaling pathways. For instance, multiple path-
ways, such as ncWNT, SPP1, MK and PROS, were identified
corresponding to the outgoing signaling of fibroblast
cells. With the embryonic day D14.5 mouse skin dataset,
CellChat showed its ability to identify CCIs in continuous
cell states inferred by the pseudotemporal trajectory.
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scMLNet
Similar to NicheNet, scMLNet [26] integrates multiple
types of information, including LR interactions, signaling
and gene regulatory interactions as subnetworks to study
CCI. scMLNet focuses more on the context-dependent
integration by incorporating scRNA-Seq expression data
into each subnetwork construction. The constructed sub-
networks are output as a multilayer network represent-
ing CCIs. scMLNet was applied to a single cell dataset
of bronchoalveolar lavage fluid samples in nine COVID
patients and four healthy controls. The CCIs between
secretory cells and other cell types enabled the iden-
tification of ACE2 regulatory pathways, such as PI3K-
Akt, JAK–STAT, TNF and MAPK signaling pathways, which
were further validated using bulk gene expression data
and additional experiments.

ICELLNET
ICELLNET [24] is a computational framework that
can infer CCIs from bulk transcriptomic and scRNA-
Seq data. ICELLNET integrated hundreds of literature-
annotated and experimentally validated LR interactions
as a database. Similar to previous methods, ICELLNET
scores the LR interactions using the expression levels
of both ligands and receptors in the corresponding
cells. One unique feature of ICELLNET is its ability to
incorporate gene expression profiles of other cell types
not from the same dataset. For example, a cell type can
be from the Human Primary Cell Atlas. Briefly, given
the expression profiling of a specific cell type, called
‘central cell’, and that of other cell types provided by
the user, called ‘partner cells’, ICELLNET can predict the
potential CCIs between the central cell and partner cells.
Due to the incompleteness, complexity and possibilities
to cause false CCI predictions, ICELLNET did not integrate
pathway and gene regulatory information [67–70]. ICELL-
NET was applied to human breast cancer-associated
fibroblast (CAF) cells and demonstrated its capability
to reconstruct the CCIs and identify the LR interactions
between CAFs and 14 other cell types involved in the
tumor microenvironment. ICELLNET also provides a few
visualization tools for result interpretation.

Even though all the tools can predict CCI networks,
they have different considerations in defining LR
interactions. We can thus further classify the tools into
two categories: pathway-involved and non-pathway-
involved. Tools like NicheNet, PyMINEr and scMLnet fall
into the pathway-involved category, while others are
majorly non-pathway-involved. The pathway-involved
tools are primarily motivated by the essential role of
intracellular signaling and transcriptional regulation
events during CCIs [12, 26, 71, 72]. Therefore, these tools
take into account the signaling pathway components
by performing pathway integration and analysis when
inferring LR interactions and CCIs. Because the current
understanding of pathway and gene regulatory mech-
anisms is incomplete, the integration of downstream

signaling pathways and targets can lead to false predic-
tions [24, 69, 73, 74] . On the other hand, non-pathway-
involved tools focus on the transcriptional abundance
of the ligands and receptors. Some non-pathways-
involved tools, such as CellChat and SingleCellSignalR,
also perform pathway analysis but only after the CCI
inference [8, 27]. Meanwhile, most of these tools utilize
the expression levels of ligands and receptors to score
the potential LR interactions, which is common in CCI
literature [75–79]. Nevertheless, the formulas used to
compute the score vary. For example, NATMI offers
three different metrics for calculating the LR interaction
scores, SingleCellSignalR uses a regularized product
and CellPhoneDB applies modified mean P-value. The
corresponding score cutoffs are also defined differently.
Although all the tools can generate predictions for
important LR interaction pairs, they do not always
directly output the LR interaction scores, which is
particularly true for the pathway-involved tools.

Testing data compilation and tool
comparison methods
LR interaction data used for comparison
To evaluate the predicted LR interactions from the nine
tools, we downloaded the compiled LR interactions in 23
resources from recent studies [8, 10, 12, 24, 25, 27, 29, 80–
92] (Supplementary Table 1 available online at http://bib.
oxfordjournals.org/). The majority of the LR interactions
were inferred from protein interaction, gene function
and pathway annotations in the literature. Although
many LR interactions are shared among these resources,
much more LR interactions are unique to individual
resources. To find the most reliable LR interactions, we
calculated the overlap of the LR pairs between resources
(Figure 1). We defined the most reliable LR interactions
as those occurring in at least four resources. This
definition resulted in 3779 LR interaction pairs forming
the consensus LR interaction database (C-LRI). We used
the C-LRI database as a benchmark dataset to evaluate
the LR predictions from different tools (Supplementary
File 1 available online at http://bib.oxfordjournals.org/).

scRNA-Seq datasets
We evaluated the nine tools using three well-studied
scRNA-Seq datasets (Table 2), involving 15 scRNA-Seq
samples.

The first dataset is the scRNA-Seq data from embry-
onic mouse skin [93]. These scRNA-Seq data correspond
to the gene expression measurement of single cells of
embryonic dorsolateral/flank skin at embryonic days
13.5 and 14.5. We obtained two biological replicates for
both days (GSM3453535, GSM3453536, GSM3453537 and
GSM3453538). We then performed the cell-level filtering
by removing the cells with UMI counts <2500 or >50 000
[8]. We also removed cells with gene numbers <1000 and
the fraction of mitochondrial counts >20%.

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elac019#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 1. The overlap of the LR pairs in the 23 resources. Although many LR interactions are shared among these resources, much more LR
interactions are unique to individual resources.

Table 2. Details of the 15 samples

Dataset GEO Name Data size (Windows10) Data format # Cell numbers

Embryonic mouse skin GSM3453535 e13.5control 379 MB 10X Genomics 7067
GSM3453536 e13.5control_replicate 326 MB 10X Genomics 6098
GSM3453537 e14.5control 343 MB 10X Genomics 6394
GSM3453538 e14.5control_replicate 329 MB 10X Genomics 6153

Mouse cerebral cortex GSE60361 NA 115 MB UMI counts 3005
Mouse spinal cord GSM4955359 uninj_sample1 151 MB UMI counts 2757

GSM4955360 uninj_sample2 61 MB UMI counts 1024
GSM4955361 uninj_sample3 547 MB UMI counts 8858
GSM4955362 1 dpi_sample1 404 MB UMI counts 7360
GSM4955363 1 dpi_sample2 309 MB UMI counts 5216
GSM4955364 1 dpi_sample3 526 MB UMI counts 8520
GSM4955365 3 dpi_sample1 507 MB UMI counts 9263
GSM4955366 3 dpi_sample2 489 MB UMI counts 8237
GSM4955367 7 dpi_sample1 408 MB UMI counts 7467
GSM4955368 7 dpi_sample2 459 MB UMI counts 7726
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The second dataset is the mouse cerebral cortex
scRNA-Seq data [94], which measures gene expression
in 3005 high-quality single cells isolated from the mouse
cerebral cortex (GSE60361). It contains the main cell
types in the hippocampus and somatosensory cortex.
We then filtered out unreliable genes based on the
total number of reads per gene and only kept the genes
detected in more than 30 cells [95].

We also compared the nine tools on the third scRNA-
Seq dataset from the mouse spinal cord (GSE162610) [96].
This dataset measures gene expression in all cell types of
the uninjured and injured spinal cord of wild-type mice
at 1 day, 3 days and 7 days after injury. The data contain
10 samples including three uninjured samples, three
1 dpi, two 3 dpi and two 7 dpi samples (GSM4955359,
GSM4955360, GSM4955361, GSM4955362, GSM4955363,
GSM4955364, GSM4955365, GSM4955366, GSM4955367
and GSM4955368). We used the processed dataset from
the original paper.

Compare predicted LR pairs
For a given scRNA-Seq sample, the LR interactions
between specific cell types were compared. Cell clusters
were first obtained by Seurat [32]. Each cell cluster was
then annotated to a cell type by cross-checking the cells’
annotation in the original literature reference. Each CCI
tool was run to output the top LR predictions between
cell-type-annotated clusters. Given such obtained LR
interactions between any two cell types, all the tools
were compared regarding the predicted number of LR
interactions. The predicted LR interaction pairs were also
compared against the C-LRI database. The LR pairs were
used to infer CCIs for each tool. These CCIs were then
compared across different tools. To determine how cell
clustering results affected the CCI inference results, we
enumerated the resolution parameter of Seurat. Note
that the resolution parameter is associated with the
Seurat clusters’ granularity, where a larger resolution
value corresponds to a larger number of clusters.

Compare the inferred CCI networks
For each CCI inference tool, a CCI network was con-
structed based on the predicted LR interactions. In a
CCI network, each node represents a cell type, and each
edge corresponds to the LR-based CCIs between two cell
types. Similar to ICELLNET [24], we defined the pairwise
dissimilarities dα,β between two CCI networks α and β as

dα,β =
∑N
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i,j

| Eα ∪ Eβ |

with
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where wα
i,j is the weight of the directed edge from nodes i

to j in the CCI network α, N is the total number of nodes,

Eα is the set of edges in the CCI network α and | Eα ∪Eβ | is
the cardinality of the union of all edges in CCI networks
α and β. Note that, the edge weight can be defined as the
number of predicted LRs between two corresponding cell
types.

Compare the effect of subsampling
To compare the predicted communications on different
subsets of the original input data, we used the ‘geo-
metric sketching’ approach to perform subsampling of
the scRNA-Seq datasets [97]. Geometric sketching is a
data sampling approach that has been shown effective
in using a small portion of the original single-cell data
to represent the full data and consequently reduce the
data volume. Compared with the commonly used down-
sampling strategies, the geometric sketching method can
keep the rare cell types and maintain the heterogeneity
of the original data. To calculate the scores for the tools,
given a CCI inferred from the sampled data, if it is also
inferred from the original data, it is defined as a true
positive. Any CCI predictions from the original data but
not in the sampled data are false negatives. Such a
sampling analysis was used to evaluate the consistency
between tools rather than the accuracy of each tool.

Running time and memory usage
We collected the runtime and memory usage of the nine
tools on a dedicated machine. All the tools were run on
the same Ubuntu 18.04 Long Term Support supporting
computer with Intel core i7-10875H CPU @2.3 GHz 16
cores and 128 GB memory. We used the python ‘time’
package to record the time used for each tool. Briefly, we
recorded the time between the tool command start and
the tool command end. We used the ‘top’ command to
monitor the memory used when the tool was running
for memory usage. The maximum used memory was
selected as the memory usage for each tool. When we
ran the code, we tried to suspend all other activities to
make sure we could obtain the actual maximum memory
usage.

Comparison of the nine tools using mouse
skin and cortex data
Comparison of the predicted LR interaction pairs
We found a large inconsistency in the number of pre-
dicted LR interactions among the different tools. The
number of LR interaction pairs predicted by the nine tools
for a given sample often varies from dozens to thousands.
To make the predicted LR pairs from different tools com-
parable, we selected the top predictions accordingly for
each tool. For example, we kept the top 10% of LR pairs
from iTALK, ICELLNET, NicheNet and NATMI.

After selecting the top LR pairs, the difference of the
predicted LR numbers is lessened but persists. For exam-
ple, for the embryonic day 13.5 control replicate sample
(GSM3453536) in the Embryonic mouse skin dataset, the
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Figure 2. Tool results on different datasets. (A) The number of predicted LR pairs varies from FIB-A to FIB-B cell types in the embryonic mouse skin
samples. (B) A large percentage of predicted LR pairs by all tools except PyMINEr are in C-LRI from FIB-A to FIB-B cell types in embryonic mouse skin
samples. (C) The number of predicted LR pairs varies from pyramidal CA1 to oligodendrocytes cell types in mouse cerebral cortex. (D) A large
percentage of predicted LR pairs by all tools except PyMINEr are in C-LRI from pyramidal CA1 to oligodendrocytes cell types in mouse cerebral cortex.

number of predicted LR interaction pairs between fibrob-
last type A (FIB-A) and fibroblast type B (FIB-B) cells still
is varied by tools ranging from 12 to 192 (Figure 2A). This
situation is similar for all four samples in the mouse
skin dataset and the mouse cerebral cortex sample. In
the mouse cortex sample, the number of LR interac-
tions from the Pyramidal CA1 to oligodendrocytes cells
varies from 44 (CellChat) to 235 (ICELLNET) (Figure 2C).
CellChat, scMLnet and SingleCellSignalR predicted fewer
than a few dozen LR interactions, while iTALK, ICELLNET
and NATMI often output >100 LR interactions based
on our selection criteria above. For different tools, not
only does the predicted number of LR interactions differ
for the same sample but also the number distribution
of LR interactions across different samples. For exam-
ple, the CellChat, CellPhoneDB, PyMINEr predicted most
LR pairs from the embryonic day 14.5 control sample
(GSM3453537) in the mouse skin dataset, while Single-
CellSignalR predicted the least LR interactions in the
same sample.

A closer examination of the LR pairs shows few predic-
tions are shared between tools (Supplementary Figures 1
and 2 available online at http://bib.oxfordjournals.org/).
Although iTALK, iCELLNET and NATMI all had over 100
pairs of LR interaction predicted, they only share 20–
30% of their predictions. For example, for the embryonic
day 13.5 control replicate sample (GSM3453536), iTALK
shares with ICELLNET and NATMI 23 (19.7%), 39 (33.3%)
of its 117 LR predictions, respectively. Meanwhile, among
its 192 LR predictions, ICELLNET only has 23 (12%), 38

(19.8%) LR pairs in common with iTALK and NATMI,
respectively. On the other hand, for the tools that fre-
quently predicted fewer LR pairs in a given sample, the
overlap between the predicted LR pairs is even less. For
instance, out of the 31 predicted LR pairs, SingleCellSig-
nalR only has one LR pair in common with scMLnet.

We compared the LR predictions against the C-LRI
database (Figure 2B). We found that all the predictions
from iTALK and scMLnet are in the database C-LRI.
A large percentage of NATMI, SingleCellSignalR and
ICELLNET predictions are in the C-LRI. For example,
for the embryonic day 13.5 control replicate sample
(GSM3453536), 86.36% of the NATMI’s 110 LR predictions,
77.42% of the SingleCellSignalR’s 31 predictions and
77.08% of the ICELLNET’s 192 predictions were found in
the database C-LRI. In contrast, CellChat, NicheNet, Cell-
PhoneDB have a smaller percentage of overlap with the
C-LRI data (41.67%, 34.74% and 44.83%, respectively). The
same pattern is approximately followed by the mouse
cortex sample where iTALK and scMLnet predicted all C-
LRI LR pairs, while ICELLNET and NATMI predicted more
C-LRI pairs than others taking into account the number
of predictions (Figure 2D). Among the nine tools, PyMINEr
is the only exception in that it has little overlap with
the C-LRI data. Further inspection shows that PyMINEr’s
predictions are largely PPIs that are not often annotated
LR interactions.

The above observations were made when the resolu-
tion parameter of Seurat was set as 0.4 (corresponding
to 20 clusters assigned to seven cell types). We also

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elac019#supplementary-data
https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elac019#supplementary-data
http://bib.oxfordjournals.org/
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investigated how cell clustering with various Seurat
resolution settings might change the LR interaction pre-
diction of the nine tools. To do that, we set the resolution
to be 0.1, 0.3, 0.5, 0.7 and 0.9, corresponding to 8, 15, 20,
22 and 22 clusters, respectively. We then compared all LR
pairs predicted by each tool. We found that cell clustering
impacted the tools differently. Take the mouse cerebral
cortex sample as an example. Although the resulted
cluster number changes, the overall number of LR pairs
remains similar for most tools (Supplementary Figure 3
available online at http://bib.oxfordjournals.org/). Only
ICELLNET and NATMI have little difference in resolution
0.1 compared with other parameters. However, when
examining LR interactions between specific cell types,
we observed that the number of LR pairs consistently
increases with the higher resolution setting, except
SingleCellSignalR (Figure 3). For example, we observed
the number of CellChat-predicted LR pairs between
cell types pyramidal CA1 and pyramidal SS is 15, 21,
24, 26 and 26 for resolutions 0.1, 0.3, 0.5, 0.7 and 0.9,
respectively. However, the corresponding number of
SingleCellSignalR-predicted LR pairs is 15, 21, 24, 26 and
26, respectively. The distributions of LR interactions for
the nine tools are similar for other cell types, e.g. the
number of LR pairs between cell-type pyramidal CA1
and oligodendrocytes (Supplementary Figure 4 available
online at http://bib.oxfordjournals.org/). With more
clusters generated, the same LR pair can be predicted
multiple times by multiple clusters corresponding to
the same cell types, leading to more predicted LR pairs.
The exception of SingleCellSignalR might be due to its
specific procedure to select significantly expressed genes
for consideration in LR prediction. Therefore, variations
in cell-clustering and cell-type classification can impact
the prediction of LR interactions.

Comparison of the predicted CCI networks
We compared the CCI networks generated by the nine
tools using the dissimilarity score (Section ‘Testing
data compilation and tool comparison methods’). We
found that the CCI dissimilarity patterns are conserved
between different samples. Figure 4 shows the dissimi-
larity scores between tools applied to the four samples
in the embryonic mouse skin dataset. We observed
that ICELLNET, NATMI, iTALK and NicheNet often have
similar CCI outputs, scMLnet and SingleCellSignalR, in
general, have similar CCIs. However, CCI networks from
SingleCellSignalR are often very different from those
produced by other tools. For example, the mean dissim-
ilarity score between PyMINEr and the SingleCellSignalR
was 8.12. In contrast, ICELLNET and NATMI have an
average score of 0.78. The dissimilarity pattern between
tools is followed by the mouse cortex sample as well
(Supplementary Figure 5 available online at http://bib.
oxfordjournals.org/).

Further inspection of the CCIs between different
tools shows that the difference of CCI networks is
largely derived from the LR interaction predictions.

For the embryonic day 13.5 control replicate sample
(GSM3453536) in the mouse skin dataset, we observe
the same CCI edges identified by ICELLNET, iTALK, and
NATMI with slightly varied edge weights. In contrast,
SingleCellSingalR and scMLnet generally have much
smaller edge weights and fewer CCI edges between cells
(Figure 5A and B). In the CCI network corresponding
to SingleCellSignalR, the signaling from immune cells
to basal cells was not inferred due to the lack of
LR interaction predictions. For the same reason, the
communication from muscle cells to MELA cells was not
inferred by the SingleCellSignalR. The same observation
was made for the mouse cortex sample. A larger number
of LR predictions, in general, leads to a denser CCI
network. Tools, such as SingleCellSignalR and scMLnet,
that tend to predict a smaller number of LRs can result
in a lower CCI detection rate. On the other hand, tools,
such as ICELLNET, iTALK and NATMI, tend to predict a
larger number of CCIs, which can be associated with
lower confidence in the predictions.

We performed the Geometric sketching subsampling
procedure to compare the consistency of the CCI pre-
dictions by the nine tools (Section ‘Testing data compi-
lation and tool comparison methods’). Briefly, we sepa-
rately sampled 90%, 80% and 70% of the total number
of cells in each data. We then ran the nine tools using
the sampled data as input. We computed the precision,
recall and F1 scores based on the running results (Sup-
plementary Tables 2 and 3 available online at http://
bib.oxfordjournals.org/). The precision is higher with the
increasing percentage of subsampling for both datasets.
In general, ICELLNET and NATMI have higher subsam-
pling precision and recall overall compared with scMLnet
and SingleCellSignalR (Figure 6A and B).

Comparison of the nine tools using mouse spinal
cord injury data
We performed the tool comparison on the recently pub-
lished mouse spinal cord data. The scRNA-Seq data with
10 wild-type mice samples correspond to the transcrip-
tional profiling of the uninjured and injured spinal cord
at 1, 3 and 7 dpi. For mouse spine cord samples, we set
Seurat parameters to discover the 15 cell types based on
the original UMAP plot [96].

Similar to the mouse skin and cortex datasets, the nine
tools predicted different numbers of LR interactions. For
example, the number of LR interactions from Microglia
cells to Endothelial cells varies from 11 (CellChat) to
242 (iTALK) for the ‘uninjured sample3’ (GSM4955361)
(Figure 7A). Consistent with the observations from
mouse skin and cortex samples, iTALK, ICELLNET and
NATMI often predicted hundreds of LR interaction pairs.
The top 10% pairs are counted over 100. However, the pre-
dicted LR pairs are largely not overlapping. For example,
for the ‘uninjured sample3’ (GSM4955361), iTALK shares
with ICELLNET and NATMI 31 (12.8%), 50 (20.7%) of its
242 LR predictions, respectively. Meanwhile, ICELLNET
only has 31 (17.8%), 46 (26.4%) of its 174 LR predictions

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elac019#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elac019#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elac019#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elac019#supplementary-data
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Figure 3. The number of LR pairs between pyramidal CA1 and pyramidal SS cell types in mouse cerebral cortex consistently increases with the higher
resolution setting, except SingleCellSignalR.

in common with iTALK and NATMI, respectively. While
NATMI has nearly 40% of its 127 predictions overlapping
with iTALK’s 242 predictions, SingleCellSignalR has 74
predictions, with only 6 overlapping with ICELLNET, 5
overlapping with NATMI and 0 overlapping with CellChat,
CellPhoneDB and PyMINEr. Although CellPhoneDB
has 54 predictions, it shared a few with other tools.
This situation is similar across all the ten samples
(Supplementary Figure 6 available online at http://bib.
oxfordjournals.org/). This observation again suggests
the large inconsistency of LR interaction ranking and
predictions.

Comparing the nine tools’ LR pair predictions to the
C-LRI database for all samples, we found almost all
predictions from iTALK and scMLnet, the majority of
the predictions by CellChat, NATMI, SingleCellSignalR
and ICELLNET are in C-LRI. At the same time, NicheNet
and PyMINEr have a lower percentage of their predic-
tions in C-LRI (Figure 7B). Take the ‘uninjured sample3’
(GSM4955361) as an example, 90.91% of the 11 predic-
tions of CellChat, 90.55% of the NATMI’s 127 predic-
tions, 81.08% of the SingleCellSignalR’s 74 predictions
and 67.82% of the ICELLNET predictions are also in C-LRI.
In contrast, NicheNet, CellPhoneDB and PyMINEr were
only found 24.48%, 34.38%, and 2.48% of their 143, 64 and
121 predictions in C-LRI. The resulted statistics for each
tool are similar across the other nine samples (Figure 7B).

Considering the total number of LR predictions, NATMI’s
LR predictions are most consistent with the C-LRI infor-
mation, indicating that NATMI is most likely to predict
well-annotated LR interactions.

The large variance of LR interaction predictions by
different tools has an immediate impact on the study
of LR interaction dynamics. We compared the nine tools
to see how LR interactions between certain cell types
change with the days passed the injury. Multiple tools
consistently identified some dynamics of LR interactions.
For instance, the THBS1-CD47 interactions between the
monocyte and endothelial cells were not found in unin-
jured mice but were identified in injured mice by ICELL-
NET, NATMI, PyMINEr and ITALK. It is also interesting
that the SPP1-ITGA5 interactions between microglial and
endothelial cells were not discovered in the uninjured
mice, injured mice at 7 dpi, but were only found in the
injured mice at 1 and 3 dpi. This discovery was made
consistently by CellChat, PyMINEr, iTALK and scMLnet.
Also, the TGFB1-ENG interactions between the microglial
and endothelial cells became identifiable by ICELLNET,
NATMI and iTALK starting at 3 dpi and continuing into
7 dpi. However, most LR pairs were not supported by the
majority of the nine tools. For example, the GDNF-GFRA2
interactions between neutrophil and endothelial cells
only occur at 1 dpi, identified by ICELLNET and iTALK, but
not by other tools. In some cases, the discoveries of the

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elac019#supplementary-data
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Figure 4. The CCI network dissimilarity scores between different tools on the four samples in the embryonic mouse skin dataset. A subset of tools
have similar CCI outputs (darker blocks), while scMLnet and SingleCellSignalR have quite different CCI output from other tools.

LR dynamics patterns conflict with each other. For exam-
ple, GNAI2-ADORA1 interactions between neutrophil and
endothelial cells were discovered by NATMI at 1 and 7 but
not at 3 dpi and uninjured mice. In contrast, the same LR
interaction was identified by SingleCellSignalR only at 3
dpi. In general, we observed that ICELLNET, iTALK and
NATMI have high similarities in terms of LR dynamics
identification.

The comparison between the CCI networks generated
by the nine tools shows CCI dissimilarity patterns
are largely conserved between different samples (Sup-
plementary Figure 7 available online at http://bib.
oxfordjournals.org/). Again, we observed that ICELLNET,
NATMI, iTALK and NicheNet often have similar CCI
outputs, while scMLnet and SingleCellSignalR generally
have similar CCIs. We also tested the robustness of
the nine tools on the mouse spinal cord data with the
Geometric sketching approach. We found iTALK and
NATMI often show better consistency than scMLnet
and SingleCellSignalR (Supplementary Table 4 available
online at http://bib.oxfordjournals.org/).

Runtime and memory analysis
We compared the runtime and memory cost of the nine
tools. We found the running time varies from seconds
to hours. For example, using the mouse cerebral cor-
tex dataset as an example, the iTALK used the short-
est time (∼20 s), while scMLnet took the longest time
(8 h) (Figure 8). The variation in the time cost is largely
attributed to the specific algorithms for CCI inference.
For instance, iTALK predicts LR pairs among all cell types
simultaneously, while scMLnet and NicheNet consider LR
pairs for two cell types one at a time. In certain cases,
such as PyMINEr and SingleCellSignalR, additional out-
puts such as networks and images can make the process
longer. The running time is also affected by the number
of identified cell clusters.

We also estimated the memory usage of each tool.
Almost all of the tools’ memory usage is between 0.5
and 2.5 GB except for PyMINEr and SingleCellSignalR,
which cost 13.3 and 5.2 GB, respectively. For PyMINEr,
the calculating of correlation between gene pairs can
be memory-intensive. For SingleCellSignalR, a large

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elac019#supplementary-data
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Figure 5. CCI network examples of the selected six tools on the embryonic mouse skin dataset (GSM3453536). SingleCellSingalR and scMLnet generally
have much smaller edge weights and fewer CCI edges between cells than other tools. (A) The CCI subnetwork corresponding to the basal, immune,
FIB-A and FIB-B cell types. (B) The CCI subnetwork corresponding to the endothelial, spinous, MELA and muscle cell types.

memory is required to obtain a signature cell matrix by
computing the average gene signature expression across
all the cells and signatures.

Conclusions and outlook
We performed an initial study of LR-based CCI inference
tools using nine most recent prediction software using
well-studied scRNA-Seq samples. We provided a side-
by-side comparison scenario regarding LR interaction
resources, required input, LR output, CCI inference, run
time, memory consumption and visualization capability.

The number of predicted LR interaction pairs can sig-
nificantly differ among the nine tools in terms of LR
interaction predictions. Compared with the other tools,
which often predict hundreds of LR interactions, CellChat
and SingleCellSignalR generate dozens of LR interaction
predictions for the testing datasets. We found that iTALK,
ICELLNET, NicheNet and NATMI provide a relatively more
consistent number of LR interaction predictions with
each other than others. However, their predicted LR inter-
action pairs often do not form consensuses. In terms of
the CCI inference, it is directly impacted by the previous
LR interaction prediction results. Naturally, we observed
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Figure 6. ICELLNET and NATMI have higher subsampling consistency scores (precision, recall and F1 score) than other tools. (A) The subsampling
consistency scores on the Embryonic mouse skin data. (B) The subsampling consistency scores on the Mouse cerebral cortex data.

that tools with similar LR predictions result in similar
CCI networks. We tested the robustness of these tools by
performing subsampling of the original input data. We
found that most of the current tools have good robust-
ness regarding data selection.

From the above analysis of the 15 samples containing
nearly 100K cells, we observed a large discrepancy among
the nine tools in LR predictions and the subsequent CCI
inference. One reason can be that different tools run on
their LR databases, and most of the tools do not allow
user-specified LR databases in their current pipeline. We
constructed a more reliable LR interaction database C-
LRI containing LR interaction pairs supported by at least
four literature resources to compare the predicted LR
interactions. Therefore, LR pairs in C-LRI are mostly well-
annotated LR interactions. We used C-LRI as one way to
benchmark the LR predictions from these tools. These
benchmark data provided us with additional insight into

the tools. For instance, PyMINEr predicted a decent num-
ber of LR interaction pairs for our test data, but few
of PyMINEr’s predictions are in the C-LRI database. We
need to note that even for LR predictions not in C-LRI,
one cannot claim them as false predictions. However, it
does provide an intuition of the LR prediction accuracy,
assuming well-known and relatively new LR interactions
are equally distributed.

We tested the sensitivity of LR predictions by enu-
merating cell clustering/classification at different reso-
lutions. We found that most tools generated more LR pre-
dictions when more clusters were obtained. One possible
explanation is that as the number of clusters increases,
the number of possible cell-type pairs increases, and
the number of predicted LR interactions also increases.
This could indicate issues relevant to multiple hypothesis
testing. Meanwhile, because clusters often correspond
to cell-type classification, the clustering results would
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Figure 7. Comparative performance of tools on the mouse spine cord injury dataset. (A) The number of predicted LR pairs from microglia to endothelial
cell types varies greatly. (B) A large proportion of predicted LR pairs by all tools except PyMINEr are in C-LRI from microglia to endothelial cell types.

Figure 8. The comparison of the running time and memory usage of the nine tools.
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affect the CCI inference in the later stage. Besides choos-
ing clustering algorithms that are robust to parameter
settings, knowing the approximate number of cell types
in the data would increase the confidence of the inferred
CCIs. However, accurate specification of cell-type compo-
sition for a given sample is often unavailable and requires
domain expertise.

We found that the number of single cells in a given
sample might also affect the number of identified LR
pairs for tools, such as iTALK, for which fewer cells
often correspond to fewer LR predictions. This is also evi-
dent when comparing the mouse skin samples and the
mouse cortex sample, where the mouse cortex sample
contains a smaller number (3005) of high-quality single
cells. We observed that the number of iTALK-predicted
LR interactions dropped from 108 (the lowest for mouse
skin sample) in the mouse skin sample to 44 (mouse
cortex sample). At the same time, ICELLNET, NicheNet
and NATMI still predicted over 100 LR interactions in the
mouse cortex sample.

A few caveats to usage and interpretation when apply-
ing a computational tool for LR-based CCI inference.
First, the current LR annotation is incomplete. Even
though there is a long list of LR pairs in various resources,
many of them are computational predictions, e.g. from
PPI databases, that might contain false positives. Second,
most tools have specific details about calculating signif-
icance scores, e.g. P-values, and defining a threshold to
filter confident LR pairs [27, 29]. These details need to be
considered to interpret the predictions correctly. Third,
the cell-type annotation or classification can affect
the final LR-based CCI inference. Carefully selecting
parameters in the cell clustering is required for a more
accurate prediction. How to achieve accurate cell-type
classification from scRNA-Seq data is still an active topic
for computational method development [95, 98, 99].

Hence, this initial comparison shows that when
applied to scRNA-Seq samples, the current LR-based CCI
tools can provide insight into the cell communications
at the single-cell resolution. Although different tools are
not often consistent, predictions from some of these
tools, such as iTALK, ICELLNET and NATMI, have shown
good overlap with each other. They also predicted a
larger percentage of well-annotated LR pairs. It would
be practical for specific biological applications to run
multiple tools to generate a consensus before biological
validation. Finally, with more tools for CCI prediction
and more experimental techniques on CCI measurement
published, golden standards need to be developed for
more sophisticated evaluations of the tools in the near
future. For example, with the rapidly developing spatial
transcriptomics technologies [100], methods have been
developed to integrate spatial transcriptomics data
and scRNA-Seq data [101, 102]. Such integrated data
have demonstrated the promise to understand cell
subpopulations and would hold promise for improved
CCI inference [77, 81]. Also, additional information such
as those from proteomics data and experiments on the

effect of receptor gene knockouts can be used for further
testing and benchmarking when available.

Key Points

• Nine computational tools on LR-based CCI inference
published in the last 4 years are surveyed.

• Nine tools are systematically evaluated on 15 scRNA-
Seq samples containing nearly 100K single cells under
different conditions in mouse.

• The number of predicted LR interaction pairs and CCI
networks show the consistency of subsets of the nine
tools but has a large variance among the nine tools.

• The performance of the nine tools is affected by the
cell clustering, cell-type classification and the scale and
quality of scRNA-Seq experiments but shows robustness
to data sampling.

• Obtaining a consensus CCI by running multiple tools is
recommended for CCI interpretation in specific biologi-
cal applications.
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